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Fuentes O., Savage J., Contreras L. A SLAM System Based on Hidden Markov Models.
Abstract. Methods of simultaneous localization and mapping (SLAM) are a solution for the

navigation problem of service robots. We present a graph SLAM system based on Hidden Markov
Models (HMM) where the sensor readings are represented with different symbols using a number
of clustering techniques; then, the symbols are fused as a single prediction, to improve the accuracy
rate, using a Dual HMM. Our system’s versatility allows to work with different types of sensors
or fusion of sensors, and to implement, either active or passive, graph SLAM. A graph-SLAM
approach proposed by the International’s Karto Robotics in Cartographer, the nodes represent the
pose of the robot and the edges the constraints between them. Nodes are usually defined according
to contiguous nodes except when loop closures are detected where constraints for non-contiguous
nodes are introduced, which corrects the whole graph. Detecting loop closure is not trivial; in the
ROS implementation, scan matching is performed by Sparse Pose Adjustment (SPA). Cartographer
uses an occupancy map in order to estimate the position where the map representation is done
via Gmapping. The Toyota HSR (Human Support Robot) robot was used to generate the data
set in both real and simulated competition environments. In our SLAM representation, we have
wheel odometry estimate according to initial position of the robot, a Hokuyo 2D Lidar scan for
observations, and a signal control and a world representation is estimated. We tested our system in
the kidnapped robot problem by training a representation, improving it online, and, finally, solving
the SLAM problem.

Keywords: localization, SLAM, robot navigation, mapping, Hidden Markov Model, sensor
fusion, service robot

1. Introduction. Service robots, such as the Toyota HSR [1], are in-
creasingly becoming a part of our everyday life, so the ability to explore,
map, and navigate its surroundings is of the utmost importance. SLAM or
simultaneous localization and mapping is a solution for this problem.

There are many accepted and well studied methods for solving SLAM,
a brief overview of the main paradigms used for solving SLAM is presented on
section 2. Depending on the application, one approach might be better suited
than other. The sensors information available is also an important factor to
decide which approach to use, e.g. Wheel information is an efficient way of
estimating small changes in position, however a drone would not have this
valuable information. Taking into consideration these differences may favour a
SLAM method or type of sensor in a specific environment or even a specific
region in an environment, e.g., a dark corner may be a terrible place to use
image-based methods, on the other hand, a colored flat wall would render little
information to a LIDAR-based one.

We propose a graph SLAM system based on HMM’s (Hidden Markov
Models). Our method can take advantage of several types of sensors measure-
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ments (or sensor fusion) while estimating a graph topological representation.
Dual-HMM allows us to use two different quantizers-simultaneously, effec-
tively fusing data at a symbol level. Furthermore, new nodes can be added
without modifying the graph (modularity). They can be grown or altered
without training an entirely new model.

In summary, our main contributions are:
– A graph SLAM system based on Hidden Markov Models.
– A modular system capable of using a wide variety of sensors and

features.
– An autonomous training method.
– A navigation method capable of obstacle avoidance.
– A robust localization method.
The remaining of the paper is divided as follows. In Section 2 we

present a summary of the SLAM problem and the HMM-based approaches.
Then, in Section 3 we introduce our probabilistic approach to the graph SLAM
problem and in Section 5 we describe the experimental results. Finally, the
main findings are discussed in Section 6.

2. Related Work. The three main SLAM paradigms are Kalman Filter,
Particle Filter and Pose graph based implementations, and all of these can be
found in the most commonly used open-source libraries.

2.1. EKF SLAM. The Extended Kalman Filter SLAM [2,3] is one of
the most accepted SLAM solutions; it consists of three basic operations:

2.1.1. Robot Movement. The agent moves increasing its position un-
certainty due to odometry errors.

St ←− f (st−1,u,n),

where:
– f - motion model,
– St - state of the robot at time t,
– u - control signal,
– n - noise.
2.1.2. Discovery. The agent finds new interesting landmarks, which

need to be referenced. The position uncertainty and sensor error readings are
modeled using an inverse observation model i.e. where a landmark is in the
map, given the scene seen by the robot.

Li = g(St , O⃗t ,yi),
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where:
– g , Direct Observation model,
– Li - i-th landmark,
– St - robot state at time t,
– yi - measure of i-th landmark.
2.1.3. Re-Discovery. The agent finds a previously mapped landmark

and re-estimates both its position and landmark position.
The extended Kalman filter has a “stage” for each of the above opera-

tions, making it a useful estimator for propagating the uncertainty related to
the three mentioned actions.

yi = h(St , O⃗t ,Li),

where:
– h - Indirect Observation model.
The map representation itself is a matrix that stacks vectors of all

mapped landmarks on any given robot state

map =


S
L1
.
.
.

LI

 ,

where:
– S - robot state.

2.2. Particle Filtering. One of the most important characteristics of
this SLAM approach is the building of an occupancy grid map. This map is
later used to achieve localization with solutions similar to de EKF filtering,
hence the name Filtering in Particle Filtering. Localization is achieved with
Adaptative Monte Carlo Localization AMCL, a member of Markov localization
algorithms. Murphy [4] et al. proposed Rao-Blackewllized Particle Filters as a
SLAM solution; the key idea of the Rao-Blackwellized particle filter for SLAM
is to estimate the joint posteriori P(⃗xt ,m | z⃗t , u⃗t−1). The Rao-Blackwellized
particle filter for SLAM makes use of the following factorization:
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P(x1:t ,m | z1:t ,u1:t−1) = P(m | x1:t ,z1:t)P(x1:t | z1:t ,u1:−t−1),

where x is the pose of the robot, m is the map, Zt are the observations at time t,
and Ut is the control signal.

Importance Sampling Filters (such as Sequential Importance Resam-
pling or SIR) are employed to estimate the posterior P(x1:t | z1:t ,u1:−t−1), as
mentioned by Grisetti et al. in [4], where "each particle represents a potential
trajectory of the robot. Furthermore, an individual map is associated with
each sample. The maps are built from the observations, and the trajectory
represented by the corresponding particle".

2.3. Graph SLAM. According to Grisseti et al., "one intuitive way of
formulating SLAM is to use a graph whose nodes correspond to the poses
of the robot at different points in time and whose edges represent constraints
between the poses" [6].

From a probabilistic point of view, SLAM can be represented with a
sequence of random variables as X (robot pose), M (map features), Y (sensor
readings), and U (robot motion). To solve the SLAM problem, we simply use
the maximum a posteriori probability:

P(Xt ,M | Yt ,Ut ,x0),

for each time step t.
There has been a lot of work on solving this estimation problem [6] [7].

However, special attention has been given to [8], where the authors apply
variable elimination techniques to reduce the dimensionality of the optimization
problem. In the work presented in [9], a solution to the active SLAM problem is
proposed "in scenarios in which some prior information about the environment
is available in the form of a topo-metric graph".

2.4. ROS SLAM. Asmentioned before, many state-of-the-art solutions
can be found as open-source libraries in popular frameworks such as the
Robot Operating System (ROS). Here, we present some of the most popular
implementations.

2.4.1. Gmapping. Gmapping [10] is based on Rao-Blackwelized Par-
ticle Filters proposed by Grisetti et al. in [11]. Particle Filters are a known
application of Bayesian Filters in which a large number of importance weighted
particles represent the a-posteriori probability; a probabilistic occupancy grid
is used as a map representation, and AMCL, Adaptative Montecarlo Localiza-
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tion, is used for localization in this map – AMCL is a member of the Markov
localization algorithms family.

2.4.2. HECTOR SLAM. HECTOR SLAM does not use odometry
information for the localization; it rather uses high update rates and low distance
measurements to estimate the robot movement. A version of ICP is used to
estimate the pose between samples and maintain the robot pose estimate.

2.4.3. CARTOGRAPHER. A graph-SLAM approach proposed by the
International’s Karto Robotics in [12] – in Cartographer, the nodes represent
the pose of the robot and the edges the contraints between them. Nodes are
usually defined according to contiguous nodes except when loop closures are
detected where contraints for non-contiguous nodes are introduced, which
corrects the whole graph. Detecting loop closure is not trivial; in the ROS
implementation, scan matching is performed by Sparse Pose Adjustment (SPA)
[13]. Cartographer uses an occupancy map in order to estimate the position
where the map representation is done via Gmapping.

As we can see from this brief review, some methods are better suited
for specific tasks or robot architectures. Our research is based on the idea that
each method has its strengths, and we propose a method that, focusing on the
versatility of application, tries to take some of the advantages inherent to these
methods.

3. HMM-based graph-SLAM. We propose a versatile graph-slam
system based on Hidden Markov Models; the goal is to estimate a topographic
graph given noisy sensor measurements and pose estimates. In this section we
will briefly describe the core concepts in our implementation.

3.1. Hidden Markov Models. A Hidden Markov Model (HMM) is
a two random variable stochastic process in which only one of the random
variables is directly observable. In its discrete version, and provided theMarkov
property [14] is fulfilled, the system dynamics is fully defined by a transition
matrix A, an emission matrix B, and, optionally, an initial conditions vector π⃗ .

ai j = P(St = s j | St−1 = si) ,

A =


a11 a12 ... a1N
a21 a22 ... a2N
a31 a32 ... a3N
. . . .

aN1 aN1 ... aNN

 ,
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b j(k) = P(Vk | qt = S j),

B =



b11 b12 ... b1M
b21 b22 ... b2M
b31 b32 ... b3M
. . . .
. . . .
. . . .

bN1 bN1 ... bNM


,

λ = [A,B, π⃗] .

We propose the hidden random variable to represent the pose of the
robot, and the observable variable will be a discrete representation (quantiza-
tion) of the sensormeasurements. The dynamic programming based algorithms’
family related to HMM’s [15] provide efficient estimations to probabilities
related to the localization problem.

Our approach on Markov localization uses a discrete code-book to
represent the sensor’s readings. The symbolic representation of the readings
allows for any sensor or fusion of sensors to be used as observations. Local-
ization is achieved, as any other Markov localization approach, by estimating
the probability of being on state St = sn given a last known state St−1 = sn, a
sensor(s) observation symbol Ot =Vk, and a control signal U(t). The 2D pose
state space is defined by the tuple ⟨x,y,θ⟩.

For each time step t, random variable S can take the value of a discrete
set of N states; similarly, the observations of each time step will be a member of
the discrete code-book observation set of K symbols V . Control signal U(t) is
assumed constant, and only an on-off signal for the potential fields autonomous
navigation system is necessary, as follows:

St−1 = sn,Ot =Vk,U(t) = u.

An action set is used for the active slam pose belief exploration. The
planning path is then obtained using a search algorithm like Dijkstra or A*.
Pose traces are proposed, so given a state belief and an action the most likely
future state is estimated.

The algorithms typically associatedwith HMM’s can efficiently estimate
this probability using dynamic programming. Even though a number of states
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in the models are reported as fixed, it was done to have uniformity between
models, since models are modular and can easily be connected to form a
global model, similar to sub-maps in Cartographer. The balance between
computer costs and accuracy can be fine-tuned with the number of states, and
the observations code-book size.

The resulting representation of the environment is a symbolic pose
graph, where each node or state is the centroid of the free region surrounding
it; orientation is also accounted for with a scaling factor. The HMM model
is completed by recording all the observations in the code-book sensed while
the agent is at any given state. As the agent acquires more information by
exploration, new states are formed, or the existing ones are moved to account
for new data, eventually including all the explored areas. The number of total
states is a hyperparameter of the model, and it can be seen as a scale factor to
be used. The more states in which free space is divided, the more accurate the
correction is at the expense of more computational expenses.

One of the main advantages of the method is adaptability, since it can
use any sensor or fusion of sensors. As briefly mentioned above, observations
are not used directly. A symbol, part of a discrete data set, is used to represent
sensor readings. This quantization of readings allows the method to be used
with various sensors, different sensor coding, or even sensor fusion. In HMM
terms, we have various emission matrices for each transition matrix. We
perform estimation on various models, each related to each sensor, or fusion
of sensors. The model likelihood given a set of observations is easy to obtain
with HMM algorithms like Forward Algorithm, (eq. 2 ) and its Backward
counterpart,(eq. 3); and it is used as a metric to decide which model to use on
a specific area. A lidar will gather more information from a dark corner, while
a camera would do better on a long hallway with distinctive visual landmarks.
Computational cost is in the order of N2T (eq. 4 ). However, the number of
states rapidly increases the computational cost, "the curse of dimensionality",
where the direct calculations without dynamic programming algorithms are in
the order of NT (eq. 1).

P(O⃗ | λ ) =
S

∑
j=1

(
πs1

i=T

∏
t=1

ast .st+1bst−st+1(oi)

)
, (1)

αt+1(i) =
N

∑
i=1

(αt(i)ai, j)b j(ot+1), (2)

βt(i) =
N

∑
i=1

(ai, jb j(ot+1)βt+1( j) , (3)
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P(O⃗ | λ ) =
N

∑
i=1

αt(i)βt(i). (4)

Finally, localization is performed using the Viterbi algorithm; this al-
gorithm estimates the most probable sequence of states given a sequence of
observation symbols. The model with maximum likelihood is obtained with
the Forward Algorithm. The most likely model given the readings is used in
the Viterbi algorithm, with max

[
P(⃗S | λ , O⃗)

]
being the discrete representation

of the space in which each state is the closest centroid to the robot state at the
time of sensor capture. The size of the free region represented by each state is
variable, but it is kept to a small enough area to make wheel odometry reliable.
The transitions between states happen on well-defined regions normally dis-
tributed around a transition point. The most frequent transition point between
states is used as a "reset" wheel odometry according to that point. Similarly to
cartographers’ sub-maps, wheel odometry is reliable in small regions.

4. Implementation. We have presented all the components of the sys-
tem we propose in a very general way. Now, we will show some interesting
implementations using those components. It is important to mention that a
map is not necessary for our method but, if one is available or needed, given
that our method deals with the same probabilities as the particle filter used in
AMCL [16], it is possible to use Rao-Blackwellization. Furthermore, as our
training methods create a decent grid estimation, whether using a map or not
is greatly dependant on the application and error scale needed.

In our implementation, a global reference frame is created. However,
global mapping based on iterative closest point (ICP) methods is also a possi-
bility we explored in some regions, especially when a high.

In our SLAM representation, we have wheel odometry estimate accord-
ing to initial position of the robot, a Hokuyo 2D Lidar scan for observations,
and a signal control and a world representation is estimated. The HMMModel
is trained as follows.

4.1. Training. Short exploration runs are conducted, gradually restart-
ing to a known value, like an entrance or a recharging station; this episodic
learning approach makes the wheel odometry reliable. The duration of the
episodes is such that wheel odometry is reliable. The control signal in explo-
ration mode is an on/off signal enabling a reactive potential fields behavior [17].
Some additional constraints are added to the behavior, as mentioned in our
previous work [18], like an exploratory turn every given time sample, or an
artificial attraction towards doors.
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Model training is done with a labeled training set. This training set
is formed by a vector O⃗t that contains all the 720 laser readings from a laser
sensor and an odometry-based pose vector or hidden state Sk.

Baum-Welch [15] is the most commonly used method for the HMM
model estimation. It is an elegant approach that calculates the optimal model
parameters given the observations; it is also an Expectation-Maximization
(EM) algorithm [19]. The optimization is done by maximizing the Likelihood
of the Model given some readings. The most common training method is used
offline and will serve as an initial estimation for our method. We maximize the
likelihood of the model given some observations (training set). An auxiliary
variable ξ is defined.

ξt(i, j) = P(st = i,st+1 = j|ot ,λ ),

ξt(i, j) =
αt(i)ai jb j(oT+1)βt+1( j)

P(o|λ )

=
αt(i)ai jb j(oT+1)βt+1( j)

∑
N
i=1 ∑

N
j=1 αt(i)ai jb j(oT+1)βt+1( j)

,

γt(i) =
N

∑
j=1

ξt(i, j),

T−1

∑
t=1

γt(i) = ST
i ,

where ST
i is the number of transitions from Si over T time steps.

T−1

∑
t=1

ξt(i, j) = ST
i j,

where ST
i j is the number of transitions from Si to S j over T time steps.

ˆai, j =
ST

i j

St
i
=

∑
T−1
t=1 ξt(i, j)

∑
T−1
t=1 γt( j)

,

ˆbi(k) =
∑

T
t=1 1ot=vk γt( j)

∑
T
t=1 γt( j)

.
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This variable can be easily represented with the Backward and Forward vari-
ables, as follows [15] uses ∑

T
t=1 1ot=vk to represent number of times Vk is seen

in state j.
We also use a gradient descent implementation of the Baum-Welch

algorithm [20] to keep optimizing the model online. This can introduce subtle
changes when the environment changes or when a new area is mapped and
added to the global model. A mini-batch approach can also be used to re-
estimate the model every time a batch buffer is filled. Each new reading
contributes to an infinitesimal change in its respective row and column in the
transition matrix. Note from eqs. 5 and 6 that changes only happen on the row
and column related to the reading. The least frequent poses will be absorbed by
the more frequent (desired) readings. This online process allows aligning the
new readings and reinforcing the optimal values given a space and obstacles
configuration into the matrix.

∂P
∂ai j

=
T

∑
t=1

αt(i)b j(Ot+1)βt+1( j), (5)

∂P
∂b j(Ot)

=

 δ j1β1( j) t = 1
N
∑

i=1
αt−1(i)bi j(Ot+1)βt( j) t ̸= 1

. (6)

Due to the low complexity for estimating a model and, later on, nav-
igating the model to obtain information, it is possible to use several models
simultaneously; this allows us to add new nodes (i.e. states) to the model
without the need to re-estimate the whole model.

In case autonomous mapping is not required, and human interaction is
used to "explore" the scene, the model will benefit from different strategies,
and active policy estimate can be obtained. Again, versatility is an important
characteristic of our method. Regardless of how the training set is obtained and
the model estimated, that is, either offline, online , batches, etc., an HMM is
obtained with the Baum-Welch algorithm. Figure 1 shows a topological node
graph obtained from the transition matrix of the proposed HMM after online
navigation. Results found in Section 5 and Figure 10 and Figure 11 show this
process in a standard competition arena where an apartment is explored, and
an initial graph is estimated; the green arrows represent the state <x,y,θ>. The
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background image is just a reference for illustrative purposes since the map is
not being used.

Fig. 1. Topographical graph representation, obtained from the transition matrix of the
HMM trained. Graph is created with the states corpus (2D poses) shown as green

arrows

4.2. Observations. Observations used for the estimation of the HMM
are quantized (and finite) in nature, so the method used for the quantization
or the kind of the sensor itself is not important as long as we use a finite
code-book to represent them. We explored various observation alphabets for
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the code-book where Lidar readings were treated using different clustering
techniques, namely K-means and affinity propagation (Figure 2).

Fig. 2. Apartment scene with its corresponding Hokuyo Lidar reading

Some experiments were also done by fusing LIDAR and 2D images
features obtained with Resnet [21] architecture. The final pose estimator
efficiency greatly depends on good readings. "A good reading is that which
can be re-observed, and one easily differentiates from other reads" [22].

4.2.1. Lidar. K-means (or mini K-means in this case) works well when
a large amount of data is used. The low occurrence of outliers takes them
out of the estimation; however, highly repeated values will "skew" the means
resulting in some information loss. A different algorithm is proposed (Affinity
Propagation) [23] to quantize the laser readings based on their similarity,
rather than their frequency of appearance. A dual HMM is introduced, which
estimates independently using code-books from each clustering algorithm,
and trusting only matching estimates obtained independently by each model.
A block diagram of the proposed DUAL HMM architecture can be seen in
Figure 3 . The statistical characteristics of most readings are quite similar. This
similarity enables the usage of affinity propagation clustering techniques to
generate more heterogeneous clusters; however, the drawback is the lack of
scalability when there are many samples. On the other hand, K-means works
well with large data sets and being a Euclidean distance approach, it can be
used online (with the previous centroids).

In sum, we use measurement symbols as anchors of information and
depending on the sensor’s nature, on the environment conditions, and even on
the route, one kind of symbol generation might result in a better performance.

A robust SLAM system should benefit from all symbol representations;
Sensor Fusion [24] is used in this way, yet we propose a much simpler approach:
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Fig. 3. Block diagram of the proposed DUAL-HMM system

Dual-HMM. In our experiments, we use two different features extracted from
the same observations vector, but this applies to any kind of observation.

Figure 4 shows a common scene of a service robot, and on the right side
is an example of a typical lidar measurement in green; the centroid obtained
with K means in orange and the Affinity Propagation exemplar in green.

Fig. 4. Example of a Hokuyo typical reading (blue) with its K-means centroid (orange),
and affinity propagation exemplar (green)

The final pose estimator’s efficiency greatly depends on good readings
"a good reading is that which can be re-observed, and one easily differentiates
from other readings" [22]. K-means (or mini K-mean, in this case) works well
when a large amount of data is used since the low occurrence of outliers takes
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them out of the estimation; however, highly repeated values will skew the
means. Affinity Propagation [23] is another clustering algorithm, and it was
used to quantize the Hokuyo readings based on their similarity rather than
their frequency of appearance. Figure 5 shows K-means information loss in the
most observed symbol. In comparison, Figure 6 shows the symbols assigned
by the more computationally expensive Affinity Propagation to a series of new
readings.

Fig. 5. Most common read and 10 samples clustered in the same K-means alphabet
symbol

In our approach, a dual HMM makes independent estimates using
symbols from each clustering algorithm. Although there are other methods
to achieve sensor fusion, in our proposal, we use a simple symbol level data
fusion.

4.2.2. Resnet feature extraction. Another observations alphabet was
quantized by getting an observation vector O⃗t from the last layer of a Resnet
50 CNN (Convolutional Neural Network). Such vectors were quantized into
an alphabet and their respective emission matrix estimated. All models share
the same transition matrix. Results reported in section 5 show models using
the fusion of a Resnet symbol with a lidar K-means symbol.

4.3. Localization. Once a model, or several models, are found, it is
possible to estimate the robot’s pose with a set of past observation symbols
O⃗=Vt ,Vt−1, ...,Vt−M . The most direct approach is to the Viterbi algorithm [25]
that takes a sequence of quantized observations O⃗, an HMM model λ , and
an initial conditions vector π⃗ , and yields the most probable state sequence
traversed by the system given the observations and HMM model.
194 Информатика и автоматизация. 2022. Том 21 № 1. ISSN 2713-3192 (печ.) 

ISSN 2713-3206 (онлайн) www.ia.spcras.ru

_____________________________________________________________________ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ



P1 = πi ·bi(o1),

Pt( j) = max
1<i<N

[Pt−1(i) ·ai j] ·b j(oT ),

St( j) = arg max
1<i<N

[Pt−1(i) ·ai j] ,

P
(

S⃗ | O⃗,λ
)
.

The length M of this observations vector is called the Viterbi buffer, and
it is a hyperparameter that should be trained to optimize the models. Forward
and Backward algorithms are used to find the most common state sequence
and the probabilities of being in a specific state given the observations.

4.4. Pose Correction. Wheel odometry is an easy way to estimate
a pose with the information from the wheels and the control signals. This
estimation is reliable in the short term because a small error – due to slips
and control noise – is accumulated over time, i.e. a reference point must be
maintained. The accumulated error makes the estimation unreliable in the long
run; this error is normally distributed [26] so, it is possible to characterize a
particular floor-wheel interaction odometry error.

In our proposal, wheel odometry is corrected by resetting the reference
point where the correction is made when a state transition is detected via the

Fig. 6. Most common read and 10 samples clustered in the same affinity propagation
alphabet symbol
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Viterbi algorithm. It is easy to observe from the training set that the transitions
from one state to another usually happen approximately in the same pose
value, i.e. transitions happen in a normally distributed point with the same
distribution as the wheel odometry error; this value is used as the correction
value on trusted transitions. Wheel odometry can be trusted inside the small
region related to a specific state or centroid or time interval.

Figure 7 shows in green the position estimate of the Wheel odometry
in a run traversing through two states; black points show the real pose of the
robot. Two independent HMM’s correct the position according to their own
estimates – it can be seen in the upper part both models estimate the same pose,
and correction is the same.

Fig. 7. Real pose in black and three different pose estimation methods. Wheel odometry
in green, a single HMM (K-means) in blue and single HMM (aff.prop.) in blue

4.5. Navigation. After the training process, the possible states of the
system are represented with the pose centroids corpus; the topological map
used by the Dijkstra algorithm is a version of the HMM’s transition matrix.
We propose different kinds of nodes; some of them are bidirectional, others
one-directional, some others only landmarks used to re-estimate the position.
This is called labeling in some literature relating to HMM and must not be
confused with the labeling of the training set. Again, the graph nodes (or pose
centroids) are re-estimated online with each reading, and they tend to align with
the optimal route as the robot navigates by being attracted to a single centroid
at a time (virtual attractor). Dijkstra route will be then a path containing the
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sequence of centroids to visit to get from a current position to a goal. Potential
fields reactive behavior is used to sequentially visit these virtual attractors
while avoiding unmapped or dynamic obstacles. Figure 8 shows a sequence
of images of the robot traversing a path made of such attractors – the control
signal is simply an on/off signal, and the robot is either trying to get to the next
attractor or it is static on a fixed position.

Fig. 8. Different moments of reactive navigation through a route formed by virtual
attractors. Route is produced after planning using Dijkstra to navigate the joint

transition matrix of the Dual-HMM

5. Experiments. We present results using a Gazebo simulated home
environment, a typical indoor setting for service robots [27]; even though a
map is provided with the simulated environments, we do not use it in our
SLAM tests, except for Figure clarity.

5.1. Benchmark. We use a benchmarking method proposed in [32]
to compare our models. Dieter et al. propose "a metric for measuring the
performance of a SLAM algorithm not by comparing the map itself but by
considering the poses of the robot during data acquisition". As mentioned, a
map might be useful for human interaction, and feature comparison, but there
are many other representations that can work as a "map" and, although our
method could be used to build an occupancy grid with gmapping, the map
itself is not required for our SLAM method, and is only presented for clarity.

The proposed metric also allows to compare methods that use a map
with others that do not since it only relies on estimates of the trajectory of the
robot given by a set of poses where the observations are taken.

5.2. Training. First, the robot roams the environment reactively and, at
the same time, registers wheel odometry and laser measurements at every time
step. In order to make wheel odometry reliable, episodes are run among known
fixed locations like doors or furniture, or in short periods of time – this serves
as ground truth comparisons for the localization task and odometry correction
metric.
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Once enough training data is obtained (around 15k samples in our ex-
periments), two HMM’s are calculated, both HMM’s share the same transition
matrix and, as a consequence, the same topological representation; each HMM,
however, uses a different code-book to represent the observations (K-Means
and affinity propagation, respectively). Each code-book favors different world
areas, so dual representation or sensor fusion can be applied; however, we
opted for a dual HMM. The dual approach ensures that only correct estimates
are used for correction; as a consequence, wheel odometry is corrected only
when both HMM’s yield the same estimation given the observations.

The pose can come either from regular uncorrected wheel odometry
or, ideally, corrected odometry. In the simulations, Gaussian noise with the
parameters obtained from the real robot was added to the ideal training set as a
data augmentation pre-processing technique.

Additionally, to test the results of the different models we later perform
around 100 sample runs in the arena with no initial information and random
routes.

In Figure 9, an example run is shown. Pink points represent older real
poses (still unreliable since no initial conditions are used for estimation) and
yellow points are poses with a big enough buffer to be reliable. The Figure
shows an example of a correct estimation, this problem is commonly known as
Kidnapped Robot [30], meaning no initial conditions information is used for the
estimates; however, once a correct estimation is made initial, state probabilities
are available for further estimates, greatly improving accuracy. Green dots
represent the poses centroids, i.e. the corpus of the HMM hidden variable X,
and blue and red dots represent real and estimated hidden states, respectively.
Wheel odometry correction is not applied at this stage, and accuracy is tested
with the quantized states, not the real odometry, i.e. correct estimations on the
HMM’s with no initial conditions π⃗ .

5.3. DUAL-HMM. The simple HMM using K-means Lidar alphabet
was enough for the WRS tasks but, in order to test various data fusion schemes,
a dual HMM is trained with the same training set – dual HMM uses both
Lidar alphabets where the K-means and the Aff. Prop. symbols create each an
emission matrix for the same transition matrix. Finally, a fused data model is
proposed where the alphabet code-book is the fusion of 2D Lidar readings with
the normalized features obtained from the Resnet CNN. Even though some
information can be obtained this way, it is highly correlated with the random
starting point because, by nature, there are regions with better features than
others and, even using initial information, no significant improvement to the
model is found.
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In our experimental setup, the considerable computer expenses related
to CNN’s do not make it worth it to solve the robot relocalization problem, since
accuracy does not improve significantly. This fusion may favour a different
application, robot configuration or environment, and, since we show data
fusion using different code-books, it is included in this work as a possible
configuration for visual SLAM.

5.4. Modularity and Online Improvement. To show modularity, we
use a multiple room environment. New graphs (or states) can be added after an
initial HMM was found, or even a completely new HMM for each room; there
is no need to retrain the whole model, as our previous research suggests [18].
Figure 10 and Figure 11 show the centroids aligning closer once enough online
training had taken place. Online training yields a more structured and organized
topological representation of the explored environment (shown in Figure 11),
i.e. the topological representation keeps improving as the robot successfully
navigates it thanks to on-line Baum Welch algorithm. Figure 10 and Figure 11
show the topological graph representation before and after online improvement.

Fig. 9. An example run with a correct estimate and no initial conditions information
traversing three states. State corpus in green, estimates on red and blue, beginning of

the test run in pink
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5.5. Pose Correction. A different virtual environment was used to
validate wheel odometry correction. The reality gap is broken since the training
data obtained from the model was used to navigate the real world arena, both
used in the World Robot Summit 2018 and 2020 (WRS) competitions. Figure
12 and Figure 13 show the arena and the topological graph found.

Fig. 10. Initial topological representation of the environment as obtained from off-line
training

Fig. 11. A more structured and organized topological representation of the explored
environment, thanks to on-line training

200 Информатика и автоматизация. 2022. Том 21 № 1. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

_____________________________________________________________________ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ



Fig. 12. World Robot Summit arena with the proposed topological graph representation

Fig. 13. WRS arena HMM representation Topological Map graph

201Informatics and Automation. 2022. Vol. 21 No. 1. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

_____________________________________________________________________ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING



Fig. 14. Comparison with known initial location of Wheel Odometry estimate with
known initial conditions in green , Dual-HMM pose estimate in red. Each of the dual
single components observations K means in orange and Affinity Propagation in blue.

Real trajectory shown in black

Fig. 15. Absolute pose error of Figure 14

Again, the robot was trained by acquiring the training set on a potential
fields autonomous exploration run. Since the dimensions of the arena made
wheel odometry reliable enough, the whole arena was modeled in the same
HMM transition matrix (Figure 13).

The test runs shown do not use initial state information (kidnapped
robot); however, this initial information is available after a good estimate, and
could be used for maintaining the agent’s pose estimate.

Such a case is shown in Figure 14 where a comparison between the real
trajectory and the components (K-means in orange and Affinity Propagation in
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blue) of dual HMM, as well as dual HMM in red; the real trajectory is displayed
in black.

In case a good enough current initial position is known, wheel odometry
is a very goodway to estimate pose; once error starts growing, it can be seen that
Dual HMM keeps pose estimates better aligned on the long run. It is important
to note that HMM has a small quantization error on the first estimation because
there is no initial information, and as such no initial transition, just the centroid
of the hidden state is available in the first kidnapped robot estimate. A much
longer run is shown in Figure 16 to further illustrate this idea. Figure 15 and
Figure 17 report the absolute error in pose estimate over time.

Fig. 16. Same initial conditions than Figure 14 but a much longer run. Wheel
odometry in green clearly diverges while Dual-HMM in red remains operational

trough the whole run

Fig. 17. Absolute pose error of a long run
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5.5.1. Kidnapped robot. The wheel odometry has no initial informa-
tion, and no way to re-estimate its real position, so the error keeps growing as
time goes on, unlike the dual HMM odometry; as the agent continues to move
it keeps traversing reliable states and correcting its pose. Results shown in
Figure 18 and Figure 19 suggest that the kidnapped robot problem was solved
once enough time to traverse a trusted transition had elapsed; however, if wheel
odometry pose has initial conditions, it is a better estimate for the first few time
steps.

Fig. 18. In case wheel odometry has no initial information

Fig. 19. Absolute pose error of run with unknown initial conditions

5.5.2. Catastrophic Event. An example run before such an event is
shown in Figure 20. It can be seen in Figure 21 that the wheel odometry error
is smaller than the quantization error. Then, in Figure 22, the beginning of a
catastrophic event that greatly increases wheel odometry error is shown. Such
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error is can be seen in Figure 23; however, dual HMMSLAM can re-estimate its
pose after traversing a reliable transition, since the system resets its odometry
to a known transition value, remaining operational on the long run as shown in
Figure 24 and Figure 25.

Fig. 20. Wheel Odometry and Dual-HMM error. Event start. In black the real pose
sequence, green is wheel odometry with initial conditions, in red the Dual-HMM,

which has a quantization error at the beginning of the run before a catastrophic event

Fig. 21. Absolute pose error of wheel odometry and Dual-HMM. Both errors are
relatively small, it is interesting to see how after a few time steps Dual HMM error is

similar

6. Conclusions and Future Work. We proposed a SLAM method
based on Hidden Markov Models which generated a modular graph represen-
tation of the environment; once the model was calculated, the kidnapped robot
problem was solved in a number of environments using 2D sensor readings as
observations.
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Fig. 22. Wheel Odometry in green and Dual-HMM in red during Event

Fig. 23. Wheel Odometry and Dual-HMM error during Event

Fig. 24. Wheel Odometry and Dual-HMM estimates after Event
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Fig. 25. Wheel Odometry and Dual-HMM error after Event

Also, although it was not shown here, the localization system remained
operational during different home service tasks that required robot navigation
in crowded environments. The experiments suggest that SLAM was performed
successfully; it is important to notice that the online implementation of the
algorithms made it possible for real-time optimization of the graph representa-
tion.

The same measurements were quantized combining different symbols
from the same source using two clustering methods.

The same principle could also be applied to a wide variety of sensors or
different features extracted from the same sensor measurements. This makes
our system not only robust but also versatile, as it can be easily adapted to use
a wide variety of sensors and action policies.

Future research is being conducted with aims in an active SLAM im-
plementation using sensor fusion of laser, 2D image features, CNN extracted
features, and 3D map features (octomaps [31]). At the same time, the optimal
action policy to navigate the environment will be found using Q-learning or
other appropriate reinforcement learning techniques.
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О. ФУЭНТЕС, Х. САВАЖ, Л. КОНТРЕРАС
СИСТЕМА SLAM, ОСНОВАННАЯ НА СКРЫТЫХ МАРКОВСКИХ

МОДЕЛЯХ

Фуэнтес О., Саваж Х., Контрерас Л. Система SLAM, основанная на скрытых
марковских моделях.

Аннотация. Методы одновременной локализации и картографирования (SLAM)
являются решением проблемы навигации сервисных роботов. Мы представляем графовую
систему SLAM, основанную на скрытых марковских моделях (HMM), где показания датчи-
ков представлены различными символами с использованием ряда методов кластеризации;
затем символы объединяются в один для повышения точности с использованием двойных
HMM. Универсальность нашей системы позволяет работать с датчиками разных типов
или комбинировать датчики, а также реализовать активную или пассивную графовую
систему SLAM. В подходе Graph-SLAM, предложенном Karto Robotics International в
Cartographer, узлы представляют положение робота, а ребра представляют ограничения
между ними. Узлы обычно задаются по непрерывным узлам, за исключением случаев
обнаружения замыкания цикла, когда вводятся ограничения на несмежные узлы, что
корректирует весь граф. Обнаружение цикливания не является тривиальным; в реализации
ROS сопоставление сканирования выполняется с использованием регулировки положения
разреженности (SPA). Картограф использует карту занятости, чтобы оценить положение,
в котором карта отображается с помощью Gmapping. Робот Toyota HSR (Human Support
Robot) использовался для создания набора данных как в реальных, так и в смоделированных
условиях соревнований. В нашем представлении SLAM есть оценка одометрии колес в
соответствии с начальным положением робота, 2D-лидарное сканирование Hokuyo для
наблюдений, а также контроль сигналов и оценка карты окружающего пространства. Мы
протестировали нашу систему в задаче о похищенном роботе, обучили начальную модель,
затем улучшили ее в онлайн режиме и, наконец, решили задачу SLAM.

Ключевые слова: локализация, SLAM, навигация робота, картографирование, скрытая
марковская модель, датчик.
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