
 DOI 10.15622/ia.21.2.2 
 

P. BUI, M. LE, B. HOANG, N. NGOC, H. PHAM  
DATA PARTITIONING AND ASYNCHRONOUS PROCESSING TO 

IMPROVE THE EMBEDDED SOFTWARE PERFORMANCE ON 
MULTICORE PROCESSORS 

 
Bui P., Le M, Hoang B., Ngoc N., Pham H. Data Partitioning and Asynchronous Processing 
to Improve the Embedded Software Performance on Multicore Processors. 

Abstract. Nowadays, ensuring information security is extremely inevitable and urgent. 
We are also witnessing the strong development of embedded systems, IoT. As a result, 
research to ensure information security for embedded software is being focused. However, 
studies on optimizing embedded software on multi-core processors to ensure information 
security and increase the performance of embedded software have not received much attention. 
The paper proposes and develops the embedded software performance improvement method on 
multi-core processors based on data partitioning and asynchronous processing. Data are used 
globally to be retrieved by any threads. The data are divided into different partitions, and the 
program is also installed according to the multi-threaded model. Each thread handles a partition 
of the divided data. The size of each data portion is proportional to the processing speed and 
the cache size of the core in the multi-core processor. Threads run in parallel and do not need 
synchronization, but it is necessary to share a general global variable to check the executing 
status of the system. Our research on embedded software is based on data security, so we have 
tested and assessed the method with several block ciphers like AES, DES, etc., on Raspberry 
PI3. The average performance improvement rate achieved was 59.09%. 

Keywords: embedded software performance improvement, multicore processors, 
multithread, data partitioning, asynchronous processing. 
 

1. Introduction. Data encryption has been studied with many 
algorithms such as AES, DES, etc., to ensure data security and is focused on 
research for sequential processing software systems. It hasn’t been being 
studied on embedded systems. Because encrypting data will increase the 
cost of data processing time compared to unencrypted data, the problem is 
to both ensure data security and maximize performance by adapting 
encryption algorithm based on embedded software configuration. 

Today, in the fast development trend of the 4th industrial revolution, 
information technology systems, especially IoT systems, also flourish in 
both hardware and programming models. In this trend, multicore processors 
are widely studied and applied. Not only information technology systems in 
general, but embedded systems also use more and more multicore 
processors. 

The purpose of using multicore processors is to improve the 
performance of embedded systems under limited resource conditions. There 
are many studies that have been done to improve the performance of 
embedded software. Improvements to embedded software performance can 
be made on different levels: from processor level to operating system, 
programming and design levels. However, most of the old programming 

243

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



models, which have only been programmed in serial/sequential processing, 
have not yet promoted the parallel processing. 

In recent years, there have also been several teams that have 
performed researches and developed methods to improve embedded 
software performance on multicore processors. These studies mainly focus 
on multithread models – the distribution of processing flows for parallel 
implementation as the optimal approach based on co-design is also studied 
and applied to multicore processors, such as [1]. In the study, the author 
proposed and developed a method of co-designing hardware and software 
for network systems on a chip (NoC), which improved the average 
performance by 33.1%. However, due to a data conflict between the local 
data set of the failed transaction and the global end-level caching (LLC), the 
transaction cancellation rate is still high in software transactional memory, 
and it is costly to identify and update the cancelled data. 

In study [2], the authors built a user space memory scheduler that 
allocates the ideal memory node for tasks by monitoring the characteristics 
of the heterogeneous memory architecture to optimize application 
performance for the NUMA multicore processors. The average performance 
improvement rate achieved by this method is 25%. The authors focused on 
the development of the scheduler but used the Princeton Application 
Repository for Shared-Memory Computers (PARSEC); therefore, it is not 
yet possible to evaluate the compatibility of a scheduler with the ability to 
parallel the data on the NUMA configuration. 

Study [3] presented a multi-threaded approach to the travelling 
salesman problem to improve performance. Under certain hardware 
limitations, the proposed math can take full advantage of multi-core chips 
and effectively balance out the contradiction between increasing data size 
and computing efficiency, thus gaining a satisfactory solution. Nevertheless, 
a parallel threaded approach that depends on the set of input parameters of 
the problem is not new; instead, it just gives case studies on thread 
programming to solve the problem. 

Study [4] presented a platform used in multithreaded programming 
to improve performance as OpenMP. The platform can be used to develop 
both desktop applications and embedded apps. This study analyses the 
effects of different schedules and segment sizes on the at-gain speed of 
multi-core platforms that use different shared memory in regular workloads. 
The results illustrated that different multi-core technology showed different 
acceleration values, and different multi-core platforms were better than 
others in terms of speed as the number of cores was increased. 

In study [5], the authors presented the method of sharing the data to 
be processed to points to improve the thoughts of points in the problem. 

244

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



This study demonstrates that each specific problem has its own method of 
implementing performance improvement. 

Studies presented on hardware configuration-based performance 
improvement methods are in [6]. The authors proposed a single-command, 
multi-data model to improve performance for multi-disciplinary chips. 

Most of these studies focus on solving only one layer of specific 
problems and have not fully solved the problem of synchronization, linking 
data between threads. At the same time, the studies have not looked at data 
independence and data partitioning for parallel processing. 

With big data processing problems and independent data sections, a 
more efficient model is needed to promote data independence and simplify 
synchronized time, linking data between threads. Therefore, in this study, 
we propose a model of data partitioning and asynchronous processing to 
process data in parallel to improve embedded software performance. 

In study [7], the authors proposed a parallel multithreaded pipeline to 
filter, clean and classify information in the information collection phase. We 
developed the pipeline so that it can be easily re-applied to any type of 
heterogeneous aggregation and run efficiently on medium to low resource 
infrastructures where I/O speed is the main limitation. 

In consideration of undesirable elements in synchronous 
programming, asynchronous programming has emerged as a programming 
style to overcome the limitations. Usually, in asynchronous programming 
models, the methods are included in the queue list for implementation, and 
the order in which the method is implemented is serial yet unidentified. 
Nevertheless, a lag still exists with this method due to the need for 
serial / sequential execution; therefore, there have been researches being 
carried out to solve the parallel asynchronous problems. The idea of 
asynchronous programming is to divide the execution of the original 
program into tasks that are running over a short period of time. 
Furthermore, each task is performed as recursive sequence software that 
defines new methods to be enforced later when accessing shared memory. 

The simplicity of the asynchronous program’s combination makes 
asynchronous programming a preferred option for deploying API or 
systems that require reactive systems. The use of asynchronous 
programming for main servers, desktop applications, and embedded systems 
is increasingly being used and varied with problems [8], such as JavaScript 
tools of modern web browsers, Grand Central Dispatch in MacOS and iOS, 
Linux job queues, asynchrony in .NET, and deferred procedure calls in 
Windows core are all based on asynchronous programming. Even in single 
processing settings (i.e. without any parallelism), asynchronized 
frameworks such as Node.js are becoming widely used to design extremely 

245

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



scalable (web) servers. 
Many studies have been carried out to present asynchronous 

programming models. Nevertheless, some tasks posted in asynchronous 
programs may have different levels of execution priority, as addressed in 
study [8]. A major drawback of existing tasks considering execution 
priorities is the complexity of models that host those priorities. An 
asynchronous program divides the behaviour of the accumulated program 
into short-running tasks. Each task basically acts as a recursive sedated 
program, in addition to accessing the memory shared by all tasks that can 
post new tasks to the task buffer for later execution. Tasks from each buffer 
perform in succession: when one task is completed, another is taken from 
the buffer and run until completed. Programming a reactive system requires 
the designer simply to ensure that no single task is performed for too long to 
prevent others more urgent tasks from being executed. Figure 1 illustrates 
the general architecture of asynchronous programs. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 1. A general architecture of asynchronous programs with N task buffers. 

Tasks from the same buffer execute serially, but concurrently with tasks of other 
buffers [8] 

In study [9], the authors and his colleagues proposed an official 
model of asynchronous event-oriented programs, which narrows the 
semantic gap between programs and existing models, especially by allowing 
dynamic creation of tasks, events, buffer tasks and strings simultaneously, 
and accurately capture the interaction between these quantities. Instead of 
assigning each calculated task to a blocked dedicated thread for certain 
conditions, the system maintains simple sets of events that pend tasks, 
buffers of tasks with enabled events and workflows for performing tasks in 
the buffer. 

Figure 2 presents asynchronous event-driven programs. The pending 
tasks (drawn as triangles) are moved to their designated task buffers (drawn 

var B1: task-buffer 
While (*) do 

t:=fecth(B1); 
execute(t); 

 

var B2: task-buffer 
While (*) do 

t:=fecth(B2); 
execute(t); 

var Bn: task-buffer 
While (*) do 

t:=fecth(Bn); 
execute(t); 

 

Shared Memory 

246

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



as boxes) once their designated events (drawn as circles) are triggered. 
Threads (drawn as diamonds) execute buffered tasks to completion, such 
that no two tasks from the same buffer (drawn with the same colour) 
execute in parallel. In addition to the ability to use events to synchronize 
between tasks, the task cache itself provides another means of coordination: 
the system can allow tasks from separate buffers to perform in parallel 
while ensuring that tasks from the same buffer perform sequentially. 
Authoring the management of events, tasks, buffers, and flows to the system 
often increases the efficiency of the system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Asynchronous event-driven programs [9] 

Most of the studies only focus on solving a specific class of 
problems and have not completely solved the problem of synchronization 
and data linkage between threads. At the same time, studies have not 
considered the issue of data independence and data division for parallel 
processing. 

With problems related to a big amount of processing data and/or 
independent pieces of data, a more efficient model is needed to promote the 
independence of the data and minimize the time for synchronization and 
linked data between the streams. Therefore, in this study, we propose a 
model of data division and asynchronous processing for parallel data 
processing to improve embedded software performance. 

The rest of the paper is organized as follows: Section II – Survey, 
analysis, synthesis of related research; Section III – Presentation on ideas, 

Events 

Pending 
tasks 

Tasks 
buffers 

Threads 

idle 

247

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



process and content of method's development; Section IV – Experiment for 
method's testing and evaluation; Section V – Conclusion and trends of 
development. 

2. Related work. The problem of optimizing performance based on 
parallel calculations has been researched and developed by many research 
groups in different approaches such as CPU hardware level, co-design level, 
operating system level and application level multi-threading. The CPU level 
parallelization includes typical optimization techniques such as order 
scheduling, command pipeline, in-of-order, out-of-order, CPU 
configuration, setting configuration, etc. [10]. These algorithms and 
methods are the basis for the direction of research and implementation 
approach of study [10]. 

Study [11] analysed cipher-related algorithms and then designed and 
deployed the AES algorithm in CUDA. The data will be divided into 64K 
blocks by the CPU and transferred to the cores of the GPU and performed in 
parallel the sub Bytes, Shift row, Mix column and AddroundKey functions 
for encryption. Encrypted data were collected on the GPU and transferred 
upwards to the CPU. This technique improved the performance of the AES 
encryption process with the help of a GPU. However, the cost was involved 
in transporting data from the CPU to the GPU and vice versa. 

Data partitioning as an important sub-factor in database tools has 
been studied in the previous work. Polychroniou, O. and Ross, K.A. [12] 
provided extensive analysis of data partitioning across multiple methods, 
such as partition type (base, hash or range) and shuffle strategy. It has been 
proved that for more than 16 partitions, partitions that write in combination 
with direct memory writing and skipping cache memory would work best. 
Partition throughputs are reported to be 1.1 billion data sets/s for 8,192 
partitions with 64 threaded parallel executions on 32-core servers. 

Schuhknecht F.M. et al. in [13] presented a set of experiments 
performing base-based partitioning. Existing optimizations (combinations, 
time-consuming storage, etc.) are enabled, and new optimizations (pre-fetch 
for recording, micro-row layout) are added step by step to observe their 
impact on the total duration of implementation. The fastest FPGA data 
partition deployment to date was presented by Wang and his associates [14] 
with 256 Million Data Sets/s for 8,192 partitions. They improved the 
existing OpenCL implementation of a partitioned and deployed it on the 
FPGA. The partitioned data are assumed to be in the DRAM that is directly 
connected to the FPGA. The resulting partitions are recorded to the same 
DRAM, and the transfer via PCIe to the server memory is necessary if the 
partitioned data will be used by the CPU for further operations. 

248

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



Study [15] shows that the probability of parallel calculation of data 
depends heavily on its data partitions. The solutions implemented by the 
status quo of the systems have not yet been optimized. Community-
recommended techniques for finding optimal data partitions are not applied 
directly when relevant to complex user-defined data functions and models. 
A parallel data program compiled into an execution plan chart (Execution 
Plan Graph -EPG) is a directional AC chart with multiple stages. Therefore, 
data partitioning affects many aspects of how a job is run in a cluster, 
including parallelism, workloads for each vertex, and network traffic 
between vertices. In this study, the authors proposed the system architecture 
as Figure 3 to partition the data. 

Figure 3 shows the architecture of the system. First, the system 
compiles a certain data parallel program into a work plan chart (EPG) with 
the original data partitions (e.g., provided by the user). The code analysis 
module takes this EPG and the code for each vertex in the EPG as input to 
infer the calculated complexity of the program per-vertex and important 
data features. This step is important because it not only provides 
information about the relationship between the input data size versus the 
cost of calculation and I/O but also guides the process of data analysis, for 
example, providing suggestions for strategically sampling data and 
estimating data statistics. This information can then be used to identify 
image recordings to process and distribute them more evenly. The data 
Analysis module linearly scans data to create compact data expressions.  

The Modelling/Estimation Module uses code and data analysis 
results to estimate the runtime cost of each vertex, including CPU time, 
output data size, and network traffic. 

The authors in study [15] gave the example of creating a partitioned 
graph, as shown in Figure 4. The two root nodes represent two partitions of 
the sampled input data. The cost optimization module inserts an additional 
partitioning stage into the existing EPG in search of an optimized 
partitioning scheme. First, the two inputs are divided into 8 partitions (for 
example, h1(k) mod 8 hash partition) and EPG is updated accordingly. The 
Cost Estimation module then determines the critical path up to the current 
period in the updated EPG, including the vertex associated with Partition 5. 
To reduce costs, it divides Partition 5 into the other two partitions (for 
example, the h2(k) mod 2 hash partition). Meanwhile, Partitions 0, 2 and 4 
all have small costs to reduce I/O, the cost of starting peaks and therefore 
the underlying overall cost. The process of estimating costs and optimizing 
by ingesting and separating this recursive data is repeated until it converges. 
Each iteration is a greedy step towards minimizing overall costs. In 

249

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



summary, study [15] has proposed a system architecture to find the optimal 
for data partitioning based on greedy algorithms. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. System architecture, from study [15] 

 
 
 

Input data 
 

... 
 

Code EPG 

Data 
Analysis 

Code 
Analysis 

Computational 
&I/O Complexity 

Data Statistics 
& Sample 

The Cost 
Modeling/Estimation 

Cost 
I don't want 

Optimized 
EPG 

Update 
EPG 

250

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Example of generating an optimized data partitioning scheme represented by 
the partition graph 

 
The article [16] proposes a data set manipulation method to divide 

the training data set into many groups with different characteristics to train 
each classifier. The author partitioned the training data into groups of the 
same distance. If each individual SVM is trained using each of these groups, 
the trained classifiers have increased diversity. The test results showed an 
average accuracy of 70% by repeating the data set for a single letter four 
times. 

In study [17], the authors et al. proposed an automatic local data 
partitioning algorithm, which can automatically recognize the local maxima 
of the data density from experimental observations and use them to serve as 
the focal point to form data partitions. This method is free of user’s 
parameters and prior assumptions. Numerical results based on the 
benchmark dataset proved the validity of the proposed algorithm and 
demonstrated its high performance and computational efficiency compared 
to modern clustering algorithms.  

Kara K. et al. [18] explored the use of FPGA to speed up data 
partitioning. The paper studies new hybrid architectures in which FPGA is 
placed as a co-processor located on one socket and has consistent access to 
the same memory as the CPU located on the other socket. Such an 
architecture reduces the cost of data transfer between the CPU and the 

P1 P2 

0 2 4 3 1 7 6 5 

8 9 10 

251

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



FPGA, allowing the execution of the combined algorithm in which the 
partition occurs on the FPGA and the construction and exploration stages of 
a connection that occurs on the CPU. The FPGA-only partitioning and 
execution reduce the cost of data transfer to the CPU and vice versa, but 
storing and performing on big data are matters for further study of the 
paper. 

Study [19] considered the issue of optimal distribution of workloads 
for the parallel implementation of data between the processing components 
of non-click calculation systems. Zhong Z. et al. presented a solution that 
uses functional performance models (FPM) of processing agents and FPM-
based data partitioning algorithms. The effectiveness of this method is 
proven by experiments with parallel matrix multiplication. The FPM-based 
data partitioning has proven to be fully and efficiently used to balance the 
workloads of many data parallel applications across modern hem helmless 
disk forms. However, more effort is still needed to improve this approach in 
some respects. For example, only the calculated performance of processing 
units is used to partition data so far, while the cost of communicating 
between processes is not considered. In some dense matrix applications on 
highly haemolysed disk forms, the performance of a processing unit may 
depend on the shape of the matrix block assigned to it. In that case, the 
multi-dimensional performance model has more than one parameter that 
may be required to describe the performance accurately. For large complex 
applications where the computational kernel cannot be easily separated 
from the application or there is more than one computational kernel, it may 
take more effort to balance the workload with this approach. 

In study [20], the authors compared and evaluated three algorithms 
AES, DES, and 3DES by nine factors: key length, passcode type, block 
size, developed, code break resistance, security, ability key, ASCII printable 
character key, and the time it takes to check all possible keys at 50 billion 
seconds. The results have proven that AES algorithms are better than DES 
and 3DES, as shown in Table 1. However, this study did not evaluate the 
performance of data encryption processing of these three methods. 

Study [21] compared the results of the AES encoding techniques to 
increase encryption efficiency on FPGA integrated circuits. Five techniques 
were outlined in the article.  

The CB-KB-S technique: Both encryption and key creation are in the 
RAM Block. Processing is carried out in a singly way, first creating an 
extended key then the encryption process. The speed is slow due to the 
implementation of the order; however, it gives accurate results, therefore 
this technique is applied to problems that require high accuracy.  

 
 

252

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



Table 1. Raspberry PI 3 embedded computer configuration 
Factors AES 3DES DES 

Key Length 128, 192, Or 
256 bits 

(kl, k2 and k3) 168bits 
(kl and k2 is same) 112 
bits 

56 bits 

Cipher Type Symmetric 
block cipher 

Symmetric block cipher Symmetric 
block cipher 

Block Size 128, 192, or 256 
bits 

64 bits 64 bits 

Developed 2000 1978 1977 

Cryptanalysis 
resistance 

Strong against 
differential, 
truncated 
differential, 
linear, 
interpolation and 
square attacks 

Vulnerable to 
differential, Brute force 
attacker could be 
analyzed plaint text 
using differential 
cryptanalysis. 

Vulnerable to 
differential 
and linear 
cryptanalysis; 
weak 
substitution 
tables 

Security Considered 
secure 

One only weak which is 
Exit in DES. 

Proven 
inadequate 

Possible Keys 2128, 2192, or 
2256 

2112 or 2168 256 

Possible ASCII 
printable 
character key 

9516, 9524, or 
9532 

9514 or 9521 957 

Time required 
to check all 
possible keys at 
50 billion keys 
per second** 

For a 128-bit 
key: 5x 
1021years 

For a 112-bit key: 
800Days 

for a 56-bit 
key: 400Days 

 
The CB-KB-P technique: Both encryption and key creation are in the 

RAM Block but are used in a private key writing module. This module will 
run in parallel with the encryption process instead of performing a 
sequential key creation according to the CB-KB-S algorithm. With this 
technique, the application of parallel processing of encryption blocks 
increases performance due to reduced latency during the sequential process. 
Still, it reduces security due to the extended key born before the encryption 
process. 

The CB-KC-S technique: With this technique, the encryption process 
is carried out at Block RAM, and the extension key is done in Logic Block. 
These two modules are done in a sequence of the extended key that is 
performed and then encrypted. This technique will reduce the processing in 

253

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



a way that conducts two tasks in two different places. On the other hand, 
data exchange between the parties also causes certain latency in encryption.  
 

 
Fig. 5. Standard overview of AES algorithm 

The CB-KC-P technique: like the CB-KC-S technique, the 
encryption process in this technique will be carried out at block RAM, and 
the extension key is done in Logic Block. The difference with the CB-KC-S 
technique is the fact that this technique conducts parallel unlocking and 
encryption. Since this process takes place in parallel, the performance of the 
technique is considered very good, but the safely of this technique, as well 

MasterKey Plain text 

Add Round Key 

SubByte ShiftRow 

Mixcolumn AddRoundKey 

SubByte ShiftRow 

Add Round Key 

SubWord 

RotWord 

RoundConst 

Ciphered Text 

254

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



as the CB-KB-P technique, is not high because there is no constraint on the 
encoding result with extended key birth.  

The CC-KC-S technique: this technique brings both encryption and 
extended key being executed in Logic Block. Because of the same 
implementation in Logic Block, there is no longer lag due to data exchange 
between Block RAM and Logic Block, so the efficiency of this technique 
achieved is the highest. 

Most of the applications are written using a synchronous batch 
programming model. Therefore, they are not optimal for low-latency or 
asynchronous communication algorithms. The study [22] proposes 
constructs for asynchronous multi-GPU programming and describes their 
implementation in a thin runtime environment, performing common math 
operations and distributed task lists. The authors et al. demonstrated that 
this approach achieves performance gains and exhibits strong scalability for 
heterogeneous systems, yielding more than 7x speedup for some algorithms. 

In study [23], asynchronous programming was built based on a 
multithreaded basis due to the fact that APIs have been deployed using 
multithreaded programs with shared memory. The execution of software 
flows is not affected by the number of processors in the system, which has 
been proven by the fact that threads are enforced as recursive sedation 
software that runs simultaneously with alternating write and read 
commands. It is likely that being able to walk away, in this case, might 
cause the complexity of simultaneous programming models. This study 
gave the authors the idea of using shared variables for this paper's asymable 
parallel programming solution. 

The reduction is then as follows. First, the pre-emptive priority 
scheduler is made explicit by adding to the program the code shown in 
Figure 6. The hyper period procedure executes each thread one time, 
choosing non-deterministically a sleeping thread to execute via the choose 
operation, which returns an index that satisfies the supplied guard. An 
infinite cycle of hyper periods is simulated by invoking hyper period in a 
non-terminating loop. During each hyper period, the scheduler has two 
tasks: (i) it must ensure that each thread i is awoken so that i can execute its 
task, and (ii) the wake-ups should happen non-deterministically. The first 
task is handled by defining a Boolean array of size n, where each entry in 
the array denotes whether a thread t is sleeping or not. (In Figure 6, the 
array is named Sleeping.) The scheduler loops until all threads have been 
awoken and completed their periodic task. 

The second task is handled by performing a source-to-source 
transformation on the code of each thread so that it non-deterministically 
invokes Schedule before each statement st. That is if a thread is comprised 

255

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



of program statements st1,. . . , stk, then the transformed program will have 
program statements st0 1 ,. . . , st0 k, where each st0 is defined as: 
st0,Schedule();st. In the definition of Schedule, the function nondet non-
deterministically returns true or false. When Schedule is invoked, the code 
of a higher-priority thread ti 0 than the thread ti whose code is currently 
executing may be invoked, which corresponds to ti being pre-empted by ti 
0. Before executing a thread ti by invoking Threads[i].entry(), the flag 
Sleeping[i] is set to false to ensure that ti is executed exactly once per hyper 
period H. 

 
 
// Sleeping flags  

Sleeping[n] = {true,...,true}; 
// Thread priorities  

Priorities[n] = ...;  
// Thread entry points  

Threads[n] = ...;  
// 0 => choose any thread  

Prio = 0;  
 
void Hyperperiod() {  

while (Vi Sleeping[i]) {  
 j = choose j: Sleeping[j];  
 Sleeping[j] = false;  
  Threads[j].entry();  

}  
} 

 
// Wake-up higher-priority thread 
void Schedule() { 
// Save current priority 

int prevPrio = Prio; 
for i in (1..n) { 

if (Priorities[i] <= Prio) 
 continue; 

if (nondet() && Sleeping[i]) { 
Prio = i; 
Sleeping[i]=false; 
Threads[i].entry(); 
break; 

} 
} 
Prio = prevPrio; 

} 

Fig. 6. Pseudo-code to execute one hyperperiod [23] 

The study [24] proposes a light-weighted asynchronous processing 
solution that is based on the idea of Pareto principle about coloring 
algorithms. It is to separate the vertices processing based on the color 
distribution by partitioning the vertices to achieve the maximum parallelism 
and to reduce data transmission costs while processing the partitions. 

Lian X. et al. have performed research [25] on two common 
asynchronous parallel implementations for Stochastic Gradient on computer 
networks and shared memory systems. Two algorithms (ASYSG-CON and 
ASYSG-INCON) were used to describe the two above implementations. 
This study was able to explain their converging and accelerating properties, 
mainly due to the heterogeneity of the majority of deep learning formulas 
and asym asymable parallel mechanisms.  

In study [26], the authors modeled the dependence of the output on 
tens of thousands of causal events that recursively use a new time-coding 

256

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



scheme for real-time processing of event streams. In tests using real data, 
the study proved useful in real-world applications. 

Based on the results of the study reviewed above, we can see that the 
problem of optimizing embedded software on multi-core processors also 
focuses a lot on multi-threaded models to parallelize the processing flows in 
the program. With independent data problems, it is necessary to process a 
large amount of data that requires a more efficient parallel model and 
minimizes synchronized time, linking data between threads. This class of 
problems can be solved by dividing data into sub-sets for asynchronous 
processing. This method will be developed, tested and evaluated in the 
following sections. 

3. Ideas of research and experimental processes 
3.1. Ideas. The main idea of the proposed method is to build a global 

data partitioning model based on the configuration of processor builders and 
asynchronous data processing between threads for performance 
improvements. Global data are used so that every thread is accessible, and 
the data division creates independent data to execute concurrent processing 
on processor cores. An asynchronous data processing model is applied to 
eliminate intermediate data processing time and link data between threads. 

3.2. Research and experimental process. The process of 
developing and experimenting with the method described as shown in 
Figure 7 is carried out in 4 steps as follows: 

1. Analyse configuration of a processor: From the information of 
the processor, we analyse the processor's configuration information to give 
the processor's configuring the filling. 

2. Calculate partitioning rates: Based on the configuration of the 
chromium 4th of the processor, we calculate, determine the data partitioning 
ratios.  

3. Data partitioning: To select the rate type and global data, we 
divide it into data parts. 

4. Multi-thread programming: From the processor configuration 
information and data sections, we determine the number of data and set the 
processing flows on each divided data area. Map the threads to the 
corresponding characters. 

257

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



 
Fig. 7. Research and experimental process 

 
3.3. Data partitioning. Data partitioning is a data delivery technique 

to improve data processing performance. Processing performance can be 
improved in one of two ways. Firstly, it is possible in some cases to pre-
determine that a partition does not need to be accessed for processing 
depending on how the data are partitioned. Secondly, when data are 
partitioned, in some cases, parallelism can be achieved in data processing 
because different partitions can be accessed and processed in parallel. In 
this paper, we focus on data partitioning towards parallel processing on 
multi-core processor cores, since depending on the properties of the 
processor, the partitioning is based on the processing capacity, the size of 
the human cache. 

Start 

Analyze configuration of 
a processor 

Processor 

Processor 
configuration 

Calculate 
partitioning rates 

Partitioning 
rate 

Data partitioning 

Multi-thread 
programming 

Sub data 
regions 

Global 
data 

End 

258

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



Definition 1 – ratio by speed. The speed ratio is the ratio between 
the processing capacity of the current core in the set of microprocessors. 
This ratio is used to divide data by the speed of the core. The speed ratio is 
denoted as 𝑟𝑠, described in Equation (1). 

 

𝑟𝑠 = 𝑠𝑖
∑ 𝑠𝑖
𝑁
𝑖=1

, (1) 

 
where: 

• 𝑠𝑖  is the speed of the 𝑖𝑡ℎ core; 
• 𝑁 is the number of cores in a processor. 
Definition 2 – ratio by buffer size.Caching size ratio is the rate at 

which data are stored on the cache of the current core, the set of 
microprocessors. This ratio is used to partition data according to the buffer 
size of the core. The buffer size ratio is denoted as 𝑟𝑐 , described in 
Equation (2): 

 

𝑟𝑐 = 𝑐𝑖
∑ 𝑐𝑖
𝑁
𝑖=1

, (2) 

 
where: 

• ci is the cache size of the ith core; 
• N is the number of cores in a processor. 
Definition 3 – aggregate ratio. The aggregate ratio is the ratio of 

the combination of the speed ratio and the core cache size ratio, currently 
the set of microprocessors. This scale is used to partition the data according 
to the aggregate ratio of the core. The aggregate ratio is denoted as 𝑟 , 
described in Equation (3): 

 

𝑟 =  𝛼 × 𝑟𝑠 + 𝛽 × 𝑟𝑐, (3) 
 
where: 

• α and β are positive coefficients; 
• α + β = 1. 
From the above definitions, we offer three ways to divide the 

original data set into sub-set. Call 𝐷 the size of the data to be processed, and 
𝐷𝑖  is the size of the component data partition 𝑖  being calculated by 
Equations (4), (10) and (11) depending on the division. 

259

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



Split data proportional to the speed of core/processor. The size of 
the data divided by the speed ratio of the 𝑖𝑡ℎ component is determined based 
on the speed ratio of the 𝑖𝑡ℎ core and the size of the data to be processed: 

 
𝐷𝑠𝑖 = 𝑟𝑠 × 𝐷 = 𝑠𝑖

∑ 𝑠𝑖
𝑁
𝑖=1

× 𝐷. (4) 
 
Proposition. Suppose we have a processor with 𝑁 cores, each core 

has the same speed 𝑠𝑖, has the same cache capacity, and the performance 𝑟𝑠 
is calculated by definition 1. There is data block 𝐷 divided by cores that 
execute concurrently.  

According to the normal way of data division, there are 𝑁 cores, 𝐷 
data block will be divided into 𝑁 parts then, each core will perform 𝐷/𝑁 
data processing. Since the cores execute concurrently, the time it takes to 
process the data block 𝐷 needs to run out 𝑡𝑚𝑚𝑚, where 𝑡𝑚𝑚𝑚 is the time of 
the lowest-speed core 𝑠𝑚𝑖𝑚  or, in other words, the time that the least-
performing core needs to process the assigned data portion.  

 

𝑡𝑚𝑚𝑚 =
𝐷
𝑁

×
1

𝑠𝑚𝑖𝑚
. (5) 

 
We improved the data division to increase the performance of the 

above 𝐷 block processing by dividing the volume for each core based on 
the performance of each core. Then the data is divided according to 
Equations (4). Since the cores execute concurrently and the data of each 
core is divided according to the performance of each core, the processing 
time of each core is equivalent and is called 𝑡. 

 
𝑡 = 𝐷 × 𝑠𝑖

∑ 𝑠𝑖
𝑁
𝑖=1

× 1
𝑠𝑖

. (6) 
 
Need to prove that 𝑡 < 𝑡𝑚𝑚𝑚. 
From (5), 
 

𝑡𝑚𝑚𝑚 = 𝐷
𝑁 × 𝑠𝑚𝑖𝑚

= 𝐷
∑ 𝑠𝑚𝑖𝑚
𝑁
1

. (7) 
 

From (6), 
 

𝑡 = 𝐷
∑ 𝑠𝑖
𝑁
𝑖=1

. (8) 
 

260

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



Since 𝑠𝑚𝑖𝑚 is always less than or equal to 𝑠𝑖  ∀ 𝑖𝑖1, . .𝑁, according to 
(7) and (8), 𝑡 < 𝑡𝑚𝑚𝑚. 

So with the performance of different cores and the data block being 
large enough, our data division is better than the normal data division.  

Since the processing speed of the core is directly proportional to the 
cache capacity of the core, the above statement is true for the data division 
Equations (9) and (10). 

Split data proportional to buffer size. The size of the data divided 
by the caching size ratio of the 𝑖𝑡ℎ component is determined based on the 
caching size ratio of the 𝑖𝑡ℎ core and the size of the data to be processed: 

 
𝐷𝐷𝑖 = 𝑟𝑐 × 𝐷 = 𝑐𝑖

∑ 𝑐𝑖
𝑁
𝑖=1

× 𝐷. (9) 
 
Split data using a combination of two buffer sizes and speed 

parameters. The data size of the 𝑖𝑡ℎ  component is determined based on the 
aggregate ratio of the 𝑖𝑡ℎ  core and the size of the data to be processed: 

 
𝐷𝑖 = 𝑟 × 𝐷 = ( 𝛼 × 𝑟𝑠 + 𝛽 × 𝑟𝑐) × 𝐷. (10) 

 
3.4. Building a multi-threaded model for asynchronization 

optimization. When solving the problem in a multi-threaded model, in 
addition to execution time context transfer time, the system also takes more 
time to synchronize the flows. Thread synchronized time has a great 
influence on system performance. When dividing data, if data processed by 
threads depend on each other, it is imperative to synchronize the flows. 
However, if the data parts are processed by independent threads, there is no 
need for synchronizing; just determine when all flows are done. The 
challenge is how to solve the problem of asynchrony with independent data. 
To solve this problem, we propose organizations of input, output and 
counting variables in the global memory area. Because it is a global 
memory, all threads are retrieved. At that time, the input data will be 
divided into regions with dimensions determined by formulas (4), (9), (10), 
depending on the divisions. The output data also are in global memory 
areas. Each thread stores the input data in the corresponding memory using 
this global memory. The processing process is shown in Figure 8, including 
the following steps: 

• Init(): Function that implements two alarms of data area D as a 
global byte array. 

• Division(D): Divides array D into Di sub-arrays and calculates 

261

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



the number of threads to perform, assigning global variables using the 
number of threads to perform. 

• Multithread(): Execution of threads performed on 1 Array of Di. 
When a thread is done, the global variable decreases by 1. 

• Check (global): Check the global = 0 variable; all threads are 
finished, no synchronizing and ending is required. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8. Processing 
 

4. Experiments 
4.1. Experimental description. To evaluate the proposed method, 

we conduct experiments on the embedded Raspberry PI 3 computer – 
configured as in Table 2 on the embedded computer. We implement the 
encryption algorithms AES, DES, 3DES, etc., installed according to the 
mono-threaded model and multi-threaded model with the data divided 
according to formulas (4), (9) and (10). 

Init() 

Division(D) 

Multithread() 

Check (global) 

+ 

- 

262

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



Table 2. Raspberry PI 3 Embedded computer configuration 

Ingredients Values 

Hardware 

CPU 
64 bit quad-core CPUARM Cortex A53 
processor, 1.2 GHz speed 
4 processors 

RAM 1 GB 

Memory card 32 GB 

Peripheral 
4 USB ports 
HDMI port, full HDMI support 
Ethernet port (or LAN port) 

Software 
OS Raspbian 

Application Python Interpreter 

 
4.2. Experimental system model. The experimental system model 

shown in Figure 9 includes: 
1. Camera: Video obtained from the camera will go to the 

embedded Raspberry computer. 
2. Raspberry embedded computer: The original video received 

from the camera is encrypted and transferred the code to storage on the IoT 
cloud server. 

3. IoT cloud server: Provides API for execution on the mobile 
and the computer via a web browser. 

4. Smartphone: Enforces android app with the server API to 
decrypt video transmitted from the server. 

5. PC: Enforce on a web browser with API from the server to 
decrypt video transmitted from the server. 

To evaluate the method, on the Raspberry, we install the AES 
algorithm, DES, Triple DES (3DES) to encode the video according to the 
single-threaded model and according to the multi-threaded model based on 
the proposed method. The Raspberry has a 4-ed processor with a 
symmetrical architecture, so according to the method developed in previous 
sections, we divide the data into 4 partitions of the same size; each partition 
is enforced in one thread. Experimentally, the program is divided into 4 
threads corresponding to 4 characters. Each thread handles a corresponding 
data area.  

 

263

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



Smart phone

IoT cloud Server

Video

Camera Raspberry

PC

 
Fig. 9. Experimental model 

Table 3. AES encryption algorithm executing time on Raspberry PI 3 

Data size 
(MB) 

Execution Time (ms) Improvement 
rate (%) Single 

threading Multithreading 

1 64.23 35.80 44.26 

2 118.59 61.44 48.19 

4 230.39 112.72 51.07 

8 455.22 216.37 52.47 

16 912.86 416.25 54.40 

32 1851.16 843.74 54.42 

64 3798.15 1629.91 57.09 

Average   51.78 
 
 
 
 
 
 

264

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



Table 4. DES encryption algorithm executing time on Raspberry PI 3 

Data size 
(MB) 

Execution Time (ms) Improvement 
rate (%) Single 

threading Multithreading 

1 90.53 44.19 51.19 

2 177.97 76.67 56.92 

4 347.27 140.28 59.60 

8 699.05 271.78 61.12 

16 1398.91 541.06 61.32 

32 2769.94 1082.18 60.93 

64 5627.24 2136.39 62.03 

Average   57.59 

 
Table 5. 3 DES encryption algorithm executing time on Raspberry PI 3 

Data size 
(MB) 

Execution Time (ms) Improvement 
rate (%) Single threading Multithreading 

1 201.91 72.31 64.18 

2 401.41 135.38 66.27 

4 817.61 264.61 67.63 

8 1617.32 520.43 67.82 

16 3220.44 1169.88 63.67 

32 6431.65 2025.93 68.05 

64 12812 4069.99 68.23 

Average   66.55 

 
4.3. Evaluation of experimental results. The experimental results 

are aggregated in Table 6 and are described in Figure 10. The experimental 
results show an average performance improvement rate of 59.09%. In 
particular, the experimental result with the AES algorithm is 51.78%, DES 
is 57.59%, and Triple DES is 66.55%. The average performance 
improvement rate increases as data size grows. When the data size is small, 
the performance improvement rate is low when using multithreads due to 

265

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



the loss of CPU rotation time between threads and intermediate data 
processing time. However, when the processing data size is large, the rate of 
performance improvements is high and gradually progresses to the 
proportionality to the number of threads. In the proposed model, since it 
does not take time to process data synchronizing between threads, it only 
takes time to divide the original data, so it works well when the data size is 
large. Although it is not only in terms of performance, this model also 
increases the size of the program's occupied memory. 

Table 6. Improvement rate comparison between AES, DES and 3DES 

Data size 
(MB) 

Improvement rate (%) 

AES DES 3DES 

1 44.26 51.19 64.18 

2 48.19 56.92 66.27 

4 51.07 59.6 67.63 

8 52.47 61.12 67.82 

16 54.4 61.32 63.67 

32 54.42 60.93 68.05 

64 57.09 62.03 68.23 

Average 51.78 57.59 66.55 

 

 
Fig. 10. Performance improvement charts 

0
10
20
30
40
50
60
70
80

1 2 4 8 16 32 64

Performance improvement charts 

AES DES 3DES

266

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



During the experiment, we also compared and evaluated the 
performance of data partition and asynchronous processing between the 
three AES, DES, and 3DES encryption algorithms on the same data set size 
1, 2, 4, 8, 16, 64 and as shown in Table 7 and in Figure 11. Out of the three 
algorithms, the execution time of AES is the least and the greater the data 
size, the bigger the execution time discrepancy between the three 
algorithms. 

Table 7. Performance comparison between AES, DES and 3DES 

Data size  
(MB) 

Execution Time (ms) 

AES DES 3DES 

1 35.80 44.19 72.31 

2 61.44 76.67 135.38 

4 112.72 140.28 264.61 

8 216.37 271.78 520.43 

16 416.25 541.06 1169.88 

32 843.74 1082.18 2025.93 

64 1629.91 2136.39 4069.99 

 

 
Fig. 11. Performance comparison between AES, DES and 3DES 

 
The graph in Figure 12 compares the rate of performance 

improvement in the proposed method with other methods [1, 2, 3]  

0

1000

2000

3000

4000

5000

1 2 4 8 16 32 64

Performance comparison between AES, DES and 3DES 

AES DES 3DES

267

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



([2] is 25%, [3] – 21%, [1] – 33.1 %. The recommended method's 
performance improvement rate is also better than the average improvement 
rate as aggregated in studies [1, 2, 3]. 

 

 
Fig. 12. Comparison of some other typical studies 

5. Conclusion and future work. The paper proposes and develops a 
method to improve embedded software performance on multi-core 
processors based on data partitioning and asynchronous processing. The 
issue of performance improvement for embedded software on multi-core 
processors is of high practical significance. Especially, the problems need to 
be handled and ensured information security because this type of data takes 
time to process for data safety. Therefore, the performance improvement 
based on data partitioning and asynchronous processing of the paper meets 
the need of improving the speed of embedded software for data with 
independent divisibility such as block cipher. 

Data are divided into sections proportional to the number of cores, 
the speed of the core and the cache size. Data are declared globally to be 
shared for all threads, so it does not take time to sync and link data. Each 
part of the data is mapped to the corresponding execution threads. Threads 
are performed asynchronously. The proposed method works well, especially 
when the data size is large. A high-performance improvement rate 
compared to previous studies has been shown. 

Despite the positive results, the proposed method still has some 
limitations such as large memory appropriation; ineffective when the data 
size is small; the problem of mapping threads to the corresponding cores; 
the new paper only calculates the data division based on performance at the 

268

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



beginning of execution, and during execution, the performance of each CPU 
core changes is not taken into account. 

As future work, we will continue to improve the method in several 
aspects: expanding the problem to process data in sync; map the execution 
threads to the corresponding cores; and monitor and change the data 
division according to performance at each time when each CPU core has 
finished processing data. 

 
References 

1. Yao, Y. Power and Performance Optimization for Network-on-Chip based Many-Core 
Processors. PhD thesis. KTH. School of Electrical Engineering and Computer Science 
(EECS). 2019.  

2. Lim, G. and Suh, S.-B. User-Level Memory Scheduler for Optimizing Application 
Performance in NUMA-Based Multicore Systems. IEEE 5th International Conference 
on Software Engineering and Service Science. 2014. 10.1109/ICSESS.2014.6933553.  

3. Wei, X., Ma, L., Zhang, H. & Liu, Y. Multi-core, Multi-thread based Optimization 
Algorithm for Large-scale Traveling Salesman Problem. Alexandria Engineering 
Journal 60, 2021, pp. 189-197.  

4. Khalib, Z.I.A., Ng, H.Q. Elshaikh, M., and Othman, M.N., Optimizing Speedup on 
Multicore Platform with OpenMP Schedule Clause and Chunk Size, IOP Conference 
Series. 2020. Materials Science and Engineering 767, 012037.  

5. Lingampalli, S., Mirza, F., Raman, T. and Agonafer, D. Performance Optimization of 
Multi-core Processors using Core Hopping - Thermal and Structural. Proc. of the 28th 
Annual IEEE Semiconductor Thermal Measurement and Management Symposium 
(SEMI-THERM). 2012. pp. 112-117.  

6. Gunther, N.J., Subramanyam, S., and Parvu, S. A Methodology for Optimizing 
Multithreaded System Scalability on Multi-cores. Programming Multi-core and Many-
core Computing Systems. 2011. CoRR abs/1105.4301.  

7. Rengasamy, V., Fu, T.-Y., Lee, W.-C., and Madduri, K. Optimizing Word2Vec 
Performance on Multicore Systems. Proceedings of the Seventh Workshop on 
Irregular Applications. 2017. Architectures and Algorithms. Association for 
Computing Machinery. New York. NY. USA.  

8. Wipe, E., Miller, J.E., Choi, I., Yeung, D. Amarasinghe, S.P., and Agarwal, A. 
Multicore Performance Optimization Using Partner Cores. 2011. in Michael McCool 
& Mendel Rosenblum. 'HotPar'. USENIX Association.  

9. Zhou, Y., He, F., Hou, N., and Qiu, Y. Parallel Ant Colony Optimization on Multi-
core SIMD CPUs. Future Generation Computer Systems 79. 2018. pp. 473-487.  

10. Emmi, M., Lal, A., and Qadeer, S. Asynchronous Programs with Prioritized Task-
buffers. SIGSOFT FSE. 2012. 48.  

11. Emmi, M., Ganty, P., Majumdar, R., Rosa-Velardo, F. Analysis of Asynchronous 
Programs with Event-Based Synchronization ESOP 2015: Programming Languages 
and Systems. 2015. pp. 535-559.  

12. Kornaros, G. Multi-Core Embedded Systems. CRC Press. 2010. Inc., USA.  
13. Bodake, V. and Gawande, R.M. A Review on An Encryption Engines For Multi Core 

Processor Systems. IOSR Journal of Electronics and Communication Engineering 
(IOSR-JECE). e-ISSN: 2278-2834. p-ISSN: 2278-8735. pp. 38-46.  

14. Polychroniou, O. and Ross, K.A. A Comprehensive Study of Main-memory 
Partitioning and its Application to Large-scale Comparison- and Radix-sort. Print 
SIGMOD. 2014. pp. 755–766.  

269

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



15. Schuhknecht, F.M., Khanchandani, P., and Dittrich, J. On the Surprising Difficulty of 
Simple Things: the case of radix partitioning. VLDB. 8(9): 2015. pp. 934–937.  

16. Wu, L., Barker, R.J., Kim, M.A., and Ross, K.A. Navigating Big Data with High-
throughput, Energy-efficient Data Partitioning. Print SIGARCH. volume 41. 2013. pp. 
249–260.  

17. Wang, Z., He, B., and Zhang, W. A Study of Data Partitioning on OpenCL-based 
FPGAs. In FPL. 2015. pp. 1–8.  

18. Ke, Q., Prabhakaran, V., Xie, Y., Yu, Y., Wu, J., Yang, J. Optimizing Data 
Partitioning for Data-Parallel Computing. Hot Topics in Operating Systems (HotOS 
XIII) | May 2011. Published by USENIX.  

19. Cieslewicz, J. and Ross, K. Data Partitioning on Chip Multiprocessors. DaMoN '08: 
Proceedings of the 4th international workshop on Data management on new hardware 
June 2008. pp. 25–34.DOI: 10.1145/1457150.1457156.  

20. Zhong, Z. et al. Data Partitioning on Heterogeneous Multicore and Multi-gpu Systems 
Using Functional Performance Models of Data-parallel Applications in Cluster. 2012. 
pp. 191–199.  

21. Kara, K., Giceva, J., and Alonso, G. FPGA-based Data Partitioning. Proceedings of 
the 2017 ACM International Conference on Management of Data. May 2017. pp. 
433–445. DOI: 10.1145/3035918.3035946.  

22. Zhong, Z., Rychkov, V., and Lastovetsky, V. Data Partitioning on Multicore and 
Multi-GPU Platforms Using Functional Performance Models. IEEE Transactions on 
Computers. Volume 64. Issue 9. Sept. 1 2015. Doi: 10.1109/TC.2014.2375202.  

23. Alanazi, H.O., Zaidan, B.B., Zaidan, A.A., Jalab, H.A., Shabbir, M., and Al-Nabhani, 
Y. New Comparative Study Between DES, 3DES and AES. J. of computing. volume 
2. issue 3. March 2010. ISSN 2151-9617.  

24. Farooq, U. and Faisal Aslam, M. Comparative Analysis of Different AES 
Implementation Techniques for Efficient Resource Usage and better Performance of 
an FPGA. Journal of King Saud University - Computer and Information Sciences. 
Volume 29. Issue 3. July 2017. pp. 295-302.  

25. Sen, K. and Viswanathan, M. Model Checking Multithreaded Programs with 
Asynchronous Atomic Methods. In CAV. 2006. pp. 300–314.  

26. Kidd, N., Jagannathan, S., and Vitek, J. One Stack to Run Them all: Reducing 
Concurrent Analysis to Sequential Analysis under Priority Scheduling. In SPIN ’10: 
Proc. of the 17th International Workshop on Model Checking Software. volume 6349 
of LNCS, Springer. 2010. pp. 245–261.  

27. Lian, X., Huang, Y., Li, Y., and Liu, J. Asynchronous Parallel Stochastic Gradient for 
Nonconvex Optimization. NIPS 2015: pp. 2737-2745.  

28. Alba, E. and Troya, J.M. Analyzing Synchronous and Asynchronous Parallel 
Distributed Genetic Algorithms, Future Generation Computer Systems. Vol. 17. Issue 
4. January 2001. pp. 451–465. 

 
Bui Phuc — Ph.D., Postgraduate student, Vietnam National University. Research interests: 
cyber security, embedded software optimization, software technology. The number of 
publications — 3. phucbh.hvan@gmail.com; 144, Xuan Tu St., 11311, Hanoi, Viet Nam; 
office phone: +84 24 3858 4615. 
 
Le Minh — Ph.D., Dr.Sci., Head of department, Department of information system security, 
Information Technology Institute – Vietnam National University. Research interests: cyber 
security, reliability of information system. The number of publications — 40. 
quangminh@vnu.edu.vn; 144, Xuan Tu St., 11311, Hanoi, Viet Nam; office phone: +84 24 
3858 4615. 

270

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



Hoang Binh — Software engineer, Technological Application and Production One Member 
Limited Liability company. Research interests: mobile and embedded software engineering, 
AIoT, IoT optimization, mobile apps. binhht@teca.vn; 18А, Republic St., 700901, Ho Chi 
Minh City, Russia; office phone: +84-28 3811 0181. 
 
Ngoc Nguyen — Ph.D., Dr.Sci., Professor, Vice-president, Kyoto College of Graduate Studies 
for Informatics (KCGI). Research interests: computer science, software engineering, embedded 
systems & software, machine learning, data mining, information security. The number of 
publications — 114. nn_binh@kcg.edu; 7, Tanaka Monzencho St., 606-8225, Kyoto, Japan; 
office phone: +81 75-711-0161. 
 
Pham Huong — Ph.D., Dr.Sci., Vice dean of the faculty, Faculty of information technology, 
Academy of Cryptography. Research interests: machine learning in information security, cloud 
computing, AIoT and IoT optimization. The number of publications — 30. 
huongpv@actvn.edu.vn; 141, Victory St., 100915, Hanoi, Viet Nam; office phone: +84 24 
3854 4244. 
 
  

271

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



УДК 004.056 DOI 10.15622/ia.21.2.2 
 

Ф.Х. БУЙ, М.К. ЛЕ, Б.Т. ХОАНГ, Н.Б. НГОК, Х.В. ФАМ 
РАЗДЕЛЕНИЕ ДАННЫХ И АСИНХРОННАЯ ОБРАБОТКА ДЛЯ 

ПОВЫШЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ ВСТРОЕННОГО 
ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ НА МНОГОКОДНЫХ 

ПРОЦЕССОРАХ 
 

Буй Ф.Х., Ле М.К., Хоанг Б.Т., Нгок Н.Б., Фам Х.В. Разделение данных и асинхронная 
обработка для повышения производительности встроенного программного 
обеспечения на многокодных процессорах. 

Аннотация. Сегодня обеспечение информационной безопасности крайне неизбежно 
и актуально. Мы также наблюдаем активное развитие встраиваемых IoT-систем. В 
результате основное внимание уделяется исследованиям по обеспечению 
информационной безопасности встроенного программного обеспечения, особенно в 
задаче повышения скорости процесса шифрования. Однако исследованиям по 
оптимизации встроенного программного обеспечения на многоядерных процессорах для 
обеспечения информационной безопасности и повышения производительности 
встроенного программного обеспечения не уделялось особого внимания. В статье 
предлагается и развивается метод повышения производительности встроенного 
программного обеспечения на многоядерных процессорах на основе разделения данных 
и асинхронной обработки в задаче шифрования данных. Данные используются 
глобально для извлечения любыми потоками. Данные разбиты на разные разделы, также 
программа устанавливается по многопоточной модели. Каждый поток обрабатывает 
раздел разделенных данных. Размер каждой части данных пропорционален скорости 
обработки и размеру кэша ядра многоядерного процессора. Потоки работают 
параллельно и не нуждаются в синхронизации, но необходимо совместно использовать 
глобальную общую переменную для проверки состояния выполнения системы. Наше 
исследование встроенного программного обеспечения основано на безопасности 
данных, поэтому мы протестировали и оценили метод с несколькими блочными 
шифрованиями, такими как AES, DES и т. д. На Raspberry Pi3. В нашем результате 
средний показатель повышения производительности составил около 59,09%. В 
частности, наши экспериментальные результаты с алгоритмами шифрования показали: 
AES - 51,78%, DES - 57,59%, Triple DES - 66,55%.  

Ключевые слова: повышение производительности встроенного программного 
обеспечения, многоядерные процессы, многопоточность, разделение данных, 
асинхронная обработка. 
 
Буй Фук Хуу — Ph.D., аспирант, Вьетнамский национальный университет. Область 
научных интересов: кибербезопасность, оптимизация встроенного программного 
обеспечения, программные технологии. Число научных публикаций — 3. 
phucbh.hvan@gmail.com; Суан Туи, 144, 11311, Ханой, Вьетнам; р.т.: +84 24 3858 4615. 
 
Ле Минь Куанг — д-р техн. наук, заведующий кафедрой, кафедра безопасности 
информационных систем, Институт информационных технологий Вьетнамского 
национального университета. Область научных интересов: кибербезопасность, 
надежность информационных систем. Число научных публикаций — 40. 
quangminh@vnu.edu.vn; Суан Туи, 144, 11311, Ханой, Вьетнам; р.т.: +84 24 3858 4615. 
 

272

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ



Хоанг Бинь Тхань — инженер-программист, Общество с ограниченной прикладной и 
технической продукцией - TECAPRO. Область научных интересов: мобильное и 
встроенное программное обеспечение, AIoT, оптимизацию IoT, мобильные приложения. 
binhht@teca.vn; Республика, 18А, 700901, Хошимин, Россия; р.т.: +84-28 3811 0181. 
 
Нгок Нгуен Бинь — д-р техн. наук, профессор, вице-президент, Киотский колледж 
аспирантуры по информатике. Область научных интересов: компьютерные науки, 
разработка программного обеспечения, встроенные системы и программное 
обеспечение, машинное обучение, интеллектуальный анализ данных, информационная 
безопасность. Число научных публикаций — 114. nn_binh@kcg.edu; Танака Монзенчо, 7, 
606-8225, Киото, Япония; р.т.: +81 75-711-0161. 
 
Фам Хуонг Ван — д-р техн. наук, заместитель декана факультета, факультет 
информационных технологий, Академия криптографии. Область научных интересов: 
машинное обучение в области информационной безопасности, облачных вычислений, 
AIoT и оптимизации IoT. Число научных публикаций — 30. huongpv@actvn.edu.vn; 
Победы, 141, 100915, Ханой, Вьетнам; р.т.: +84 24 3854 4244. 
 

Литература 
1. Yao, Y. Power and Performance Optimization for Network-on-Chip based Many-Core 

Processors. PhD thesis. KTH. School of Electrical Engineering and Computer Science 
(EECS). 2019.  

2. Lim, G. and Suh, S.-B. User-Level Memory Scheduler for Optimizing Application 
Performance in NUMA-Based Multicore Systems. IEEE 5th International Conference 
on Software Engineering and Service Science. 2014. 10.1109/ICSESS.2014.6933553.  

3. Wei, X., Ma, L., Zhang, H. & Liu, Y. Multi-core, Multi-thread based Optimization 
Algorithm for Large-scale Traveling Salesman Problem. Alexandria Engineering 
Journal 60, 2021, pp. 189-197.  

4. Khalib, Z.I.A., Ng, H.Q. Elshaikh, M., and Othman, M.N., Optimizing Speedup on 
Multicore Platform with OpenMP Schedule Clause and Chunk Size, IOP Conference 
Series. 2020. Materials Science and Engineering 767, 012037.  

5. Lingampalli, S., Mirza, F., Raman, T. and Agonafer, D. Performance Optimization of 
Multi-core Processors using Core Hopping - Thermal and Structural. Proc. of the 28th 
Annual IEEE Semiconductor Thermal Measurement and Management Symposium 
(SEMI-THERM). 2012. pp. 112-117.  

6. Gunther, N.J., Subramanyam, S., and Parvu, S. A Methodology for Optimizing 
Multithreaded System Scalability on Multi-cores. Programming Multi-core and Many-
core Computing Systems. 2011. CoRR abs/1105.4301.  

7. Rengasamy, V., Fu, T.-Y., Lee, W.-C., and Madduri, K. Optimizing Word2Vec 
Performance on Multicore Systems. Proceedings of the Seventh Workshop on 
Irregular Applications. 2017. Architectures and Algorithms. Association for 
Computing Machinery. New York. NY. USA.  

8. Wipe, E., Miller, J.E., Choi, I., Yeung, D. Amarasinghe, S.P., and Agarwal, A. 
Multicore Performance Optimization Using Partner Cores. 2011. in Michael McCool 
& Mendel Rosenblum. 'HotPar'. USENIX Association.  

9. Zhou, Y., He, F., Hou, N., and Qiu, Y. Parallel Ant Colony Optimization on Multi-
core SIMD CPUs. Future Generation Computer Systems 79. 2018. pp. 473-487.  

10. Emmi, M., Lal, A., and Qadeer, S. Asynchronous Programs with Prioritized Task-
buffers. SIGSOFT FSE. 2012. 48.  

273

_____________________________________________________________________

Informatics and Automation. 2022. Vol. 21 No. 2. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

INFORMATION SECURITY



11. Emmi, M., Ganty, P., Majumdar, R., Rosa-Velardo, F. Analysis of Asynchronous 
Programs with Event-Based Synchronization ESOP 2015: Programming Languages 
and Systems. 2015. pp. 535-559.  

12. Kornaros, G. Multi-Core Embedded Systems. CRC Press. 2010. Inc., USA.  
13. Bodake, V. and Gawande, R.M. A Review on An Encryption Engines For Multi Core 

Processor Systems. IOSR Journal of Electronics and Communication Engineering 
(IOSR-JECE). e-ISSN: 2278-2834. p-ISSN: 2278-8735. pp. 38-46.  

14. Polychroniou, O. and Ross, K.A. A Comprehensive Study of Main-memory 
Partitioning and its Application to Large-scale Comparison- and Radix-sort. Print 
SIGMOD. 2014. pp. 755–766.  

15. Schuhknecht, F.M., Khanchandani, P., and Dittrich, J. On the Surprising Difficulty of 
Simple Things: the case of radix partitioning. VLDB. 8(9): 2015. pp. 934–937.  

16. Wu, L., Barker, R.J., Kim, M.A., and Ross, K.A. Navigating Big Data with High-
throughput, Energy-efficient Data Partitioning. Print SIGARCH. volume 41. 2013. pp. 
249–260.  

17. Wang, Z., He, B., and Zhang, W. A Study of Data Partitioning on OpenCL-based 
FPGAs. In FPL. 2015. pp. 1–8.  

18. Ke, Q., Prabhakaran, V., Xie, Y., Yu, Y., Wu, J., Yang, J. Optimizing Data 
Partitioning for Data-Parallel Computing. Hot Topics in Operating Systems (HotOS 
XIII) | May 2011. Published by USENIX.  

19. Cieslewicz, J. and Ross, K. Data Partitioning on Chip Multiprocessors. DaMoN '08: 
Proceedings of the 4th international workshop on Data management on new hardware 
June 2008. pp. 25–34. DOI: 10.1145/1457150.1457156.  

20. Zhong, Z. et al. Data Partitioning on Heterogeneous Multicore and Multi-gpu Systems 
Using Functional Performance Models of Data-parallel Applications in Cluster. 2012. 
pp. 191–199.  

21. Kara, K., Giceva, J., and Alonso, G. FPGA-based Data Partitioning. Proceedings of 
the 2017 ACM International Conference on Management of Data. May 2017. pp. 
433–445. DOI: 10.1145/3035918.3035946.  

22. Zhong, Z., Rychkov, V., and Lastovetsky, V. Data Partitioning on Multicore and 
Multi-GPU Platforms Using Functional Performance Models. IEEE Transactions on 
Computers. Volume 64. Issue 9. Sept. 1 2015. Doi: 10.1109/TC.2014.2375202.  

23. Alanazi, H.O., Zaidan, B.B., Zaidan, A.A., Jalab, H.A., Shabbir, M., and Al-Nabhani, 
Y. New Comparative Study Between DES, 3DES and AES. J. of computing. volume 
2. issue 3. March 2010. ISSN 2151-9617.  

24. Farooq, U. and Faisal Aslam, M. Comparative Analysis of Different AES 
Implementation Techniques for Efficient Resource Usage and better Performance of 
an FPGA. Journal of King Saud University - Computer and Information Sciences. 
Volume 29. Issue 3. July 2017. pp. 295-302.  

25. Sen, K. and Viswanathan, M. Model Checking Multithreaded Programs with 
Asynchronous Atomic Methods. In CAV. 2006. pp. 300–314.  

26. Kidd, N., Jagannathan, S., and Vitek, J. One Stack to Run Them all: Reducing 
Concurrent Analysis to Sequential Analysis under Priority Scheduling. In SPIN ’10: 
Proc. of the 17th International Workshop on Model Checking Software. volume 6349 
of LNCS, Springer. 2010. pp. 245–261.  

27. Lian, X., Huang, Y., Li, Y., and Liu, J. Asynchronous Parallel Stochastic Gradient for 
Nonconvex Optimization. NIPS 2015: pp. 2737-2745.  

28. Alba, E. and Troya, J.M. Analyzing Synchronous and Asynchronous Parallel 
Distributed Genetic Algorithms, Future Generation Computer Systems. Volume 17. 
Issue 4. January 2001. pp. 451–465. 

274

_____________________________________________________________________

Информатика и автоматизация. 2022. Том 21 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ




