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Abstract. This paper presents a comparison between discrete Hidden Markov Models and
Convolutional Neural Networks for the image classification task. By fragmenting an image into
sections, it is feasible to obtain vectors that represent visual features locally, but if a spatial
sequence is established in a fixed way, it is possible to represent an image as a sequence of vectors.
Using clustering techniques, we obtain an alphabet from said vectors and then symbol sequences
are constructed to obtain a statistical model that represents a class of images. Hidden Markov
Models, combined with quantization methods, can treat noise and distortions in observations
for computer vision problems such as the classification of images with lighting and perspective
changes.

‘We have tested architectures based on three, six and nine hidden states favoring the detection
speed and low memory usage. Also, two types of ensemble models were tested. We evaluated the
precision of the proposed methods using a public domain data set, obtaining competitive results
with respect to fine-tuned Convolutional Neural Networks, but using significantly less computing
resources. This is of interest in the development of mobile robots with computers with limited
battery life, but requiring the ability to detect and add new objects to their classification systems.

Keywords: Hidden Markov Models, Image Classification, Computer Vision, Pattern
Recognition

1. Introduction. In the field of computer vision, it has always been
required to interpret visual content captured in sensors, providing information
to the systems to carry out tasks that are useful. One of these tasks is to
recognize what types of objects are in a work environment.

By knowing the meaning of the data that comes from cameras, it’s
possible to determine the current state of the environment such as knowing
where an object is or not in a certain region of space. With this, it’s possible to
carry out planning, navigation, and manipulation tasks in robotic systems.

Automatic planning or briefly called planning can be described as a
set of techniques to represent knowledge, calculate a temporal sequence of
actions, and obtain a final configuration to complete one or more tasks. It’s
common to establish a representation of the internal state of a robotic system
and a representation for the environment, by calculating a sequence of actions,
a transition between said states is achieved until reaching a terminal state, this
last configuration represents the execution of one of several goals.

Autonomous navigation is the ability of a robotic system to estimate
its position, calculate a trajectory to a given target in the environment, and
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follow a dynamically generated path in order to avoid moving obstacles. To
achieve this, it’s necessary to build a representation of the environment such as
a map, recognize distinctive markings to self-locate through the use of sensors
or vision systems and finally estimate a trajectory to the place that has been
selected as a destination.

Robotic manipulation, in the context of robots operating in service
tasks, refers to the design of control systems that operate mobile manipulators
in spaces shared with humans. These places have a certain degree of structure
such as a kitchen, a living room, or a bedroom but to carry out manipulation of
objects in these environments it’s necessary to have computer vision systems.
Computer vision can facilitate the control of actions on the manipulator,
obtaining descriptions of the shape or texture that would be difficult to do
using other types of perception.

Systems based on computer vision can perform tasks such as creating
a representation of the environment, self-locate and navigate autonomously,
estimate the best way to take an object, all this through the use of digital cameras.
This has helped the integration of planning, navigation and manipulation
systems in mobile robots to service to people.

The first computer vision systems were based on the extraction of visual
features, these had to be robust to changes in lighting, perspective, and scale
which were designed manually. These representations were later classified
using supervised or unsupervised machine learning techniques, or in variants
and compositions of these two options [1].

At present, the most accurate image classification systems are based on
what is called Artificial Neural Networks (ANNSs). The artificial neurons are
used as fundamental building blocks to create new structures, hierarchically and
with locality properties in their arrangement, in what is called Convolutional
Neural Networks (CNNs) [2].

CNN s are the image detection systems with highest performance [3],
with varied and specialized architectures depending on the problem where they
are applied. A disadvantage of these detection systems is that the mathematical
theory on which they are based is the gradient descent optimization theory [4,5],
which requires highly dimensional differentiable functions. This is a problem
in terms of computing requirements since it’s necessary to store millions of
parameters, perform calculations on each of them, and update their values.
Due to a large number of parameters very small learning rates are used to
maintain convergence and stability, this is a disadvantage since many examples
are required to achieve a balance between the generalization of the system and
it’s precision.
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Service robots have gained relevance in recent years [6,7]. This is
because with current technology it’s already possible to assemble robots
for common tasks such as surveillance, customer service, disinfection of
spaces or even home delivery [8]. As a result of research in this branch of
robotics, competitive communities have emerged such as RoboCup, which is an
international scientific initiative that encourages research and communication
of discoveries and its applications.

Mobile service robots must be autonomous, the use of energy and
computing must be more efficient to extend the service time that is provided.
Currently, these systems use specialized computers with low power consump-
tion and with architectures that allow CNNs to be executed in short intervals
of time, some systems, even use laptops as a common rule [9]. In this context,
this research shows that it’s possible to use discrete Hidden Markov Models
(HMMs) as an inference method for classifying images using a data set with a
reduced number of classes, achieving similar results to CNNs but using generic
computers such as a laptop, with the advantage of executing the classification
faster and therefore consuming fewer resources.

The remaining of the paper is divided as follows. In Section 2 we present
a summary of HMMs applications for computer vision. Then, in Section 3 we
introduce our probabilistic approach to solve the image recognition task and
in Section 4 we describe experimental results. Finally, the main findings are
discussed in Section 5.

2. Related Work. Hidden Markov Models (HMMs) are described in
the writings of L. E. Baum [10], in them the theory is described to use Markov
chains as a tool to analyze time series. Later its use becomes popular due to
the applications found by L.R. Rabiner [11] for speech recognition. In his
work, numerical stability techniques for algorithms, preprocessing techniques,
and details about the implementation are documented. In [12], a great variety
of applications and variations to the original method is compiled. However,
HMMs have mainly been used for recognition of symbol sequences in the
area of bioinformatics, handwriting recognition, and as a method of pattern
recognition for electrical signals in biomedicine.

In the case of recognition from digital images, there are applications
such as face recognition [13], in which a number of different architectures
are described, such as using one-dimensional HMMs but allowing transitions
between various stacked models. This represents different types of sequences
as they are in order from top to bottom and from left to right. The symbols are
obtained by applying a fixed-size sliding window and calculating the discrete
cosine transform over pixel values. Clustering techniques were used to obtain a
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discrete alphabet, which is a common practice to discretize observation vectors,
in this case, obtained by the coefficients.

The application of HMMs for thermal image classification is shown
in [14], which describes its application to classify images of breast cancer.
This work merges grayscale images and thermal images represented in the
RGB color space. Through binarization of constant size windows on the image,
a unique symbol of each section is obtained. Finally, an HMM with two hidden
states classifies a sequence as diseased or healthy tissue.

Another application in the field of medical imaging is written in [15].
This work describes the application of HMM:s for the detection of blood vessels,
where the HMMs have the function of estimating the next most probable state
in the images to remove pixel occlusions in binarized retinal images.

In a previous work [16], we expanded the application of HMMs for
point clouds detection. To carry out the classification of objects and places,
3D keypoints are detected, and using 3D descriptors it’s possible to obtain
observation vectors. One HMM was trained with these sequences for each
class of location or object, and a pattern was detected. A disadvantage is that
3D descriptors are usually vectors with many dimensions, slowing down the
quantization process to obtain a discrete alphabet. This can be solved by using
a more compact representation.

The year 2010, an image classification challenge arises as a proposal to
improve the performance of classification systems. Today this is known as the
ImageNet challenge [17]. This is a benchmark to compare detection systems
on millions of images with hundreds of different categories.

In the case of CNNS, they are based on the paradigm of having groups of
neurons emulating the convolution operation by applying filter banks. The year
2012 training process using graphics processors was implemented, resulting in
an inference design highly dependent on parallelization with excellent results
such as AlexNet [18], which was the architecture with the best recognition rate
in the ImageNet data set. For this reason, most of the image classifiers are of
the CNN type.

Over time, variants with more parameters emerged, such as the so-called
VGGNet in 2014 [19], an architecture that manages to reduce the percentage
of detection error to less than 8%, obtaining a first place that year in the
ImageNet challenge. With the increase in the number of parameters, new
problems appear such as the vanishing of gradient values due to the number of
stacked layers. To solve this, a new architecture is proposed, such as residual
blocks [20] and therefore, the authors manage to add a greater number of layers
without degrading the accuracy of the classification system, obtaining an error
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close to 3 % in the ImageNet challenge of the year 2015. This architecture was
called ResNet.

Today, there are many variations to the architecture. Some have im-
provements such as being optimized to require fewer parameters and computing
time thinking of mobile devices [21]. In this work, we will use VGGNet and
ResNet as a reference to compare HMMs in the same task, classification of
images, in a domestic service context.

3. HMM for Image Recognition. A Hidden Markov Model (HMM)
is a set of discrete or continuous variables, representing a time-series observed
{01,02,...,07} = 01.7. These variables o;.7 are assumed to be generated by an
internal configuration that changes successively over time {s1,s2,...,5 } = 1.7
but which we cannot observe, so they are assumed to be hidden variables. The
probability that an observation o, is presented at a certain time # only depends
on the current state, that is

plor | or.r,s1.1) = plog | st). (1)

The stochastic process associated with the states is causal and stationary
with a finite number of states, so it’s represented as a finite automaton with
edges labeled with the probability of transiting from one vertex to another.
This process only depends on state s; at time ¢, and the previous state s;_1,
expressed as follows:

p(se | sir) =p(se | si—1). 2

The probability of observing a sequence of variables o1.7 in a fixed
period T is given as

T
plorr,sir) = plor | s) [ plor | si)p(si | si-1) 3)
=2

Where the probability of transit between internal states s;_1 to s; is
defined as
P(Si=j | Si—1=i) = aij. 4)

The probability of observing a variable o, depends on hidden state s,
and is defined as:

po=j | si=i) = bij. )
The parameters of the model are listed below:
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— afinite set of N states S = {s1,52,...,5n };

— a finite alphabet M, with symbols V = {v{,va,...,vy };

— an initial probability distribution for each state © = [}, 7, ..., Ty];

— atransition matrix A = {a;;}, with i, j € [1,N];

— and an emission matrix B = {b,,,} with m € V, in some state n € S.

Briefly the parameter set of an HMM is denoted as A = (S,V,A,B, 7).

In order to be able to use an HMM for image classification, we can
establish a temporal order that corresponds uniquely with visual features
located in the image. This is possible if we fragment each image into regions of
constant size and always generate observations with the same trajectory. Since
each image will be different in brightness and perspective, elevation angle, and
rotation angle (using as reference the object captured in each image), an HMM
is ideal for finding a statistical description of the image.

3.1. Image Feature Extraction. We propose to find a representation
automatically using clustering techniques. For this, fixed-size windows
wf”n are established on the image, and from these, vectors are obtained by
concatenating the three channels of the image, forming an observation vector
o; of size 1 x 3 x n x m. Figure 1 shows these sections.

A visual alphabet is built in an unsupervised way using the mini-batch
k-means clustering method [22] for all vectors o, that are selected as training
samples. The clusters obtained assign an index to each vector o, according to
a similarity metric (euclidean distance is chosen). The quantization process
has the objective of eliminating noise, obtaining centroids representing the
average of the content in each window, which eliminates disturbances.

Bl‘an

laln.,

a)
Fig. 1. Example of the sections created to obtain visual features (images from [23]). a)
Three windows with size n = 74, m = 224; b) Six windows with size n = 74, m = 112;

¢) Nine windows with size n = 74, m = 74

This method enables an automatic but distinctive visual content repre-
sentation between different objects, quickly and with compact representation
because only clusters centroid list is stored. Then, each vector can be statisti-
cally treated using an HMM to generate a probabilistic model for each image
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class. The trained classes generate a higher probability, and observations
of other classes or untrained examples generate a lower probability or zero
tendencies. The next section explains this procedure.

3.2. HMMs for Feature Detection. In computer vision, Hidden
Markov Models (HMMs) are a useful tool because they model the appearance
of symbols o01.7 that we want to use as comparison patterns. These patterns can
be built by associating a sequence of windows wﬁl,Tn on a image at each instant
t, so we can say that the sequence {01,02,...,or} = {wil . wi-Z . wi=T
represents a complete unit. Where m, n are the window dimensions, and the
variable ¢ assign a fixed path on the image as time increases.

The architecture selected to model the sequences is the so-called ergodic
HMM. This structure is used since it allows to obtain the probability of transition
between all states, avoiding constraints on model dynamics. The Figure 2
shows this configuration between states. The number of states T is associated
with the number of symbols that describe each image, and this number can be
arbitrarily long, but to reduce processor usage time in an autonomous robotic
system, it’s preferable to use a small number of symbols in each sequence.
This also makes it easy to scale a detection system to new classes without
degrading response time.

Fig. 2. An example of ergodic HMM

The detection system used is based on a set of HMMs, where each
one model A; has been trained with examples of sequences that correspond
to images of a single class k. This allows learning a distribution of these
sequences and assigning a single model. In the end, given a test sequence o1.r,
each model 4y is evaluated, and the one with the highest probability is the one
that best explains the dynamics of the sequence. This is defined as

plorr | M)} (6)

Figure 3 illustrates this procedure. This method is efficient since
inference can be made in parallel as well as training.
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Fig. 3. Block diagram of the inference system using HMMs

The following section shows how it’s possible to obtain a classification
with enough precision to compete with pre-trained and fine-tuned CNNs,
maintaining equally competitive training and inference times, using only a
laptop processor.

4. Experiments and Results. For experiments, the Hidden Markov
Model (HMM) shown in Figure 2 has been used. This architecture has been
chosen since there is no predefined model that describes transitions between
each window w/, ,, created in each image, so a transition between all the states
is allowed. This architecture isused with T =3, T =6 and T = 9.

The data set published in [23] is used since the objective is to test our
method in a context of a mobile service robot, where objects to train and detect
are those that could be found inside a house, distributed in different classes.

This data set is made up of 51 classes of objects and each class has a
variable number of instances, but only one instance of each class is used in
this work.

If necessary, a detection system based on HMM:s can be scaled to new
classes without the need for retraining but simply by adding new models A; to
the structure shown in the Figure 3. This applies equally to instances of the
same objects.

The data set images were captured with a fixed RGB-D camera, a
rotating base and each class present an unbalanced number of images. Images
are captured with an object rotation between 0 and up to 720 degrees, so

Informatics and Automation. 2020. Vol. 19 No. 6. ISSN 2713-3192 (print) 1229
ISSN 2713-3206 (online) www.ia.spcras.ru



WMCKYCCTBEHHbIV UHTENNEKT, MHXEHEPWSA OAHHBIX 1 3HAHUI

they are sub-sampled in half at regular intervals to obtain an object coverage
of approximately O to 360 degrees. This subset also contains images with
an elevation angle of 30 and 60 degrees with respect to the object, different
lighting and perspective. Figure 4 shows an example of the training images
used.

e i)
\

e s
i) K) = B )

Fig. 4. Twelve examples of objects contained in the data set for testing [23]:
(a cereal_box; b) coffe_mug; c) food_bag; d) lemon; f) orange; g) rubber_eraser;
h) scissors; 1) shampoo; j) soda_can; k) tomato; k) toothbrush; 1) toothpaste. All

classes are listed in the first column of Table 9 to Table 13

For the tests three recognition system architectures have been used. The
first architecture is based on work of Rabiner [11] and is shown in Figure 5.
The second and third architectures are shown respectively in the Figure 14
and Figure 15, the latter are a composition of the first architecture in what is
known as an ensemble method. This is described in Section 4.3.

For the first architecture, a rescaling is applied to each image in the
training set, and this new scale is 224 by 224 pixels. Then each image is
transformed into the CIE Lab color space [24] and three, six, and nine sections
of the image were created.
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For the case where there are three windows in the image, vectors of size
1 x (74 x 224 x 3) are obtained, where w%, ,,, are the size of the window. The
factor x 3 appears since there are three channels in the image corresponding
to channels L, a y b. In the case of extracting six windows with size Wl74.1 120
there are vectors of size 1 x (74 x 112 x 3). For nine windows with size w’, -,
the vectors are of dimension 1 x (74 x 74 x 3).

To quantize all vectors scikit-learn library was used [25], it incorporates
optimizations based on openMP, the use of AVX2 instructions (Advanced
Vector Extensions 2) and LaPACK (Linear Algebra PACKage) library support.
Mini batch k-means algorithm [22] is used, and it’s initialized with k-means++
for faster convergence [26]. The number of centroids was predefined with
values 64, 128, 256 and 512. Furthermore, mini-batch k-means is implemented
using the Elkan algorithm [27], this algorithm uses triangular inequalities, so
it’s not necessary to search for a new vector through all centroids and mini-batch
k-means avoids doing searches using all data (it samples mini-batches speeding
up calculations). The quantization process is performed offline.

The symbol sequences are obtained by associating an identifier index
of the centroids with a vector to be compared, which generates a sequence
o1.r for each image. These sequences are generated to train each model A
or during the inference process. Each model is trained by each category of
objects in the data set and subsequently stored as a later use file. In the end,
the model A that has the highest probability calculated given the sequence
o1.7 is the one that assigns the detected class. The architecture of Figure 5
shows the proposed detection system.

34

B b
a
GR r L
T{R,G,B} 1: Sequence
| generator —>| 017 |——>| PO1.T I A) [3)arg max{p(O 71 A}

PO 1.7 An)

Fig. 5. Block diagram of the recognition system. A transformation from RGB to CIE
Lab color space, construction of sections in the image, and construction of symbol
sequences to be subsequently detected by a set of previously trained HMMs
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The experiments were organized as follows:

— an HMM with three states for each class of images. A quantizer for
64, 128, 256, and 512 centroids;

— an HMM with six states for each class of images. A quantizer for 64,
128, 256, and 512 centroids;

— an HMM with nine states for each class of images. A quantizer for
64, 128, 256, and 512 centroids.

The experiments were performed five times, using the subset of images
that cover the object from approximately O to 360 degrees, partitioned into
75% for training and 25% for testing. In the case of CNNs, 10 % of the data
set is taken for training validation but from the section for testing.

For the training set, all images are randomly preprocessed with one of
the following transformations: rotations of up to 25 degrees, horizontal and
vertical displacement of 10% with respect to the center of the original image,
skew transformation of 20% on the horizontal and vertical axis, reflections in
the horizontal and vertical axis and zoom of up to 10%. The validation set (only
for CNNs) and testing set (HMMs and CNNs) does not include transformations.
All this in order to compare performance against CNNs typically trained with
data augmentation techniques.

A laptop with 32 GB of RAM, a model GeForce 1070 with 8 GB GPU,
and a 4-core seventh-generation CPU was used for testing. The results are
reported as weighted Average Precision (WAP) and weighted Average Recall
(WAR) due to imbalance in the number of images between classes. Accuracy,
precision, recall, and F1-score are also reported [28].

Weighted Average Precision is defined as follows:

K1 Z
~ },’\ili- @)
Zi——lyi i=1

Weighted Average Recall is defined as:

1 K
K 5 Y 9iR:. 8)

i=1Yi i=1

The index K is the total number of classes and J; is the total number of
images labeled as class i.
Precision P, and Recall R; are defined for each class i as:

t
P=—" ©)
tp+1p
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Ip
R; P 10)
Where ¢, means true positives, f, false positives and f, false negatives.
4.1. HMMs Results. Figure 6 shows the qualification result for 51
object classes. Of 5 experiments carried out, weighted Average Precision
(WAP) is reported, this since each class of objects contains a different number
of images, so imbalance must be taken into account, weighting the precision
for each class with respect to the number of classified images. In the same way,
Figure 7 shows the detection average for weighted Average Recall (wAR).
The highest percentage of recognition is carried out by HMMs using
512 symbols as an alphabet, as is shown in Figure 6. The use of three states
to form models Ay results in a wAP value equal to 0,97, but wAR does not
increase above one hundredth from models with six and nine states. Therefore,
using three states increases the detection of positive cases but does not increase
for negative cases, as shown in Figure 7.

Weighted Average Precision
0.97

Q.05 B0
0.92 .&g’/

29787

o
©
)

o
©
o

Weighted AP
o
[e¢]
(9]

0.80 —e— 3 states
6 states

0.75 P 9 states
100 200 300 400 500

Symbols
Fig. 6. Weighted Average Precision for all HMMs

Figure 8 shows the processing time used to obtain an alphabet using
the mini-batch k-means method. For the case of 512 symbols and three states,
the peak processing time is shown close to 220 seconds, this is due to the fact
that the chains with three states use the largest vector sizes, so the clustering
process is slower.

Table 1 in row one shows each vector’s average query time obtained
from each window. The average time used to obtain the sequence of symbols
of each image is included in row two. Only the case for 512 symbols is shown,
since it’s the case with the slowest access of all the symbol variants. The query
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Fig. 7. Weighted Average Recall of all HMMs

process reuses the Elkan method, so on average, the time of 2.7 milliseconds
in the worst case is never exceeded.

HMM Average Clustering Time

.219.38
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Fig. 8. Average clustering time for HMMs
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Table 1. Average Query Time for 512 symbols

3 windows 6 windows 9 windows
single vector 0,00088 s 0,000425 s 0,000288 s
single image 0,002639 s 0,002551 s 0,00259 s

In the case of training time, HMMs with the highest number of states,
such as those with six and nine states, are the ones that take the longest, this is
shown in Figure 9. Even so, training time does not exceed 0,200 seconds in
the worst case, on average for each HMM.

Average Training Time

0.168
0.16 0.156
0. 1450149
= 0.14
Q
£0.12 —*— 3states
'a_) 6 states
10
o 0. 9 states
§ 0.08 0.054 058
z Y 0.049 0-051 :
0.06 ®0.058
100 200 300 400 500
Simbols

Fig. 9. Average training time for HMMs

Inference time depends on the number of states and the number of
transitions between them. Times range from approximately 2.54x10~° seconds
to 16.4x107% seconds as shown in Figure 10.

Less number of symbols generates similarity between learned distribu-
tions, so it’s more likely to go through many states until the end of a complete
sequence, this increases inference time for 64 and 128 symbols. On the
contrary, more symbols generate more distinctive observations, with more
differentiated statistics, so that when evaluating an input sequence, fewer states
are passed, resulting in a shorter inference time for 256 and 512 symbols. It’s
useful to see how fast an image can be classified using HMMs. The inference
time do not exceed 20x10~° seconds on average in any HMM variant and
number of symbols.

The amount of memory used in critical parts of the system was
monitored. Creating an alphabet using larger image sections (as was done in
the case of three states in each HMM) has as a consequence a high consumption
of system memory because all the data must be stored for the queries reaching
a peak of approximately eight giga bytes of occupation as shown in Figure 11.
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In comparison, HMMs with six and nine states use smaller vectors that do not
exceed the size of two point one gigabytes of memory.
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For the memory used in the clustering process, again the HMMs with
three states demand storage to build the corresponding alphabet as seen in
Figure 12. It reaches the memory occupancy peak of up to twenty-two point
eight gigabytes, which is a disadvantage. The Figure 6 shows that this three-
state model with 512 symbols is the one with the highest wAP but requires
excess memory for both inference and clustering.
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In Section 4.3, we will explain how to solve the memory consump-
tion problem by discarding models with high memory occupancy and high
computation time to form an HMMs ensemble.

4.2. CNNs Results. In the case of Convolutional Neural Networks
(CNN ), two variants were used. The first called VGG-19 [19] and the second
ResNet-50 [20]. These are chosen due to their high level of accuracy in tests
carried out in the ImageNet challenge, in addition to the fact that previously
trained coeflicients are in the public domain included in the latest version of
the library named TensorFlow [29].

VGG-19 and ResNet-50 were tested by freezing pre-trained coefficients
obtained from ImageNet data set. Only classification layers were removed,
and two hidden and fully connected layers were added with 256 neurons. A
softmax classification layer for 51 classes is also added and data augmentation
is used as described in Section 4.

These architectures were designed to classify millions of images, but
they perform well in this compact data set. Table 2 shows the weighted Average
Precision (wAP) in first row, weighted Average Recall (wAR) is reported
in second row. VGG-19 achieves a wAP of 1,0 and a wAR of 1,0. On the
other hand, Resnet-50 achieves 0,96 in wAP and 0,94 in wAR through all five
experiments.

Table 2. CNNs Average Results

VGG-19 ResNet-50
Weighted Average Precision 1,0 0,96
Weighted Average Recall 1,0 0,94
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For the case of training time and inference time, due to the massive
amount of parameters, they turn out to be slower than any HMM. Table 3
shows in row one that VGG-19 has an average inference time per image close
to 0,35 seconds, and an average training time of 1882.6 seconds is reported
in row two. For ResNet-50 inference, time is 0,183 seconds, and an average
training time of 2846.8 seconds is shown in the second column.

Table 3. Time for Training and Inference for CNNs
VGG-19 ResNet-50
Average Inference Time 0,3498 s 0,183 s

Average Training Time 1882.6 s 2846.8 s

The memory consumption of these classifiers is composed of occupation
in GPU and system memory. The two architectures use the same amount of
system and GPU memory during training and inference, as reported in Table 4.

Table 4. Memory usage for CNNs

VGG-19 ResNet-50
GPU 7.8 GB 7.8 GB

System 2.8GB 2.8GB

The Figure 13 shows a wAP and wAR comparison of the best HMMs
with respect to VGG-19 and ResNet-50 at the end of the experiments. In
the case of wAP, VGG-19 gets the best test performance, scores 1,0 in 5
experiments. Behind this classifier is the HMM with three states and 512
symbols. The HMM with nine states and 512 symbols and ResNet-50, the
latter with similar capacity to recognize positive and negative images of each
class. The six-state, 512-symbol HMM lags behind all with a wAP equal to
0,94.

In the case of wAR, Figure 13 shows each value with a triangular
marker. ResNet-50 and HMMs with three and nine states obtain a value equal
to 0,94, and the HMM with six states obtain 0,93. From these results, it
can be concluded that CNNs perform well in detecting positive and negative
examples. However, HMMs are more likely to make mistakes in positive
examples classified as negative, which decreases the recall value.

4.3. HMMs Ensemble. During the experiments, 51 HMMs were
trained, these also in four varieties of symbols and three types of archi-
tectures, giving a total of 612 trained HMMs (51x4x3 models). So the question
arises: Is it possible to reuse some of these HMMs to create a more robust
classification system? The answer is developed below.

First, we must establish that not all HMMs are useful for this purpose
since models with three states make extensive use of memory and processing
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time in their variants of 512 symbols. However, models with nine states and
512 symbols are the most accurate. Thus, HMMs with less memory use and, if
possible, with greater precision and recall were selected. The only HMMs that
simultaneously fulfill these two characteristics are the chains of short length or
small observation vectors, the set of models with three states and 64 symbols,
and the models with nine states and 512 symbols.

This results in using three types of HMMs, two types of symbols
(64 and 512), and 51 models for classification, so it’s proposed to make an
ensemble of 306 HMMs. This might seem implausible, but because HMMs
are compact in memory during the inference process in addition to a speed
in the order of microseconds, 306 sequentially evaluated models must have a
lower execution time than a CNN like VGG-19 or ResNet-50. The number of
parameters for VGG-19 is approximately 143.6 million and for ResNet-50 it’s
25.6 million for the ImageNet data set. For the case of our HMMs ensemble, it
can be calculated taking into account the following: the size of each vector
(having three, six, and nine windows) and the number of symbols to store (64
and 512 symbols). This is [74x224x3x(64+512)] + [74x112x3x(64+512)] +
[74x74x3(64+512)] which results in approximately 52.4 million parameters to
store the centroids. In the case of 306 HMMs, we have less than 0,55 million
parameters counting each matrix A, B; and 7 in each model A;.
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It’s important to note that the data set to obtain the extraction of visual
features in CNNs is enormous, close to 1,3 million images (ImageNet data set),
which makes its direct application difficult in systems that do not have such a
large amount of data. The HMMs allow training with a compact data set, and in
a modular way since the performance of a classification system is increased by
adding or removing models A, adding or removing lists of centroids obtained
in the clustering process, and there is no dependence between models during
their training. On the contrary, in the case of a CNN, retraining is necessary to
add or remove classes.

To construct the ensembles, the approach of a soft and hard classifier
was used. The soft classifier calculates a joint probability on all models already
trained and selects a class with the highest joint probability. This system is
shown in Figure 14. The hard classifier works as HMMs do, selecting the
model with the highest probability but with the difference that now one vote
per class is accumulated. The most voted class is the selected class, Figure 15
shows this system.

Table 5 shows in the first row the wAP result of the ensembles. These
two new classifiers achieve a wAP value of 0,98. For the case of wAR which
is shown in the second row, the classifier with soft-decision lags behind with a
wAR of 0,95.

Thus, it’s confirmed that it’s possible to ensemble HMMs with a different
number of hidden states to increase the overall performance. Ensemble 2
obtains a wAP equal to 0,98 and a wAR equal to 0,98, lagging behind VGG-19
with scores equal to 1,0.

Table 5. Results for HMMs Ensemble
HMM Ensemble 1 HMM Ensemble 2
Weighted Average Precision 0,98 0,98
Weighted Average Recall 0,95 0,98

Inference time when assembling the models is triggered, reaching
values of up to 0,0022 seconds for the best ensemble case. This is reported in
Table 6. The HMM ensemble, even evaluated sequentially, is faster than an
average of 0,183 seconds of inference per image in ResNet-50.

Table 6. Average Inference Time
HMM Ensemble 1 [ HMM Ensemble 2 ]
| Average Inference Time [ 4410755 | 0,002237 s ]

The memory usage increases because it’s necessary to load all the
centroids used by each HMM, but even with this, it only increases the memory
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usage up to a limit of two point eight gigabytes on average, as reported in the
Table 7 (a 32-bit representation is used as well as CNNs parameters).

Table 7. Average Memory Usage
HMM Ensemble 1 [ HMM Ensemble 2 ]
| Average Memory Usage [ 28GB [ 28GB |

Finally, a summary of wAP and wAR is shown in Figure 16 for the best
models evaluated in this work. VGG-19 is the system with the most accuracy,
precision and best recall, scoring 1,0 in all metrics. Table 9 presents the full
report.

HMMs Ensemble 2 ranks second among the best classifiers, but this by
far uses generic resources such as memory and CPU and turns out to be faster
than VGG-19 and ResNet-50, verifying that HMMs are an effective tool for
image classification (see Table 13 for full report).
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Fig. 16. Final metrics of best classifiers. HMM 3, 512 for three states and 512
symbols. HMM 6, 512 for six states and 512 symbols. HMM 9, 512 for nine states and
512 symbols

The other image classifiers developed have similar performance in the
task. ResNet-50 has a wAP with 0,96 value, Table 10 shows the complete
classification report.

The HMM of nine states and 512 symbols is reported with detail
in Table 11. This is the model with less resource consumption and better
detection metrics simultaneously. Also, the Table 12 shows the performance
for ensemble 1. The HMM report with three states and 512 symbols is skipped
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due to its high memory consumption, and HMMs with six states and 512
symbols due to its low precision.

5. Conclusions. In this paper, a practical comparison was presented
using publicly available data. It has been demonstrated experimentally that the
application of the theory of HMMs is useful to create a classification system
for images containing objects. This task has been widely developed with
the use of deep convolutional neural networks but these models, even with
great precision, are complex to integrate into systems that require high energy
efficiency due to the millions of parameters that must be adjusted and then
transported to a final program.

Table 8 summarizes the three best models tested, their values of wAP,
wAR, inference time for an image, and the number of parameters. Row three
for the case of HMM Ensemble 2 is the time required to obtain the complete
inference on a 224x224 size image. This time is the sum of 6 average queries
with 512 symbols, which correspond to three different architectures of HMMs
and two different types of symbols.

Table 8. Results comparison

HMM Ensemble 2 VGG-19 ResNet-50
wAP 0,98 1,0 0,96
wAR 0,98 1,0 0,94
Avg. Time per Image 0,018071 s! 0,3498 s 0,183 s
Number of Parameters 52.95 millions? 143.6 millions 25.6 millions

Weighted Average Precision (wAP). Weighted Average Recall (wWAR). ! Query time for

an image in 6 centroid lists with 512 symbols, plus run all 306 models. > All centroids
for 64 and 512 symbols and 306 HMMs

The HMMs ensemble 2 had the best value of wAP and wAR of all
proven HMMs, but without reaching the performance of VGG-19. Its main
advantage is that although with the increase of parameters, it still achieves an
execution speed ten times higher than ResNet-50 using a moderate performance
CPU that only has four cores.

All the models achieve a good recognition capacity, equal to or greater
than 0,94 in wAP also for wAR, but it’s possible to build an ensemble with half
of these models to reach up to 0,98 for both wAP and wAR. This result means
a reasonable ability to distinguish between positive and negative examples.
Note that tests demonstrate the power of the method using data augmentation
and an unbalanced data set per class. Of course, a disadvantage of the method
is that it requires the construction of a visual vocabulary using unsupervised
methods, so it’s not possible to modify the representation online. Using a more
compact and distinctive visual representation, in addition to a segmentation
subsystem, will be the reason for future work.
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Table 9. Classification report for VGG-19

Class Precision Recall Fl-score Support
apple 1,00 1,00 1,00 380
ball 1,00 1,00 1,00 515
banana 1,00 1,00 1,00 460
bell_pepper 1,00 1,00 1,00 395
binder 1,00 1,00 1,00 445
bowl 1,00 1,00 1,00 365
calculator 1,00 1,00 1,00 365
camera 1,00 1,00 1,00 395
cap 1,00 1,00 1,00 395
cell_phone 1,00 1,00 1,00 345
cereal_box 1,00 1,00 1,00 360
coffee_mug 1,00 1,00 1,00 345
comb 1,00 1,00 1,00 355
dry_battery 1,00 1,00 1,00 355
flashlight 1,00 1,00 1,00 380
food_bag 1,00 1,00 1,00 495
food_box 1,00 1,00 1,00 495
food_can 1,00 1,00 1,00 515
food_cup 1,00 1,00 1,00 490
food_jar 1,00 1,00 1,00 485
garlic 1,00 1,00 1,00 490
gluestick 1,00 1,00 1,00 505
greens 1,00 1,00 1,00 455
hand_towel 1,00 1,00 1,00 490
instant_noodles 1,00 1,00 1,00 485
keyboard 1,00 1,00 1,00 445
kleenex 1,00 1,00 1,00 490
lemon 1,00 1,00 1,00 370
lightbulb 1,00 1,00 1,00 390
lime 1,00 1,00 1,00 400
marker 1,00 1,00 1,00 505
mushroom 1,00 1,00 1,00 490
notebook 1,00 1,00 1,00 500
onion 1,00 1,00 1,00 485
orange 1,00 1,00 1,00 450
peach 1,00 1,00 1,00 425
pear 1,00 1,00 1,00 425
pitcher 1,00 1,00 1,00 355
plate 1,00 1,00 1,00 450
pliers 1,00 1,00 1,00 370
potato 1,00 1,00 1,00 380
rubber_eraser 1,00 1,00 1,00 495
scissors 1,00 1,00 1,00 390
shampoo 1,00 1,00 1,00 495
soda_can 1,00 1,00 1,00 395
sponge 1,00 1,00 1,00 400
stapler 1,00 1,00 1,00 370
tomato 1,00 1,00 1,00 425
toothbrush 1,00 1,00 1,00 375
toothpaste 1,00 1,00 1,00 515
water_bottle 1,00 1,00 1,00 350
Average 1,00 1,00 1,00 21900
Weighted Avg 1,00 1,00 1,00 21900
Accuracy 1,00 21900
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Table 10. Classification report for ResNet-50

Class Precision Recall Fl-score Support
apple 1,00 0,93 0,97 380
ball 1,00 0,63 0,77 515
banana 1,00 0,96 0,98 460
bell_pepper 1,00 1,00 1,00 395
binder 1,00 0,80 0,89 445
bowl 1,00 0,79 0,89 365
calculator 0,97 1,00 0,99 365
camera 1,00 1,00 1,00 395
cap 1,00 1,00 1,00 395
cell_phone 0,95 1,00 0,97 345
cereal_box 1,00 0,93 0,96 360
coffee_mug 1,00 1,00 1,00 345
comb 1,00 0,93 0,96 355
dry_battery 1,00 1,00 1,00 355
flashlight 1,00 1,00 1,00 380
food_bag 1,00 1,00 1,00 495
food_box 1,00 0,99 0,99 495
food_can 0,95 1,00 0,98 515
food_cup 0,96 0,89 0,92 490
food_jar 1,00 1,00 1,00 485
garlic 1,00 0,89 0,94 490
glue_stick 0,99 1,00 1,00 505
greens 1,00 1,00 1,00 455
hand_towel 0,99 0,99 0,99 490
instant_noodles 1,00 1,00 1,00 485
keyboard 1,00 0,98 0,99 445
kleenex 0,99 1,00 0,99 490
lemon 0,96 0,96 0,96 370
lightbulb 0,91 1,00 0,95 390
lime 0,96 0,95 0,96 400
marker 1,00 0,86 0,93 505
mushroom 0,30 1,00 0,89 490
notebook 1,00 1,00 1,00 500
onion 1,00 0,46 0,63 485
orange 0,66 1,00 0,80 450
peach 1,00 0,72 0,84 425
pear 1,00 0,79 0,88 425
pitcher 1,00 0,94 0,97 355
plate 1,00 1,00 1,00 450
pliers 1,00 1,00 1,00 370
potato 1,00 0,58 0,73 380
rubber_eraser 1,00 1,00 1,00 495
scissors 0,90 1,00 0,95 390
shampoo 1,00 0,98 0,99 495
soda_can 0,83 1,00 0,91 395
sponge 0,81 1,00 0,89 400
stapler 0,97 1,00 0,99 370
tomato 0,44 1,00 0,61 425
toothbrush 0,85 1,00 0,92 375
toothpaste 1,00 0,99 1,00 515
water_bottle 1,00 1,00 1,00 350
Average 0,96 0,94 0,94 21900
Weighted Avg 0,96 0,94 0,94 21900
Accuracy 0,94 21900
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Table 11. Classification report for HMM with 9 states and 512 symbols

Class Precision Recall Fl-score Support
apple 0,33 0,99 0,50 380
ball 0,99 0,95 0,97 515
banana 0,98 091 0,95 460
bell_pepper 0,99 0,97 0,98 395
binder 0,99 0,97 0,98 445
bowl 1,00 0,99 1,00 365
calculator 0,85 0,81 0,83 365
camera 0,87 0,89 0,88 395
cap 0,82 0,91 0,86 395
cell_phone 0,96 0,94 0,95 345
cereal_box 0,95 0,88 0,91 360
coffee_mug 0,99 0,90 0,94 345
comb 0,94 0,86 0,90 355
dry_battery 0,99 0,86 0,92 355
flashlight 0,88 0,82 0,85 380
food_bag 0,97 0,94 0,96 495
food_box 1,00 0,93 0,96 495
food_can 1,00 0,97 0,98 515
food_cup 0,99 0,98 0,99 490
food_jar 1,00 0,96 0,98 485
garlic 0,96 0,98 0,97 490
glue_stick 1,00 0,98 0,99 505
greens 0,99 0,92 0,96 455
hand_towel 0,99 0,94 0,96 490
instant_noodles 0,95 0,94 0,94 485
keyboard 0,99 0,84 091 445
kleenex 1,00 0,92 0,96 490
lemon 1,00 0,98 0,99 370
lightbulb 0,98 091 0,94 390
lime 1,00 0,99 1,00 400
marker 0,95 0,89 0,92 505
mushroom 0,99 0,92 0,95 490
notebook 0,98 0,93 0,95 500
onion 0,99 1,00 0,99 485
orange 1,00 0,99 1,00 450
peach 1,00 0,98 0,99 425
pear 1,00 0,99 1,00 425
pitcher 0,97 0,94 0,96 355
plate 1,00 1,00 1,00 450
pliers 0,96 0,85 0,90 370
potato 1,00 0,98 0,99 380
rubber_eraser 0,96 0,96 0,96 495
scissors 0,90 0,83 0,86 390
shampoo 0,99 0,96 0,98 495
soda_can 1,00 0,95 0,98 395
sponge 1,00 0,99 1,00 400
stapler 0,85 0,84 0,84 370
tomato 1,00 0,98 0,99 425
toothbrush 0,95 0,93 0,94 375
toothpaste 0,92 0,89 0,90 515
water_bottle 0,98 0,99 0,99 350
Average 0,96 0,93 0,94 21900
Weighted Avg 0,96 0,94 0,94 21900
Accuracy 0,94 21900
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Table 12. Classification report for HMMs Ensemble 1

Class Precision Recall Fl-score Support
apple 0,27 1,00 043 380
ball 1,00 0,97 0,98 515
banana 1,00 0,92 0,96 460
bell_pepper 1,00 0,98 0,99 395
binder 1,00 0,98 0,99 445
bowl 1,00 0,99 1,00 365
calculator 1,00 0,80 0,89 365
camera 0,97 0,90 0,93 395
cap 0,37 0,93 0,90 395
cell_phone 1,00 0,93 0,96 345
cereal_box 0,99 0,91 0,95 360
coffee_mug 1,00 0,91 0,95 345
comb 0,99 0,86 0,92 355
dry_battery 1,00 0,86 0,93 355
flashlight 0,97 0,84 0,90 380
food_bag 1,00 0,96 0,98 495
food_box 1,00 0,94 0,97 495
food_can 1,00 0,97 0,99 515
food_cup 1,00 0,99 0,99 490
food_jar 1,00 0,96 0,98 485
garlic 1,00 0,97 0,99 490
glue_stick 1,00 0,99 1,00 505
greens 1,00 0,92 0,96 455
hand_towel 1,00 0,97 0,98 490
instant_noodles 1,00 0,93 0,96 485
keyboard 1,00 0,38 0,94 445
kleenex 1,00 0,96 0,98 490
lemon 1,00 0,99 1,00 370
lightbulb 0,99 0,95 0,97 390
lime 1,00 0,99 1,00 400
marker 1,00 0,92 0,96 505
mushroom 1,00 0,97 0,98 490
notebook 0,99 0,93 0,96 500
onion 1,00 0,99 1,00 485
orange 1,00 0,99 1,00 450
peach 1,00 0,98 0,99 425
pear 1,00 0,99 0,99 425
pitcher 1,00 0,99 0,99 355
plate 1,00 1,00 1,00 450
pliers 1,00 0,84 091 370
potato 1,00 0,98 0,99 380
rubber_eraser 1,00 0,96 0,98 495
scissors 0,98 0,83 0,90 390
shampoo 1,00 0,97 0,98 495
soda_can 1,00 0,96 0,98 395
sponge 1,00 1,00 1,00 400
stapler 0,94 0,90 0,92 370
tomato 1,00 0,99 1,00 425
toothbrush 0,98 0,94 0,96 375
toothpaste 0,99 0,93 0,96 515
water_bottle 1,00 0,99 0,99 350
Average 0,98 0,95 0,96 21900
Weighted Avg 0,98 0,95 0,96 21900
Accuracy 0,95 21900
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Table 13. Classification report for HMMs Ensemble 2

Class Precision Recall Fl-score Support
apple 0,97 1,00 0,98 380
ball 1,00 1,00 1,00 515
banana 0,99 1,00 0,99 460
bell_pepper 1,00 1,00 1,00 395
binder 1,00 1,00 1,00 445
bowl 1,00 1,00 1,00 365
calculator 0,98 0,98 0,98 365
camera 0,88 0,93 0,90 395
cap 0,73 0,86 0,79 395
cell_phone 0,97 1,00 0,98 345
cereal_box 0,97 0,97 0,97 360
coffee_mug 1,00 0,97 0,98 345
comb 0,99 0,96 0,97 355
dry_battery 1,00 0,95 0,97 355
flashlight 0,94 0,88 091 380
food_bag 0,99 1,00 0,99 495
food_box 1,00 0,99 1,00 495
food_can 1,00 1,00 1,00 515
food_cup 0,99 1,00 1,00 490
food_jar 1,00 1,00 1,00 485
garlic 0,91 1,00 0,95 490
glue_stick 1,00 1,00 1,00 505
greens 1,00 1,00 1,00 455
hand_towel 1,00 1,00 1,00 490
instant_noodles 0,99 1,00 1,00 485
keyboard 1,00 0,75 0,85 445
kleenex 1,00 0,98 0,99 490
lemon 1,00 1,00 1,00 370
lightbulb 0,90 0,95 0,92 390
lime 0,99 1,00 0,99 400
marker 0,99 0,99 0,99 505
mushroom 0,99 091 0,95 490
notebook 1,00 1,00 1,00 500
onion 1,00 1,00 1,00 485
orange 1,00 1,00 1,00 450
peach 1,00 1,00 1,00 425
pear 0,98 1,00 0,99 425
pitcher 0,99 0,98 0,99 355
plate 1,00 1,00 1,00 450
pliers 0,99 0,98 0,99 370
potato 1,00 0,99 0,99 380
rubber_eraser 0,98 1,00 0,99 495
scissors 0,97 0,98 0,98 390
shampoo 1,00 1,00 1,00 495
soda_can 1,00 1,00 1,00 395
sponge 1,00 1,00 1,00 400
stapler 0,88 0,88 0,88 370
tomato 1,00 1,00 1,00 425
toothbrush 0,94 0,98 0,96 375
toothpaste 0,98 0,98 0,98 515
water_bottle 0,99 1,00 1,00 350
Average 0,98 0,98 0,98 21900
Weighted Avg 0,98 0,98 0,98 21900
Accuracy 0,98 21900
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K. CAPMBEHTO , X. CABAXK
CPABHEHHUE JIBYX METOIOB KJIACCU®HKAIIUA OFBbEKTOB
C UCIIOJIb3OBAHHUEM CKPBITBIX MAPKOBCKUX MOJEJIEN
1 CBEPTOYHBIX HEMPOHHBIX CETEN

Capmvenmo K., Casaxc X. CpaBHeHHe [BYX METOJOB KJaccH(pUKanuu 0O0BLEKTOB ¢
HCIIOJIb30BaHHEM CKPBITHIX MAPKOBCKHX MOJieJieil 1 CBePTOYHBIX HEHPOHHBIX CeTel.

AnHotanus. IlpencraBiaeHoO cpaBHEHHE AUCKPETHBIX CKPBITBIX MAapKOBCKHX Mojeliel U
CBEPTOYHBIX HEHPOHHBIX ceTell ISl KiIaccubHKaiy n3o0paxeHuit. I1ocie pa3ouBky n300paxeHnit
Ha YacTH 11e1eCO00Pa3HO MOIYYUTh BEKTOPbI, KOTOPbIE MPECTABIAIOT JIOKAIbHbIE BU3yaIbHbIC
CTPYKTYPBI, OJHOBPEMEHHO OIIpe e IsIoIIe H300paKeHUsI [I0OAIBHO Yepe3 NPOCTPAaHCTBEHHYIO
nocJieoBatesbHoCTh. C HCIONB30BaHHEM METOIOB KJIacTepU3alluy co3jaercsl ajagaBuT U3
YKa3aHHBIX BEKTOPOB, a 3aTeM KOHCTPYUPYIOTCS HOCJIEIOBATEeIbHOCTH CHMBOJIOB, KOTOpHIE
OIHMCHIBAIOT CTaTHCTUYECKHUE MOJENH, COOTBETCTBYIOLIME KiaccaM H300paxkeHuil. CKphIThIE
MapKOBCKHE MOJENIHM B COUYETAaHWH C METOAAMU KBAHTOBAaHUS MOTYT 0OpabaThIBaTh IIYyM U
HCKaXEeHUs] B HAOMIONEHWSX Ul PElICHUs NPOOJIeM KOMIIBIOTEPHOTO 3pEHHMsI, TaKHX Kak
KJ1accuduKarms H300paxeH it ¢ U3MEHEHHEM OCBEILEHNS U NePCIEK THBL.

IIpoTecTHpOBaHBl apXUTEKTYphl, OCHOBAaHHBIE Ha TpeX, IIECTH U MAEBATU CKPHITHIX
COCTOSIHMSIX, B TOJIb3Y CKOPOCTH OOHAPyKEHMs M HU3KOTO UCIIONb30BaHMs MaMsTh. Takxke Oblin
MIPOTECTHPOBAHEI /IBa TUINA aHCAMOJIEBBIX Mojeliell. TOYHOCTh MpeaaraeMoro MeToga ObLia
OLIEHEHA C MOMOILIBIO OOIIEAOCTYIHBIX JAHHBIX; MOy YCHHbIE PE3yJIbTaThl OKA3aIMCh CPABHUMbI C
U3BECTHBIMH OLIEHKAMH IIPH UCIOIb30BAHUM TOHKO HACTPOEHHBIX CBEPTOUHBIX HEHPOHHBIX CeTell,
HO TpeOOBaIM 3HAUMTEJILHO MEHBIIMX BBIYUCIMTEBHBIX pecypcoB. Pesymbrar npeacrasisieT
MHTEpec NpH pa3paboTKe MOOMIbHBIX POOOTOB C BEIYUCIIUTEILHBIME YCTPOICTBAMH, NMEIOIINMH
OrpaHIYEeHHOEe BpPeMsi aBTOHOMHOM paOOTHl, HO TPeOYIOIMMI CIIOCOOHOCTH OOHApYXHMBAaTh U
100aBJISITh HOBbIE OOBEKTHI B CBOM CHCTEMBI KJIACCU(DHUKALIAHY.

KiioueBble cJI0Ba: CKpBITBIE MapKOBCKHE MOJENH, KJIACCHU(HKAIMs H300paxeHHIl,
KOMIIBIOTEPHOE 3pEHHe, PaCIIO3HaBaHUE 00Pa3oB

Capmbento Kapioc — acrimpant, nabopaTtopusi 6nopo6oTiky, HalmoHambHbIA aBTOHOMHBII
ynusepcuteT Mekcuku (HAYM). O61acTh HayUHBIX HHTEPECOB: KOMIIBIOTEPHOE 3pEHUE, MaIlIiH-
Hoe 00y4eHHe C MOJKPEeIUICHUEM, aBTOHOMHAs HaBUralus. Yucio HayuHsIX myOymKanuii — 2.
ing.adriansarmiento @comunidad.unam.mx; Iupkyuro Dkcrepuop 6/H, Y HUBEpCUTETCKHIA TOPO/,
04510, Mexuko, Mekcuka; p.T.: +52(55)56223041.
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