

вестник ЗАЩИТЫ РАСТЕНИЙ

PLANT PROTECTION NEWS

2020 том 103 выпуск 3

OECD+WoS: 1.06+RQ (Mycology) https://doi.org/10.31993/2308-6459-2020-103-3-13282

Краткое сообщение

НОВЫЕ СВЕДЕНИЯ О РАСПРОСТРАНЕНИИ НА ТЕРРИТОРИИ РОССИИ ГРИБА FUSARIUM LANGSETHIAE, ПРОДУЦИРУЮЩЕГО Т-2 И НТ-2 ТОКСИНЫ

О.П. Гаврилова*, Т.Ю. Гагкаева

Всероссийский научно-исследовательский институт защиты растений, Санкт-Петербург

* ответственный за переписку, e-mail: olgavriloval@yandex.ru

Ежегодный мониторинг зараженности зерна грибами рода *Fusarium* и определение их видового состава свидетельствуют о массовом распространении *Fusarium langsethiae*, способного продуцировать опасные Т-2 и HT-2 токсины, в Северо-Западном и Центральном Федеральных округах (ФО) России. Микологический анализ урожая зерна 2018–2019 гг. позволил выявить новые места обнаружения *F. langsethiae*, в том числе в трёх областях Уральского ФО, где ранее этот вид был отмечен единично. Максимальная установленная заражённость *F. langsethiae* зерна овса достигала в 2019 г. 14%. Видовая идентификация выделенных из образцов зерна штаммов, проведённая с помощью ПЦР со специфичными праймерами, подтвердила их принадлежность к *F. langsethiae*. С помощью высокоэффективной жидкостной хроматографии в сочетании с масс-спектрометрией подтверждена способность гриба продуцировать значительные количества Т-2 и HT-2 токсинов. В образцах зерна, заражённых этим видом, выявлены значительные суммарные количества Т-2 и HT-2 токсинов (165–1230 мкг/кг). Необходимо дальнейшее уточнение ареала *F. langsethiae* и его внутривидового разнообразия для понимания путей распространения этого токсинопродуцирующего гриба.

Ключевые слова: Fusarium langsethiae, идентификация, ареал, микотоксины

Поступила в редакцию: 29.04.2020 Принята к печати: 28.08.2020

Введение

Более 20 лет назад, во время микологического анализа зараженности грибами зерновых культур в Норвегии, были выявлены нетипичные штаммы, сходные по своим морфологическим признакам с Fusarium poae (Peck) Wollenw. и охарактеризованные как «порошистая» разновидность этого гриба – «F. poae powdery» (Torp, Langseth, 1999). Детальное исследование их свойств привело к описанию в 2004 г. нового вида – Fusarium langsethiae Torp & Nirenberg, названного в честь известного норвежского миколога W. Langseth (Torp, Nirenberg, 2004). В начале изучения распространения этого гриба полагали, что его ареал ограничен территорией стран с умеренным климатом, поскольку в начале 2000-х его находили преимущественно на севере Европы (Imathiu et al., 2013). Спустя десятилетие F. langsethiae стал типичным видом микобиоты зерновых культур не только в центре (Łukanowski, Sadowski, 2008; Schöneberg et al., 2018), но и на юге Европы (Infantino, 2015; Morcia et al., 2016). В России первое обнаружение F. langsethiae в зерне ячменя, выращенном

в Ленинградской области, датируется 2003 г. (Gagkaeva et al., 2006). Позднее было установлено его присутствие на зерновых культурах из разных областей Европейской части страны (Гаврилова и др., 2009; Гагкаева и др., 2012; Минаева и др., 2013; Бучнева, 2019). Единичной находкой вида *F. langsethiae* за пределами европейской территории служил штамм из зерна овса из Ишимского района Тюменской области, идентифицированный нами в 2010 г. (Yli-Mattila et al., 2015), исходные семена овса для посева были получены из Краснодарского края, где *F. langsethiae* распространён (Гагкаева и др., 2014).

До настоящего времени *F. langsethiae* остаётся одним из самых интригующих видов грибов рода *Fusarium*. Круг поражаемых им растений ограничен возделываемыми зерновыми культурами (кроме кукурузы), в том числе озимыми, и даже на дикорастущих злаковых растениях этот гриб обнаружить не удалось (Гагкаева и др., 2014). Как правило, обитание *F. langsethiae* в тканях растений протекает бессимптомно (Imathiu et al., 2013). Нет доказательств

влияния этого гриба на всхожесть зерна, в котором он выявлен. *F. langsethiae* — эндофит, способный сохраняться в зерне, распространяться по тканям развивающегося растения и проникать в образующиеся семена нового урожая. В зерне овса и ячменя ДНК *F. langsethiae* может быть детектирована сразу после появления колоса/метелки, раньше, чем ДНК других видов *Fusarium* (Parrikka et al., 2012; Imathiu et al., 2013). Механизмы проникновения в растение, жизненный цикл, ареал *F. langsethiae*, а также влияние различных факторов на его адаптивные признаки активно исследуются (Nazari et al., 2014; Imathiu et al., 2016; Gavrilova et al., 2017; Divon et al., 2019; Schöneberg et al., 2019).

Особое внимание к *F. langsethiae* приковано ещё и потому, что он обладает способностью продуцировать высокие количества трихотеценовых микотоксинов группы А, таких как Т-2 и НТ-2 токсины, диацетоксисцирпенол (ДАС) и др. Т-2 и НТ-2 токсины относятся к одним из наиболее опасных микотоксинов для теплокровных организмов (Ueno, 1984; Schuhmacher-Wolz, 2010). Другими известными продуцентами этих токсичных метаболитов служат филогенетически близкие виду *F. langsethiae – Fusarium sporotrichioides* Scherb. и *Fusarium sibiricum* Gagkaeva, Burkin, Kononenko, Gavrilova, O'Donnell, Aoki & Yli-Mattila. Несмотря на высокую токсинопродуцирующую способность штаммов грибов всех трёх видов, выявленную как *in vitro* (Thrane et al., 2004; Yli-Mattila et al., 2011; Kokkonen et al., 2012; Гагкаева, Гаврилова, 2013;

Минаева и др., 2013), так и *in planta* (Nazari et al., 2014), основным источником T-2 и HT-2 токсинов в зерне полевых образцов считается именно *F. langsethiae* (Imathiu et al., 2013; Hofgaard et al., 2016). Даже низкая зараженность зерна продуцентами может приводить к выявлению значительных уровней микотоксинов. Ранее установлено, что температурный диапазон для оптимального продуцирования микотоксинов штаммами *F. langsethiae* составляет 15–35 °C, что значительно шире, чем у штаммов *F. sporotrichioides* — 20–25 °C (Nazari et al., 2014).

Зараженность зерна грибом *F. sporotrichioides* – продуцентом микотоксинов вызвала в разных регионах России в 1930–1940 гг. вспышку алиментарно-токсической алейкии, которая привела к гибели тысяч людей (Саркисов, 1948; Шалак, 2009). Заболевание сопровождалось головной болью, высокой температурой, рвотой, последующим геморрагическим диатезом с образованием кровоточащих некротических язв на слизистых пищеварительного тракта и коже. Исследования токсикологической чистоты зерна, выращенного в России, неоднократно выявляли его загрязнение Т-2 и НТ-2 токсинами (Кононенко, Буркин, 2009; Кононенко и др., 2018; Gagkaeva et al., 2019).

Целью исследования являлось обобщение современной информации об ареале *F. langsethiae* на территории России, пополненной за счёт новых находок гриба в результате мониторинга зараженности грибами и контаминации микотоксинами зерна урожая 2018–2019 гг.

Материалы и методы

Образцы зерна разных культур урожая 2018-2019 гг. для анализа были получены из Центрального, Приволжского, Северокавказского, Уральского и Сибирского федеральных округов (ФО) РФ. Заражённость образцов зерна грибами определяли на питательной среде - картофельно-сахарозном агаре (КСА), приготовленном из отвара свежего картофеля (200 г/л среды) с добавлением сахарозы и агар-агара (по 15 г/л). Зерно предварительно стерилизовали 5% гипохлоритом натрия в течение 1–3 мин. Из каждого образца анализировали не менее 100 зёрен. По макроморфологическим и культуральным признакам идентифицировали грибы, которые выросли из зерна (Гагкаева и др., 2011). Далее получали моноспоровые культуры F. langsethiae и выявляли их микроморфологические признаки, используя низкоуглеводную синтетическую среду Ниренберг - популярную у исследователей для идентификации видов грибов Fusarium. Видовую идентификацию всех штаммов F. langsethiae подтверждали с помощью ПЦР с тремя парами видоспецифичных праймеров, позволяющими чётко разграничить близкородственные виды Fusarium, продуцирующие Т-2 и НТ-2 токсины (Yli-Mattila et al., 2015). С помощью иммуноферментного анализа (ИФА) и метода высокоэффективной жидкостной хроматографии в сочетании с масс-спектрометрией (ВЭЖХ-МС/МС) анализировали содержание микотоксинов в зерне, а также определяли токсинопродуцирующую способность штаммов F. langsethiae. Детектирование и количественное определение микотоксинов осуществляли по сертифицированным методикам (Кононенко и др., 1999; Гагкаева, Гаврилова, 2013; Gagkaeva et al., 2019, 2020).

Результаты и обсуждение

Ежегодный микологический анализ видового состава грибов, встречающихся в зерне из различных областей России, выявил присутствие не менее 10 видов рода Fusarium, из которых к широко распространённым на территории нашей страны относятся F. avenaceum (Fr.) Sacc., F sporotrichioides, F poae (Peck) Wollenw. и F graminearum Schwabe. Обнаружение F. langsethiae в зерне остаётся довольно редким явлением и всегда привлекает пристальное внимание. Начиная с 2003 г., наша статистика случаев выявления F. langsethiae в зерне показывает, что на сегодняшний день к регионам с массовым распространением этого гриба относятся Северо-Западный (выявлен в шести

областях) и Центральный ΦO (выявлен в восьми областях) (табл.).

Результаты мониторинга зараженности зерна урожая 2018 г. позволили выявить в Уральском ФО новые территории распространения *F. langsethiae*. Впервые, в Свердловской области из зерна овса из Алапаевского района и пшеницы из Белоярского района выделены штаммы *F. langsethiae*. Заражённость зерна овса составила 3%, а пшеницы – 1%.

Продолжение исследований видового состава грибов *Fusarium* в зерне урожая 2019 г. позволило впервые получить сведения о присутствии *F. langsethiae* на территории Республики Чечня, в Ростовской, Рязанской (зараженность

Таблица. Информация о встречаемости *F. langsethiae* в разных регионах России Table. Information of *F. langsethiae* occurrence in the different regions of Russia

Федеральный округ РФ	Область (районы)	Год первого выявления гриба	Зерновые культуры
Северо-Западный	Архангельская (Вельский)	2014	овёс
	Вологодская (Великоустюгский, Вологодский, Грязовецкий)	2008	овёс
	Калининградская	2005	овёс
	Ленинградская (Гатчинский, Волосовский, Ломоносовский, Лужский)	2003	овёс, пшеница, тритика- ле, ячмень
	Новгородская (Новгородский)	2008	овёс
	Псковская (Великолукский, Псковский)	2008	овёс
Приволжский	Кировская	2017	овёс
	Нижегородская (Сергачский)	2014	овёс
Центральный		2011	ячмень
	Воронежская (Аппинский, Бутурлиновский, Хокольский)	2013	оз. пшеница, ячмень
	Курская	2012	оз. пшеница, ячмень
	Липецкая (Лебедянский, Становлянский, Тербунский)	2013	оз. пшеница, ячмень
	Московская (Одинцовский)	2019	овёс
	Орловская	2007	ячмень
	Рязанская	2019	ячмень
	Тамбовская (Староюрьевский, Тамбовский)	2012	ячмень
Южный	Краснодарский край (Белоглинский, Брюховецкий, Выселковский, Динской, Кавказский, Калининский, Каневской, Курганинский, Ленинградский, Приморско-Ахтарский, Тихорецкий, Успенский)	2011	оз. пшеница, ячмень
	Ростовская	2019	оз. пшеница
Северокавказский	Республика Чечня (Ачхой-Мартановский, Гудермесский, Ножай-Юртовский)	2019	пшеница
	Ставропольский край (Благодарненский, Георгиевский, Изобильненский, Кировский, Кочубеевский, Минераловодский, Новоалександровский, Шпаковский)	2011	оз. пшеница, оз. ячмень
Уральский	Тюменская (Ишимский, Заводоуковский)	2010	овёс, ячмень
	Свердловская (Алапаевский, Белоярский)	2018	овёс, пшеница
	Курганская (Куртамышский)	2019	ячмень

образцов пшеницы составила 1%) и Московской областях. В зерне овса из Одинцовского района Московской области было установлено максимальное значение зараженности этим видом в естественных условиях, выявленное в России — 14%. В образцах зерна, полученных из Уральского ФО, встречаемость и зараженность зерна *F. langsethiae* были выше, по сравнению с предыдущим годом исследований. Гриб выявлен в Тюменской области — в двух образцах ячменя и одном овса из Ишимского района, в зерне овса из Заводоуковского района, а также в зерне ячменя из соседней Курганской области. Заражённость зерна образцов варьировала от 1 до 7%.

Морфолого-культуральные признаки $F.\ langsethiae$, такие как слаборазвитый, неокрашенный воздушный мицелий, низкая скорость роста, затрудняют его выявление микологическим методом. Зачастую, под мицелием активно растущих на питательной среде грибов, имеющих окрашенный мицелий, например, Alternaria spp. и Fusarium spp., находящихся в зерне, могут скрываться медленнорастущие колонии $F.\ langsethiae$ (рис.). Зачастую исследователи не относят этот гриб к роду Fusarium, поскольку $F.\ langsethiae$ не образует серповидные макроконидии, а только шаровидные и шаровидные с остроконечием микроконидии размерами $4.0-8.0 \times 4.0-9.0$ мкм, собранные в относительно устойчивые ложные головки.

Культуры *F. langsethiae* на КСА имеют порошистый, иногда клочковатый, белый, серовато-лиловых оттенков воздушный мицелий. Цвет реверса колоний может быть

непигментированным или варьировать от персикового до лилового. Различия по окраске реверса и обильности воздушного мицелия позволяют выделить четыре морфотипа *F. langsethiae*, частота встречаемости которых различается в различных регионах России (Gavrilova et al., 2017).

Идентификация всех новых штаммов *F. langsethiae* подтверждается ПЦР с набором видоспецифичных праймеров, что позволяет достоверно отличить их от штаммов другого морфологически сходного вида — *F. sibiricum*, выявленного и описанного в 2011 г., ареал которого в настоящее время ограничен преимущественно территорией Азии (Восточная Сибирь и Дальний Восток России, Иран, Китай). Применение этой методики позволило установить в 2019 г. единичную встречаемость *F. sibiricum* в зерне образца овса из Промышленновского района Кемеровской области. В настоящее время *F. langsethiae* в Сибирском ФО не обнаружен.

Ранее нами установлено, что токсинопродуцирующая способность на КСА штаммов *F. langsethiae* зависела от региона их происхождения: штаммы из Центрального ФО продуцировали в среднем больше Т-2 токсина (62.9±4.9 мкг/мл) и ДАС (0.44±0.04 мкг/мл), по сравнению со штаммами из Южного ФО – 39.4±5.9 мкг/мл и 0.17±0.04 мкг/мл, соответственно (Гаврилова, Гагкаева, 2015). Штамм МFG 500100 из Тюменской области отличался от штаммов европейского происхождения тем, что продуцировал значительно больше ДАС (2.04 мкг/мл), чем штаммы из Центрального и Южного ФО (от 0.04 до 0.5 мкг/мл).



Рисунок. Культуры грибов: A – колонии разных видов грибов рода Fusarium (1 – F. langsethiae, 2 – F. sporotrichioides) из зерна голозёрного овса на КСА (7 суток, 24°C); B – моноспоровая культура F. langsethiae на КСА (14 суток, в темноте, 24°C); B – спороношение гриба F. langsethiae на синтетической среде Ниренберг (14 суток, в темноте, 24°C; масштабная линейка = 10 мкм).

Figure. Fungal cultures: A – the colony of different *Fusarium* fungi (1 – *F. langsethiae*, 2 – *F. sporotrichioides*) isolated from naked oats grain on potato-sucrose agar (PSA) (7 days, 24 °C); B – single-spore *F. langsethiae* isolate on PSA (14 days, in dark, 24 °C); B – sporulation of *F. langsethiae* on the synthetic Nierenberg agar (14 days, in dark, 24 °C; scale = 10 μm)

Анализ способности штамма MFG 270611, выделенного из зерна овса из Свердловской области, образовывать токсичные вторичные метаболиты с помощью ВЭЖХ-МС/ МС выявил в полученном экстракте 1660 мкг/кг Т-2 токсина, 7306 мкг/кг НТ-2 токсина и 30 мкг/кг ДАС (Gagkaeva et al., 2020).

Анализ контаминации микотоксинами образцов зерна, в которых был выявлен F. langsethiae показал, что в образцах зерна овса, имеющих относительно высокую (7%, Вологодская область) и максимальную выявленную зараженность (14%, Московская область), суммарное количество Т-2 и НТ-2 токсинов, выявленное с помощью ИФА, составило 186 и 1230 мкг/кг. В зерне образцов овса и пшеницы из Свердловской области с помощью ВЭЖХ-МС/МС определили содержание Т-2 токсина в количествах 18-63 мкг/кг и НТ-2 токсина – 110–148 мкг/кг. В РФ установлены предельно-допустимые количества в зерне только для Т-2 токсина – не более 100 мкг/кг (ТР ТС 015/2011, 2017), однако, как правило, этот микотоксин встречается совместно с его производным – НТ-2 токсином, количества которого во многих случаях превышают выявляемые количества Т-2 токсина. Доказано, что эти вторичные метаболиты грибов обладают сходной токсичностью (Schuhmacher-Wolz et al., 2010) и, следовательно, в случае анализа только одного T-2 токсина риски для потребителей загрязнённого зерна занижаются.

Опираясь на результаты, полученные аналитическими методами, можно утверждать, что F. langsethiae, несмотря на свои эндофитные свойства, обладает хорошей адаптивной способностью к условиям окружающей среды, что позволило грибу со времени его описания в 2004 г. быстро распространиться в климатически разнообразных странах и, по нашим данным, расширить свой ареал за пределы Европы. По всей видимости, основным путём проникновения F. langsethiae на новые территории является семенное зерно, которое приобретают в регионах массового распространения этого гриба. Зерно, заражённое F. langsethiae, как правило, всегда содержит высокие количества Т-2 и НТ-2 токсинов. Наблюдаемые в последнее время изменения границ ареалов токсинопродуцирующих грибов приводят к усилению опасности загрязнения возделываемых зерновых культур микотоксинами и требуют дальнейших исследований.

Авторы благодарят Н.Н. Гогину (ФНЦ «ВНИТИП» РАН) за помощь в анализе микотоксинов методом ВЭЖХ-МС/МС. Исследование выполнено при поддержке гранта РНФ № 19-76-30005.

Библиографический список (References)

Бучнева ГН (2019) Гриб *Fusarium langsethiae* на зерне пшеницы в Тамбовской области. *Colloquium-journal* 16–2(40):30–31

Гаврилова ОП, Гагкаева ТЮ, Буркин АА, Кононенко ГП (2009) Зараженность грибами рода *Fusarium* и контаминация микотоксинами зерна овса и ячменя на севере Нечерноземья. *Сельскохозяйственная биология* 6:89–93

Гаврилова ОП, Гагкаева ТЮ (2015) Влияние температуры и тебуконазола на рост и токсинообразование штаммов *Fusarium langsethiae* различного географического про-исхождения. *Агрохимия* 12:76–82

Гагкаева ТЮ, Гаврилова ОП, Левитин ММ, Новожилов КВ (2011) Фузариоз зерновых культур. Приложение к журналу «Защита и карантин растений» 5:69–120

Гагкаева ТЮ, Ганнибал ФБ, Гаврилова ОП (2012) Зараженность зерна пшеницы грибами *Fusarium* и *Alternaria* на юге России в 2010 году. *Защита и карантин растений* 1:37–42

Гагкаева ТЮ, Гаврилова ОП (2013) Образование Т-2 токсина и диацетоксисцирпенола грибами рода *Fusarium* на различных питательных средах. *Агрохимия* 8:96–101

Гагкаева ТЮ, Гаврилова ОП, Левитин ММ (2014) Биоразнообразие и ареалы основных токсинопродуцирующих грибов рода *Fusarium*. *Биосфера* 6(1):36–45

- Кононенко ГП, Буркин АА, Соболева НА, Зотова ЕВ (1999) Иммуноферментный метод определения Т-2 токсина в контаминированном зерне. *Прикладная биохимия и микробиология* 35(4):457–462
- Кононенко ГП, Буркин АА (2009) О контаминации фузариотоксинами зерна злаков, используемых на кормовые цели. Сельскохозяйственная биология 4:81–88
- Кононенко ГП, Буркин АА, Зотова ЕВ, Устюжанина МИ, Смирнов АМ (2018) Особенности контаминации зерна пшеницы и ячменя фузариотоксинами. *Российская сельскохозяйственная наука* 1:17–21
- Минаева ЛП, Короткевич ЮВ, Захарова ЛП, Седова ИБ, Шевелева СА (2013) Прямое определение продуцентов Т-2 и НТ-2-микотоксинов грибов рода *Fusarium* в продовольственном зерне методом ПЦР (сообщение 2). *Вопросы питания* 82(4):48–54
- Технический регламент Таможенного союза 015/2011 «О безопасности зерна» с изменениями на 15 сентября 2017 г. Приложение №2.
- Шалак АВ (2009) К оценке масштаба голода 1946–1947 гг. Историко-экономические исследования 10(2):100–108
- Divon HH, Bøe L, Tveit MMN, Klemsdal SS (2019) Infection pathways and penetration modes of *Fusarium langsethiae*. *Eur J Plant Pathol* 154:259–271. https://doi.org/10.1007/s10658-018-01653-3
- Gagkaeva T, Gavrilova O, Levitin M, Kononenko G, Burkin A (2006) Characterization of distribution, cultural characters and T-2 toxin production of *F. sporotrichioides*, *F. poae* and *F. langsethiae* from Russia. Book Abstr. Eur. *Fusarium* Seminar, Wageningen (Netherlands). 49
- Gagkaeva TY, Orina AS, Gavrilova OP, Gogina NN (2020) Evidence of *Microdochium* fungi associated with cereal grains in Russia. *Microorganisms* 8(3):340. https://doi.org/10.3390/microorganisms8030340
- Gagkaeva T, Gavrilova O, Orina A, Lebedin Y, Shanin I et al (2019) Analysis of toxigenic *Fusarium* species associated with wheat grain from three regions of Russia: Volga, Ural, and West Siberia. *Toxins* 11(5):252. https://doi.org/10.3390/toxins11050252
- Gavrilova OP, Skritnika A, Gagkaeva TYu (2017) Identification and characterization of spontaneous auxotrophic mutants in *Fusarium langsethiae*. *Microorganisms* 5(2): E14. https://doi.org/10.3390/microorganisms5020014
- Hofgaard IS, Aamot HU, Torp T, Jestoi M, Lattanzio VMT et al (2016) Associations between *Fusarium* species and mycotoxins in oat and spring wheat from farmers' fields in Norway over a six-year period. *World Mycotoxin J* 9:365–378. https://doi.org/10.3389/fmicb.2016.00556
- Imathiu SM, Edwards SG, Ray RV, Back MA (2013) *Fusarium langsethiae* a HT-2 and T-2 toxins producer that needs more attention. *J Phytopathol* 161:1–10. https://doi.org/10.1111/jph.12036
- Imathiu SM, Ray RV, Back M, Hare M, Edwards SG (2016) *In vitro* growth characteristics of *Fusarium langsethiae* isolates recovered from oats and wheat grain in the UK. *Acta Phytopathol et Entomol Hungarica* 51(2):159–169. https://doi.org/10.1556/038.51.2016.2.1
- Infantino A, Santori A, Aureli G, Belocchi A, De Felice S et al (2015) Occurrence of *Fusarium langsethiae* strains isolated from durum wheat in Italy. *J Phytopathol* 163:612–619. https://doi.org/10.1111/jph.12361

- Kokkonen M, Jestoi M, Laitila A (2012) Mycotoxin production of *Fusarium langsethiae* and *Fusarium sporotrichioides* on cereal-based substrates. *Mycotoxin Res* 28(1):25–35. https://doi.org/10.1007/s12550-011-0113-8
- Łukanowski A, Sadowski C (2008) Fusarium langsethiae on kernels of winter wheat in Poland occurrence and mycotoxigenic abilities. Cer Res Commun 36(6):453–457
- Morcia C, Tumino G, Ghizzoni R, Badeck FW, Lattanzio VM et al (2016) Occurrence of *Fusarium langsethiae* and T-2 and HT-2 toxins in Italian malting barley. *Toxins* 8:247. https://doi.org/10.3390/toxins8080247
- Nazari L, Pattori E, Terzi V, Morcia C, Rossi V (2014) Influence of temperature on infection, growth, and mycotoxin production by *Fusarium langsethiae* and *F. sporotrichioides* in durum wheat. *Food Microbiol* 39:19–26. https://doi.org/10.1016/j.fm.2013.10.009
- Parikka P, Hakala K, Tiilikkala K (2012) Expected shifts in *Fusarium* species' composition on cereal grain in Northern Europe due to climatic change. *Food Additives and Contaminants: Part A* 29(10):1543–1555. https://doi.org/10.1080/19440049.2012.680613
- Schöneberg T, Jenny E, Wettstein FE, Bucheli TD, Mascher F et al (2018) Occurrence of *Fusarium* species and mycotoxins in Swiss oats impact of cropping factors. *Eur J Agronomy* 92:123–132. https://doi.org/10.1016/j.eja.2017.09.004
- Schöneberg T, Kibler K, Wettstein FE, Bucheli TD, Forrer HR et al (2019) Influence of temperature, humidity duration and growth stage on the infection and mycotoxin production by *Fusarium langsethiae* and *Fusarium poae* in oats. *Plant Pathol* 68:173–184. https://doi.org/10.1111/ppa.12922
- Schuhmacher-Wolz U, Heine K, Schneider K (2010) Report on toxicity data on trichothecene mycotoxins HT-2 and T-2 toxins. *EFSA Supporting Publications* 7(7):EN-65. https://doi.org/10.2903/sp.efsa.2010.EN-65
- Thrane U, Adler A, Clasen PE, Galvano F, Langseth W et al (2004) Diversity in metabolite production by *Fusarium langsethiae*, *Fusarium poae*, and *Fusarium sporotrichioides*. *Int J Food Microbiol* 95(3):257–266. https://doi.org/10.1016/j.ijfoodmicro.2003.12.005
- Torp M, Langseth W (1999) Production of T-2 toxin by a *Fusarium* resembling *Fusarium poae*. *Mycopathol* 147:89–96. https://doi.org/10.1023/A:1007060108935
- Torp M, Nirenberg HI (2004) *Fusarium langsethiae* sp. nov. on cereals in Europe. *Int J Food Microbiol* 95:247–256. https://doi.org/10.1016/j.ijfoodmicro.2003.12.014
- Ueno Y (1984) Toxicological features of T-2 toxin and related trichothecenes. *Fundamental Appl Toxicol* 4(2):124–132. https://doi.org/10.1016/0272-0590(84)90144-1
- Yli-Mattila T, Ward TJ, O'Donnell K, Proctor RH, Burkin AA et al (2011) *Fusarium sibiricum* sp. nov, a novel type A trichothecene-producing *Fusarium* from northern Asia closely related to *F. sporotrichioides* and *F. langsethiae*. *Int J Food Microbiol* 2011, 147(1):58–68 https://doi.org/10.1016/j.ijfoodmicro.2011.
- Yli-Mattila T, Gavrilova O, Hussien T, Gagkaeva T (2015) Identification of the first *Fusarium sibiricum* isolate in Iran and *Fusarium langsethiae* isolate in Siberia by morphology and species-specific primers. *J Plant Pathol* 97(1):183–187. http://dx.doi.org/10.4454/JPP.V97II.017

Translation of Russian References

- Buchneva GN (2019) The fungus *Fusarium langsethiae* on wheat grains in the Tambov region. *Colloquium-journal* 16-2(40):30–31 (In Russian)
- Gagkaeva TYu, Gavrilova OP, Levitin MM, Novozhilov KV (2011) *Fusarium* head blight of cereals. Appendix to the journal «Zashchita i karantin rasteniy» 5:69–120 (In Russian)
- Gagkaeva TYu, Gannibal PhB, Gavrilova OP (2012) Infestation of wheat grain with *Fusarium* и *Alternaria* fungi in the South of Russia in 2010. *Zashchita i karantin rasteniy* 1:37–42 (In Russian)
- Gagkaeva TYu, Gavrilova OP (2013) Production of T-2 toxin and diacetoxyscirpenol by *Fusarium* fungi on different nutrient media. *Agrokhimia* 8:96–101 (In Russian)
- Gagkaeva TYu, Gavrilova OP, Levitin MM (2014) Biodiversity and distribution of the main toxigenic *Fusarium* fungi. *Biosfera* 6(1):36–45 (In Russian)
- Gavrilova OP, Gagkaeva TYu, Burkin AA, Kononenko GP (2009) Mycological infection by *Fusarium* fungi and mycotoxins contamination of oats and barley grain samples in the North of Nechernozemye. *Sel'skokhozyaistvennaya biologiya* 6:89–93 (In Russian)
- Gavrilova OP, Gagkaeva TYu (2015) The effects of temperature and tebuconazole on the growth and toxin production of

Plant Protection News, 2020, 103(3), p. 201–206

OECD+WoS: 1.06+RQ (Mycology)

Fusarium langsethiae strains from different geographical regions. Agrokhimia 12:76–82 (In Russian)

- Kononenko GP, Burkin AA, Soboleva NA, Zotova EV (1999) Enzyme immunoassay for determination of T-2 toxin in contaminated grain. *Prikladnaya biokhimiya i mikrobiologiya* 35(4):457–462 (In Russian)
- Kononenko GP, Burkin AA (2009) About fusariotoxins contamination of cereals used for fodder. *Sel'skokhozyaistvennaya biologiya* 4:81–88 (In Russian)
- Kononenko GP, Burkin AA, Zotova EV, Ustyuzhanina MI, Smirnov AM (2018) Peculiarities of wheat and barley grain contamination with fusariotoxins. *Russian Agricultural Sciences* 1:17–21 (In Russian)
- Minaeva LP, Korotkevich YuV, Zakharova LP, Sedova IB, Sheveleva SA (2013) Direct detection of T-2and HT-2-Mycotoxins producers of fungi the genus *Fusarium* in food grain by PCR (report 2). *Voprosy Pitaniia* 82(4):48–54 (In Russian)
- Shalak AV (2009) To assess the scale of the famine of 1946–1947. *Istoriko-ekonomicheskie issledovaniya* 10(2):100–08 (In Russian)
- Technical Regulations of the Customs Union 015/2011 «On grain safety» with the changes 2017 September 15. (In Russian)

https://doi.org/10.31993/2308-6459-2020-103-3-13282

Short communication

LATEST INFORMATION ON THE DISTRIBUTION OF *FUSARIUM LANGSETHIAE*, THE PRODUCER OF T-2 AND HT-2 TOXINS, IN RUSSIA

O.P. Gavrilova*, T.Yu. Gagkaeva

All-Russian Institute of Plant Protection, St. Petersburg, Russia

*corresponding author, e-mail: olgavriloval@yandex.ru

The annual monitoring of grain contamination with *Fusarium* fungi and the identification of their species composition showed the widespread distribution of *F. langsethiae* producing dangerous T-2 and HT-2 toxins in the Northwestern and Central regions of Russia. Mycological analysis of grain samples harvested in 2018–2019 allowed revealing the new places of *F. langsethiae* distribution, including Urals. The top infection rate of the oats grain by *F. langsethiae* in 2019 reached 14%. The identification of *F. langsethiae* strains was supported by PCR with species-specific primers. The analysis of toxic metabolites in *F. langsethiae* by the combination of high-performance liquid chromatography and tandem mass spectrometry revealed the high level of T-2 and HT-2 toxins. The considerable total amounts of T-2 and HT-2 toxins (165–1230 µg/kg) were found in the grain samples infected with this species. Further clarification of the geographical area of *F. langsethiae* and the study of its intraspecific diversity are needed to understand the distribution of this toxin-producing fungus.

Keywords: Fusarium langsethiae, identification, distribution, mycotoxins