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Abstract. A peak effect minimization problem in the free motion of linear systems is
considered in the paper. The paper proposes an iterative procedure for the peak effect minimization
using a combination of the recently proposed gramian-based approach and the theory of using the
condition number of an eigenvectors matrix for the upper bound estimations of the system state
processes.

Minimization of control costs is based on the analysis of the singular value decomposition of a
gramian of control costs, followed by the formation of major and minor estimations of the gramian.
Minimization of peak effect in the trajectories of free movement of systems is carried out by
minimizing the condition number of the eigenvectors matrix of the matrix of a stable closed-loop
system, while the state matrix with the desired eigenvalues and eigenvectors is designed with
the generalized modal control. The development of an iterative algorithm for the peak effect
minimization in the trajectories of linear systems under any non-zero initial conditions with
restricted control is based on an aggregated index. The index takes into account both the estimate
of the gramian of control costs and the condition number of the eigenvectors matrix of the stable
closed-loop system. Minimization of the aggregated index makes it possible to ensure minimal
deviations in the trajectories of free movement of systems of the considered class.

The procedure is applied to a system of two satellites with restricted control, where peak
effects in satellites relative trajectories are minimized. Two cases of peak affect minimization are
considered. In the first case, the peak effect minimization in the trajectories of free movement
of satellites is carried out only by minimizing the gramian of control costs. In the second case,
the peak effect minimization is realized using the developed algorithm. The results illustrate the
efficiency of the procedure and indicate the decrease of the peak effect for the satellites relative
trajectories.

Keywords: condition number, control costs, restricted control, free motion, gramian, peak
effect, satellites, upper bounds.

1. Introduction. In recent years, the peak effect problem is actively
investigated [1 — 4]. Peak effects in the free motion of a linear system occur
due to nonzero initial conditions in the absence of an exogenous input signal.
The problem is not new. First of all, the relationship between system poles
and the behaviour of the transition process of a system were investigated by
A.A. Feldbaum in the paper [5], which initiated the research of the peak effect
problem. Then, the problem of large deviations was continued in the works [6]
and [7], where the relationship between the peak effect level and the transient
attenuation rate was revealed. Later, the peak effect was also found in systems,
where poles had a different location from the one that causes an increase in the
attenuation rate of the transient process [8]. The problem was presented for
switching systems in [9] and for cascade control systems in [8], where the result
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of R.N. Izmailov was generalized to obtain estimations of the deviations for
the outputs. Recent papers [3, 10] continued the study in that field for different
values of system poles, and new results for estimations of the upper bound of
deviations were obtained with the linear matrix inequality [3] and with the
condition number of the eigenvectors matrix [10]. Also, it was investigated
that the peak effect depends on a matrix representation.

The peak effect minimization problem is also relevant to fluid flow
control. The scientists James F. Whidborne and John McKernan consider an
equivalent problem to provide minimization of the transient energy growth [11],
that is used actively nowadays in the fluid flow control field [12 — 15].

The peak minimization problem is actual for the stabilization systems
[3] and the tracking systems [9]. In this paper, the problem of peak effect
minimization for stabilization systems with restricted control is considered. The
peak effect in the researched system appears due to nonzero initial conditions
and restricted control. Therefore, the aim of this paper is to propose a procedure
for the peak effect minimization for stabilization systems with restricted control.
The procedure is based on a combination of the recently proposed gramian-
based approach and the theory of the usage of the condition number of an
eigenvectors matrix for the upper bound estimations of system processes. The
proposed procedure is applied to a satellite system, where the effectiveness of
the procedure is illustrated.

The paper is laid out as follows. In Section 2, the approach for the
estimation of peak effect in the free motion of linear continuous-time systems
based on the calculation of the condition number of the eigenvectors matrix
is described. Then, the gramian-based method for the estimation of control
costs is discussed in Section 3. An iterative procedure for the minimization
of the peak effect in the free motion of linear continuous-time systems with
input saturation is proposed in Section 4. Then, the system of the two satellites’
relative motion is described in Section 5 and the modelling of the system
is presented without taking into account restricted control. In Section 6 the
proposed procedure is applied to the satellite system with restricted control to
provide the peak effect minimization. The results are discussed and the paper
is finished with some concluding remarks.

2. Minimization of peak effect in linear continuous-time systems. A
procedure for the minimization of peak effect in a linear continuous-time system
with restricted control includes the step, where the upper bound estimation of
the free motion of the system should be obtained. For this purpose, the approach
based on the calculation of the condition number of the eigenvectors matrix
of the system state matrix is used and described in the section. The approach
allows us to get the upper bound estimation of the process in dynamics.
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Assume a linear continuous-time plant is given in the following form:

(t) = Ax() + Bu(t):x(0),
y(t) =Cx(t), (D

where x € R",u € R",y € R™ are the state vector, the input vector and the
output vector, respectively; x(0) € R" is vector of nonzero initial conditions;
A e R B e R™ C e R"™" are the state matrix, the input matrix and the
output matrix of the corresponding dimensions, respectively. It is assumed the
pair of matrices (A, B) is controllable matrix pair.

The control law is designed with the pole-placement technique in the
form:

u(t) = —Kx(t), 2

where matrix K € R™" consists of the coefficients of the controller provided
the required spectrum of eigenvectors and eigenvalues of the state matrix
F = (A — BK) of the closed-loop system (1). The feedback matrix K can be
calculated with the Sylvester equation:

MA—AM = —BH,K = HM ™", (3)

where A is n X n matrix described the desired dynamics of the system, matrix
M = row{M;;i = 1,n} is the invertible square matrix of eigenvectors of matrix
F, matrix H € R™" is chosen such that a pair (A,H) is observable. At
the same time, the control input u is restricted and satisfies an inequality
—Umax S U < Upgay-

Then, the closed-loop system (1) can be described in the following
state-space form:

x=Fx(1); x(0) = x(1)|,_g )

where F € R"™" is a stable state matrix of the closed-loop system with the
eigenvalues A; < 0,i = 1,n. Note, if the original system (4) is unstable, it may
not be possible to globally stabilize it under restricted control.

Lemma 1: For the linear system in the form (4) the upper bound
estimation sup{||x(z)||} for the process ||x(¢)|| can be given as:

le(0)|| < sup{lx(2) |} = C{M3eH" | x(0)], (5)
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where matrix M = row{M;;i = 1,n} is the invertible square matrix of
eigenvectors of matrix F, C{M} is the condition number of matrix M [16, 17],
A is the maximum eigenvalue of matrix F, defining the degree of stability n
of the system (4) according to the expression 1) = |Ay|. The norm of initial
conditions x(0) is fixed, that ||x(0)|| = const.

Proof: The corresponding assertion is proved in [10]. However, for
completeness, we give the detailed proof. Assessment of the upper bound of
large deviations in the free motion of the continuous-time system (4) is based
on the representation of the state matrix F in the following form:

MA =FM, (6)

where A is a diagonal matrix of eigenvalues, M is a square matrix whose
columns are the n linearly independent eigenvectors of F. The solution of
equation (4) takes the form:

x(t) = €!"x(0). (7
Using (7) and (6), we get:
x(t) = e"'x(0) = Mdiag{e"";i = T,n}M~'x(0). (8)

Let us form an upper bound for the processes of x(¢) in the following
form:

1x(1)]| = llexp(F1)x(0)[| = ||Mdiag{e*;i = T,n}M~"'x(0)|| <
e L e ©)
|M|| - ||diag{e";i=T,n}||- ||M~1]| - [[x(0)]].
Note, that C{M} = ||[M|| ||M~"|| is condition number [18], [16] of the matrix
M. Then, expression (9) can be rewritten as:

Ix(@)[] < C{M}e " [Ix(0)], (10)

where 7 is degree of stability of the system (4) defined as 1 = max |A;]; i = 1,n.
Therefore, the degree of sufficiency of the upper boundlof the process
|x(7)|| is defined by condition number C{M} of the eigenvectors matrix of
matrix F.
Remark 1: The upper bound sup{||x(¢)||} of the process ||x(¢)|| with
minimum sufficiency satisfies the following equations:

k()| < sup{lx(2) |} = C{d}eM" | x(0)], (11)
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where matrix M is a modified matrix of eigenvectors of matrix F, containing
eigenvectors of unity norm [16, 17] in relation to the equality:

M =M - diag{(|M;,)"" ;i =T,n}. (12)

Remark 2: The upper bound ||x(¢)|| of autonomous system process
with the initial states {||x(0)||,# = 0} exceeds its value in C{M} times.

Remark 3: The upper bound is an exponential function. Therefore, the
upper bound sup{||x(¢)||} covers the process ||x(¢)||, containing deviation at
the asymptotic tendency to zero.

Therefore, the peak effect minimization in linear continuous-time
systems can be realized with the minimum value of the condition number
of the eigenvectors matrix C{M}. At the same time, the minimum condition
number is provided by the assignment of the required structure of eigenvectors
that can be described as:

C(M) = min(C{row(M; = E)}& &) = 1:i =T (13)

It can be concluded, the peak effect minimization can be provided by the
structure of the eigenvectors that delivers the minimum to the condition
number of the eigenvectors matrix of the state matrix. The problem (13)
is a nondifferentiable optimization problem, that can be solved using one of
the nonlinear programming algorithms [19].

3. Minimization of peak effect in linear continuous-time systems
with restricted control. In this section, the linear continuous-time system (1)
is considered for the case of restricted control and defined as:

u(t) = —Kx(t), —Umax S UK Ugy- (14)

The gramian-based approach is used for the purpose to minimize the peak
effect in the system. An appropriate gramian can be obtained on the functional
basis of control costs [10, 20]. Thus, for the case of the control law:

u(t) = Kx(t) = Ke"x(0), (15)

for the system (1) can be proved the following Lemma.
Lemma 2: An upper bound and a lower bound of energy consumption
[21] for the control (15) of the system (1) can be defined as:

max |[Uas]| = eyl {Wor } 1 (O)]] (16)
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and: o
min [|Ua|| = o2 (W} [|x(0) ], (17)

‘min

where Qmax and Oip are the maximum and the minimum singular values of
the gramian on control costs, respectively. The norm of initial conditions x(0)
is fixed, that ||x(0)|| = const.

Proof: Let us assume the square of the Euclidean norm of the control
vector as energy consumption E, for the control of a system. Then, if we
consider an element U; = o) of a linear function space LQT, T={t:0<
t < oo}, then for the square of the Euclidean norm of the element U; of the
functional space, we can write the following representation:

t
E,=|U|* = [u" (T)u(T)dT =
;O (18)
=xT(0) [ef" "KTKeF"dTx(0),
0

t
. T . .
where [ef *KTKel'"dt = Wy (t) is called a gramian on control costs or a
0

control costs gramian [20]. The gramian on control costs on infinite time
interval satisfies the condition lim Wy (r) = Wy and it is the solution of the
t—o0

matrix Lyapunov equation:
FTWy +WyF = —K'K. (19)
Then, if we consider the time function (18) in infinite time interval, we get:

lim |02 = 5" (0) lim Wy (1)x(0) = " (0)Wyx(0) = [U=|I*,  (20)

where Wy € R"*" is a solution of the equation (19).

Using singular value decomposition of the control costs gramian Wy
we can estimate the upper and lower bounds of control costs on an initial state
sphere x(0):

U= = (" (0)Wyx(0)) '/, @1
oWy} [(0)]| < (U]l < o2 (W} [1x(0)])- (22)
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The Lemma is proved.

That means the gramian on control costs is an estimation of energy
costs for the control law realization. The estimation of the control costs allows
us to find the optimal pole placement for a closed-loop researched system using
the upper bound (16) for the control cost minimization. The restriction to the
control —u,4, < u < gy should be taken into account together with the upper
bound (16) of the control cost. This allows us to take the following approach.

Approach to the peak effect minimization. The peak effect
minimization for linear continuous-time systems with restricted control (1), (14)
can be realized with the minimization of the condition number of the
eigenvector matrix and the minimization of the upper bound of the control
costs.

The approach to the peak effect minimization for linear continuous-time
systems with restricted control is realised on the consideration of two indexes
together, that are the upper bound of the control cost arL/azx{WU} and the
condition number of the eigenvector matrix C{M}. That indexes can be
aggregated together due to the property of the condition number changing
within the interval 1 < C{*} < oc. Then, the aggregated index takes the form:

J(C,U) = apla{wy }ci{m}. (23)

The index J(C, U) takes into account as condition number of the eigenvector
matrix as the control costs. Then, it is reasonable to use the index as a
mathematical tool for the peak effect minimization. It should be noted the
functional J(C, U) is not convex and may have several minimums (local
minimums).

4. Procedure for the peak effect minimization. The procedure for
peak effect minimization in linear continuous-time systems with restricted
control can be realized according to the following steps:

1) Define a continuous-time system in the form (1);

2) Form an aggregated index J(C,U) in the form (23):

o specify initial eigenvalues Ag = diag{Ao; € [Amin,0);i = 1, n} of the
state matrix F of a closed-loop system (4), where A, provides the required
stability degree of the system;

* calculate a feedback matrix K with the Sylvester equation (3);

* calculate the state matrix F = (A — BK) of a closed-loop system;

* calculate the condition number C{M} of eigenvectors matrix and the
gramian of control costs (19) to get the index J(C,U);
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3) Find the minimum of above the specified index J(C,U) subject
to A = diag{Ai € [Amin,0);i = 1, n} using one of nonlinear programming
algorithms [19, 22];

4) Fix the results in the form of the coeflicients k; of the feedback matrix
K, that provide the minimum of peak effect in the free motion of the system
with control saturation;

5) Simulate the system and analyze the performances.

The combination of methods provides the peak effect minimization in the free
motion of continuous-time systems with restricted control.

5. Example. As an example, the trajectory of the relative motion of two
satellites moving in a circumcircle orbit in the central gravitational field of the
Earth is considered [23]. The design is based on the linearized dynamic model
of the satellite system. The behavior of the system with restricted control is
considered.

The example section consists of two subsections. The first subsection
describes the behaviour of the system for two cases: 1) the input saturation
is not taken into account; 2) the input saturation is taken into account at the
control design stage. It is illustrated, that limitation on control has a significant
impact on the system’s behavior and can lead the system to stability loss. The
minimization problem of the peak effect for the satellites relative trajectories
with the proposed procedure is considered in the second subsection. The
simulation results demonstrate the efficiency of the procedure.

5.1. Modelling of two satellites system. The linearized equations of
the relative motion of satellites are given in the state space form (1), where:

o1 0 0 0
0 0 0 20 I

A=1o o o 1 ['B=] o|u=700)
0 20 3w* 0 0

Here, x = [ X12 X12 212 212 ] is the system state vector, where
x12 denotes the difference in coordinates of the second and the first satellites,
X12 = X3 — X1, 212 = 22 — 21 The control input « is described by the saturation
function @(y) = sat(up,y) and satisfies an inequality —t4nay < # < Umays
Unmax = 2.4 % 1079m /52,

The averaged angular velocity @ of the satellites in orbit satisfies the
expression @ = +/[L/a3, where t = GM, G is the gravitational constant, M is
the mass of the central body, and a is the semimajor axis of the satellite’s orbit.
In this case, for the Earth, u = 398.603 x 10°m’s2, @ = 0.001172.
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The control law is designed with the pole-placement technique in
the form (2). The coefficients of the controller K = | ki k> k3 k4 |
is assigned to provide the required spectrum of eigenvalues for the matrix
of the closed-loop system F = A — BK. Note, the condition number of the
eigenvectors matrix of the states matrix A is C(A) = 1.49 x 10'°.

Consider the behavior of the satellites relative trajectories,
when there is no restriction on control and control is designed in
the form (2). The coefficients of the controller k; are defined to
minimize the condition number of the eigenvector matrix (13), which
are K = [ —0.0001 0.1265 0,0024 1.2165 ]

The simulation results for the satellite’s coordinates x1, and z1, with the
defined initial conditions x5 (0) = 200m, %12(0) = 0.025m/s, z12(0) = —50m,
212(0) = —0.025m/s and the satellites relative trajectories on the (x,z) plane
are depicted in Figures 1 and 2, respectively. The simulation time is confined
to 77y, = 54000s = 15h. Let us consider regulation time 7, when the relative
trajectory on the (x,z) plane reaches the circle with given radius R and does

not leave it then, therefore ¢, = max(,/ x%z + Z%z > R) [23]. It is assumed that
t
collision is escaped within this circle.

300

200 7

X12, m

100 [ ]

60 . .
10 15

o
(é)]

time, h
Fig. 1. Satellites relative trajectories x»(¢) and z;2(¢) with nonzero initial conditions.
The control u(r) is not restricted
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% initial point
trajectory
50 - —— = vicinity e
terminal point
77N &
g Of h 1
&
N
501 1
-100 1
0 50 100 150 200 250
Xqp M

Fig. 2. Satellites relative trajectories on the (x,z) plane with nonzero initial conditions.
The control u(z) is not restricted

It can be observed that the peak effect exists in the stable satellites
relative trajectories xi2(f) and zj2(¢). And it is about 270 m for the
trajectories x2(¢), and it is about 17 m for the trajectories zja(¢).
Here, the regulation time t, = 33148s = 9.2k, and a minimum of the
condition number C(M) = 1467 of the eigenvectors matrix was found for
A={-0.0996 —0.0001 —0.0248 —0.002}.

For the case of restricted control |u| < umax with the same feedback
coeflicients k; the situation is changed. The closed-loop system becomes
unstable. The behavior of the satellites relative trajectories takes the curves
represented in Figures 3 and 4, respectively. Therefore, limitation on control
has a significant impact on the system’s behavior and can lead the system to
stability loss.
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-1000 !
0 5 10

time, h
Fig. 3. Satellites relative trajectories x15(¢) and z1»(#) with nonzero initial conditions
and the restricted control |u| < umax

600 * initial point |
trajectory
400 J

200 1

Zip M
o

-200 1

-400 1

-600 1

0 500 1000 1500

X, M
Fig. 4. Satellites relative trajectories on the (x,z) plane with nonzero initial conditions

and the restricted control |u| < umax

5.2. Minimization of peak effect for the satellites relative
trajectories. In this section, the proposed iterative procedure for the peak
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effect minimization is applied to the satellites system. It should be noted, an
interval for the eigenvalues search is limited by the channels capacity [23] and
the range of admissible algebraic spectrum of eigenvalues is varied within the
interval ; € [—1,0).

First of all, the case of minimization of control costs is considered. The
coefficients of the controller k; are defined to provide the condition (16), that
are K =[ —9.12-107° 0.0018 3.24-107° —8.6-107° |.

The simulation results for the satellite’s coordinates x> and zj» with
above defined initial conditions and the satellites relative trajectories on the
(x,z) plane are depicted in Figures 5 and 6, respectively. Here, the regulation
time 7 = 31810s = 8.83A, and a minimum of the gramian on control costs
W, = 0.0317 was found for A = {—0.0004 —0.0004 —0.0004 —0.0004}.

2000
1500

€
& 1000

x
500

time, h

Fig. 5. Satellites relative trajectories x15(¢) and z1»(#) with nonzero initial conditions
and the restricted control |u| < umax. Minimization of peak effect by the minimization
of control costs
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400 + terminal point |
e 200
& — <
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-400 -
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-800 - ' ; !
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Xipr M

Fig. 6. Satellites relative trajectories on the (x,z) plane with nonzero initial conditions
and the restricted control |u| < umax. Minimization of peak effect by the minimization
of control costs

It can be seen, the researched system is stable and has a peak effect of
about 1800 m for the satellite’s coordinate xj, and it is about 220 m for the
satellite’s coordinate z157.

Then, the case of peak effect minimization with the aggregated
index J(C,U) in the form (23) is considered and minimization of the
condition number of eigenvectors matrix together with the singular
value of the gramian on the control costs is realized by the controller
K= [ —9.65-107% 0.006 1.28-107° 0.004 } .

The simulation results for the satellite’s coordinates xj, and zj2 with
above defined initial conditions and the satellites relative trajectories on the (x,z)
plane are depicted in Figures 7 and 8, respectively. Here, the regulation time
t, = 57765s = 16h and the minimum of the aggregated index J(C,U) = 804.11
were found for A = {—0.0006 —0.0033 —0.0021 —0.0001}. Obviously,
the peak effect is minimized and reaches 1300m for the satellite’s coordinate
x12 and 190m for the satellite’s coordinate z1,. But it should be noted, the peak
effect minimization leads to the regulation time changing. So, the regulation
time, in this case, was increased almost twice.
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Fig. 7. Satellites relative trajectories xj2(#) and z1»(¢) with nonzero initial conditions
and the restricted control |u| < umax. Minimization of peak effect with the proposed

procedure
800
% initial point
600 trajectory min W,
| trajectory min J(C,U) |
400 == = vicinity
200 terminal point
c L
~
N 0 ’—@
-200 [
-400 [
-600 [
-800 - : ‘ ‘
0 500 1000 1500 2000
X m

12’
Fig. 8. Satellites relative trajectories on the (x,z) plane with nonzero initial conditions
and the restricted control |u| < umax. Minimization of peak effect with the proposed
procedure
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Figure 9 illustrates the norm of the state vector ||x(¢)|| and the restricted
control u for different values of the controller coefficients K;. The plots are
presented for the cases of eigenvalues deviations from the proposed values A
for 20% in one direction and in the other one. It can be seen, that the proposed
controller allows us to find an optimal compromise between the control costs
and the peak effect in the trajectories of the free movement of satellites.

1500

£ 1000

(Il

500

0 5 10 15
time, h
Fig. 9. Plots of the state vector ||x(¢)|| and the restricted control u for different values of
the controller coefficients K;

6. Conclusion. The aim of the paper was to minimize the peak effect
in stabilization systems under any non-zero initial conditions with restricted
control. The iterative procedure was suggested for the peak effect minimization
problem. The procedure was based on a combination of the recently proposed
gramian-based approach and the theory of using the condition number of the
eigenvector matrix for the upper bound estimations of the system processes. It
was established the correct structure of eigenvectors that delivers the minimum
value to the condition number of the eigenvector matrix of the closed-loop
system should be considered together with the maximum singular value of a
gramian on control costs to provide the peak effect minimization to the system’s
behaviour.

The procedure was applied to the system of two satellites. Minimization
of peak effect for the satellites relative trajectories was reached. The simulation
results demonstrated the efficiency of the procedure.

Informatics and Automation. 2023. Vol. 22 No. 3. ISSN 2713-3192 (print) 661
ISSN 2713-3206 (online) www.ia.spcras.ru



MATEMATUYECKOE MOAENMPOBAHWE U NPUKNAOHAA MATEMATUKA

As future work, it is supposed to consider the case of the system with
restricted control and input additive uncertainties to study the peak effect in
the system.
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H.A. IVIAPEHKO, H.A. BYHJEP, B.I'. MEJIbBHUKOB, A.A. )KUJIEHKOB
MUHHUMUN3AIIA OTKJIOHEHUI B TPAEKTOPUAX
CBOBO/IHOI'O IBUKEHU A JIMHEMHBIX CUCTEM C
OI'PAHUYEHU AMMU 110 YITPABJIEHUIO

[yoapenxo H.A., Bynoep H.A., Meavrukog B.I', 2Kunenkos A.A. MUHHUMH3A1iisI OTKJIOHEHHIT B
TPaeKTOPHSIX CBOGOIHOTO ABICKEHNs JJHHENHBIX CHCTEM ¢ OrPaHHYEHHSIMH 10 YNPABJIEHHIO.

AnHoTanus. PaccmaTpuBaercs 3agada MUHAMH3ALUM OTKJIOHEHUH B TPAeKTOPHUSX
CBOOOIHOrO IBWIKEHHMs JIMHEHHBIX CHUCTEM C OIpaHMYEHHsIMH 110 ymnpasieHuo. Ipemioxen
UTEPAaTUBHBIA aITOPUTM [ MHHMMM3ALMU OTKJIOHEHUH C MCIIONB30BAHHUEM TEXHOJIOTHU
CHCTEMHBIX TPAMHAHOB H YHCJIa 00YCJIOBICHHOCTH MaTPULIbI COOCTBEHHBIX BEKTOPOB YCTONUMUBOMN
cucTeMbl. MUHMMU3alMsl 3aTpaT Ha yHpaBleHHE Oa3upyeTCsl Ha aHAIM3€ CHHTYISPHOTO
PasJIoKeHHs rpaMUaHa 3aTpaT Ha YIpaBJeHHe C IocaeAyomuM (popMUpOBaHIEM MakOPAHTHBIX U
MHHOPAHTHBIX I'PAMUAHHBIX OEHOK. MUHUMHU3aLisl OTKJIOHEHUH B TPAEKTOPHUSAX CBOOOJHOIO
JBIKEHHSI CHCTEM OCYIIECTBIISETCS IyTeM MUHUMU3AIUH YHCIa 00YCIOBIEHHOCTH MaTpPULIBI
COOCTBEHHBIX BEKTOPOB MAaTPHUIIBI COCTOSIHUS 3AMKHYTON CHCTEMBI, IIPH 3TOM MaTPHULIA COCTOSIHUS
C JKeJIAEMBIMH CIIEKTPaMH COOCTBEHHBIX YHCEN M COOCTBEHHBIX BEKTOPOB KOHCTPYHMpYETCs
Ha OCHOBE OOOOIIEHHOrO0 MOJAJBHOTO YINpapjieHHA. B ocHOBe pa3pabOTKM HTEpaTHBHOTO
aIropuT™Ma A1 MUHMMH3ALUU OTKJIOHEHUH B TPA@KTOPUSIX IBUKEHUs JTUHEHHBIX CHCTEM IIpU
HEHYJIEBBIX HaUQJIBHBIX YCJIOBUSIX C OTPAaHMYCHUSIMU IO YIPABJICHHUIO JIEKUT arperupoBaHHbII
MOKa3aTeJb, MO3BOJAIOIINNA COPMHUPOBATh CUCTEMY C MMHHMMAJbHBIMU OTKJIOHEHUSIMU B
TPAeKTOPHSIX ee CBOOOJHOTO JBIKEHHsI IIPA MIUHUMAJIbHBIX 3aTpaTax Ha ynpasieHue. [JaHHbIi
MoKa3aTesb YYUTHIBAET OJHOBPEMEHHO KaK OLIEHKY I'paMuaHa 3aTpaT Ha yIpaBJlIeHUE, TaK 1
YUCJIO 00YCIOBICHHOCTU MATPHIIbl COOCTBEHHBIX BEKTOPOB YCTOHUIMBOM 3aMKHYTOH CHCTEMBL.
MuHMMU3AIMS arperupoBaHHOTO IIOKa3aTeJIs IO3BOJISIET 00eCIeYUTh MUHIMAJIBHBIE OTKJIOHEHHUS
B TPAGKTOPHUsX CBOOOJHOrO JBMXEHUSI CHUCTEM pPacCMaTpPUBAEMOrO Kjacca. AJIFOPUTM
arnpoOMpOBaH Ha IIPUMepe CHCTEMbI C OrPaHUYEHHBIM BXOJOM, ONUCHIBAIOIIEH OTHOCUTEJIBHOE
JBIDKEHME JIBYX CIIyTHHKOB. PaccMoTpeHoO /Ba cilyyast MUHMMU3ALUK OTKJIOHEHHH. B mepsom
Cllyuae MUHMMU3ALMs OTKJIOHEHHH B TPAEKTOPHSX CBOOOJHOTO IBIDKEHUS CITyTHUKOB BBITOJTHEHA
TOJIBKO 32 CYET MUHMMU3ALMK IPaMiaHa 3aTpaT Ha ynpapjeHue. Bo BTOpoM cilydyae MUHMMU3ALUS
OTKJIOHEHUH OCYIIECTBICHA C IPUMEHEHHeM pa3paboTaHHOro anroputma. IlomyueHHbe
Ppe3y/bTaThl WILTOCTPUPYIOT 3(M(PEKTUBHOCTD MPEUIOKEHHOIO aIropuT™Ma U YMEHbIIEHUE
BEJIMYMHbI OTKJIOHEHUI B TPA€KTOPUAX OTHOCUTEIILHOTO JIBUKEHHsI CITy THUKOB.

KuroueBble c10Ba: 4ucio 00yCIOBICHHOCTH, 3aTpaThl Ha yIpaBJieHUe, OrpaHMYeHHe 10
BXOJy, CBOOOJJHOE JIBUKEHHE, FpaMuaH, 3(p(eKT BCIUIeCKa, CIy THUKH, OLIEHKA CBEPXY.
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