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Abstract. Ensemble learning algorithms such as bagging often generate unnecessarily
large models, which consume extra computational resources and may degrade the
generalization ability. Pruning can potentially reduce ensemble size as well as improve
performance; however, researchers have previously focused more on pruning classifiers rather
than regressors. This is because, in general, ensemble pruning is based on two metrics:
diversity and accuracy. Many diversity metrics are known for problems dealing with a finite set
of classes defined by discrete labels. Therefore, most of the work on ensemble pruning is
focused on such problems: classification, clustering, and feature selection. For the regression
problem, it is much more difficult to introduce a diversity metric. In fact, the only such metric
known to date is a correlation matrix based on regressor predictions. This study seeks to
address this gap. First, we introduce the mathematical condition that allows checking whether
the regression ensemble includes redundant estimators, i.e., estimators, whose removal
improves the ensemble performance. Developing this approach, we propose a new ambiguity-
based pruning (AP) algorithm that bases on error-ambiguity decomposition formulated for a
regression problem. To check the quality of AP, we compare it with the two methods that
directly minimize the error by sequentially including and excluding regressors, as well as with
the state-of-art Ordered Aggregation algorithm. Experimental studies confirm that the proposed
approach allows reducing the size of the regression ensemble with simultaneous improvement
in its performance and surpasses all compared methods.

Keywords: ensemble pruning, regression, ensemble learning, error-ambiguity
decomposition, diversity of regressors.

1. Introduction. Ensemble learning is a method that combines
several models, which are obtained by applying a learning process to a
given problem. The main idea of this approach is that models view the
problem from different points. Therefore, their combination improves
robustness and accuracy either in classification or regression. However, the
existing ensemble learning algorithms often generate unnecessarily large
ensembles, which consume extra computational resources and may degrade
the generalization ability [1]. There are theoretical and empirical
publications that have shown that small ensembles can be better than large
ensembles [1, 2].

The ensemble learning process can be described as the overproduce-
and-choose approach [3]. The overproduction phase is aimed to produce a
large set Fy = [f;,i = 1...M,] of candidate base models f;. The choice
phase is intended to select the subset of models F S F, that can be
combined to achieve optimal performance.

In general, there are two ways to realize the choice phase. The first is
a sequential selection when the algorithm starts from an empty set and
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sequentially adds models according to some metric. Often the selection is
combined with model generation. The second is pruning, in that case, the
ensemble includes all candidate models, and the goal is to choose their
optimal subset according to some metric.

Both the selection and pruning have the potential advantage of
reducing ensemble size, and improving performance [4]. However, the
selection and pruning of classifiers, rather than regressors, has previously
received more attention from researchers [5, 6]. Some of these methods
have been adapted to the regression task [7], but there is a lack of
theoretical and empirical works dedicated exclusively to the regression
problem.

There are theories considering the specifics of regression, in
particular, these are the error-ambiguity decomposition [8, 9], which can be
applied to develop a pruning algorithm. Here we present an ambiguity-
based pruning algorithm that sequentially removes regressors with the worst
generalization ability. We compare the performance of this algorithm with a
state-of-the-art Ordered Aggregation [10] method also as with two
algorithms based on direct optimization of the quality metric.

The rest of the paper organizes as follows. After the literature
review, we introduce the mathematical condition that allows checking
whether the regression ensemble includes redundant estimators, i.e.,
estimators, whose removal improves the ensemble performance. Next, on
the basis of this approach, we propose the Ambiguity-based Pruning (AP)
algorithm. In the last part of the paper, we present the results of experiments
on real datasets that confirm that the proposed approach outperforms known
methods in terms of accuracy and model complexity.

2. Literature Review. We consider the typical regression problem,
and for a clear presentation, we establish the notation that will be used
below. Take X to be the vector space of all possible inputs, and ¥ € R to be
the vector space of all possible outputs and there exists some unknown
probability distribution over the product space X X Y. The training set
Dirain = {(X1, V1), X3, ¥2), -, Xy, ¥n)} is made up of N samples from this
probability distribution. Every X; is an input vector from the training data,
and y; is the corresponding output. The goal is to induce on the basis of the
training set a function f:X — Y that approximates an unknown true
function such as f(x)~y. The quality of the approximation is given by the
generalization error, which usually is a mean squared error:

MSE(f) = E[(f () — ¥)?].
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Because it is not possible to determine this true error of a model f,
the error is estimated on a different set of data D,,;, containing K samples:

MSE(f) ~ ¢ ZEL[(F(x) = y)I2

We will consider a regression ensemble, i.e., the combination of a
few models since this should improve robustness and accuracy. In
regression problems, ensemble integration most often is performed using a
linear combination of the base models [3, 6].

fe(X) = ?i1[Wi(X) * fi(x)],

where w;(x)’s are the weighting functions, and M is a number of models
fi(x) EF in the ensemble (models f; are often also referred to as
estimators, predictors, regressors or learners). It follows from this that the
problem of the models' selection is closely related to choosing the optimal
weights. From now on, we will use notation f instead of f(x) and w instead
of w(x) for simplicity.

Study [8] proposed the ambiguity decomposition of ensemble error
that separates the weighted average error of the individual regressors and
variability among their estimations at an arbitrary single data point:

(fe —»)? = 2w (fi —9)? = 2L, wi(f; — f)?. (1)

The first term w;(f; — y)? is the weighted error of the i-th ensemble
member. The second, w;(f; — fz)?, is the ambiguity term, measuring the
amount of variability among the ensemble member answers for this pattern.
This equation explains why the quadratic error of the ensemble is less than
or equal to the average quadratic error of the component estimators. Note
that this decomposition is valid only for convex ensembles [9], i.e., when
fe=XiLiwifiand XL, w; = Lw; > 0.

An essential assumption of ensemble learning is that the base models
should be sensitive to variations in the training set, so Decision Trees (DT)
and Neural Networks (NN) usually are used.

The most popular ensemble learning algorithms for regression are
Bagging, Random Forest, Negative Correlation and Gradient Boosting. The
Bagging algorithm [11] employs bootstrap sampling to generate many
training sets from the original training set and then trains a model for each
of those training sets. The component predictions are combined via simple
averaging for regression tasks. Bagging can be used both with DT and NN.
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The Random Forest [12] algorithm is similar to Bagging in that they both
resample the data. However, Random Forest is based exclusively on DT,
when it performs splitting, a random sample of the features is also selected.
In Negative Correlation learning [13], all the individual estimators in the
ensemble are trained simultaneously and interactively through the
correlation penalty terms in their error functions. This approach is used
exclusively with NN since in that case there is a possibility to include a
penalty in the formula for weights tuning in the backpropagation method.
The Gradient Boosting algorithm [14] on each iteration computes pseudo-
residuals and trains a new model using them as a target. Thus, each new
estimator attempts to correct the error of its predecessors. The weight of
each member is found in the process of a linear search.

The stochastic nature of Bagging and Random Forest leads to
ensembles that can be significantly improved by pruning. Many authors
used this fact in their research [7]. The family of Boosting methods
(including AdaBoost) produces more balanced ensembles in general.
However, some researchers report on successful applications of pruning
especially in case of the classification problem solved with the AdaBoost
algorithm [1, 2].

Different authors proposed different classification schemes of
pruning algorithms. In study [6] the authors classify them as partitioning-
based and as search-based. Partitioning-based methods divide the pool of
models into subgroups. Then, for each subgroup, one or more models are
selected using a given selection criterion. Search-based algorithms, in turn,
are divided into (1) exponential that search the complete space of models,
(2) randomized that use stochastic methods, such as evolutionary
algorithms, and (3) sequential that search for a subset of the original pool by
iteratively adding or removing models.

In study [1] the authors split pruning algorithms into two categories,
(1) selection-based that do not weight each model by a weighting
coefficient and either select or reject the learner, and (2) weight-based
algorithms that improve the generalization performance of the ensemble by
tuning the weight on each ensemble member.

In paper [6] the authors reviewed regression ensemble pruning
approaches published before 2008, here we will consider some recent
publications on the basis of the approach to the classification proposed in
[1]. First, we review some selection-based algorithms.

Study [5] reviewed a family of pruning methods based on modifying
the order of estimators in a Bagging ensemble. This order in the original
Bagging algorithm is unspecified, and the error of the ensemble generally
exhibits a monotonic decrease as a function of the number of estimators.
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According to pruning strategies based on ordered aggregation, from the
subensemble F,_; of size L—1, the subensemble F; of size L is
constructed by incorporating a single estimator selected from the set
Fo\F,_,, which contains the estimators from the original ensemble not
included in F;_;. This estimator is identified using a rule that attempts to
optimize the performance of the augmented ensemble F;. The ordered
ensemble that includes L < M estimators generally exhibits the error that is
below the error of the complete bagging ensemble.

Assuming that the generalization error of the regression ensemble
can be expressed as:

E=—3M ¥, Cy, Cy =~ I (i) = v) (&) = 3)]. )
where the correlation matrix C is estimated over a training dataset. In paper
[10] the authors proposed Ordered Aggregation (OA) algorithm. The
algorithm starts with an empty ensemble and then selects at each iteration
the regressor that, when incorporated, reduces the training error (2) of the
new ensemble the most.

As for the disadvantages of this method, we can state the following.
First, this approach based on the assumption that minimizing training error
leads to the minimization of generalization error but in fact, this usually
leads to overfitting. Second, time complexity grows exponentially. Third,
the number of ensemble members is an external factor; there is no internal
stopping criterion.

Later the same authors [7] proposed to use Semidefinite
Programming (SDP) introduced in [15] for the classification task. In that
case, it is necessary to find a sub-ensemble for which the sum of the
elements in the corresponding sub-matrix of C is as low as possible. Note,
that it is also NP-hard computational problem.

Authors reported that the minimum of test error obtained either with
OA and SDP-pruning is generally below the asymptotic error of the
complete bagging ensemble, and pruned ensembles obtained by retaining
only 20% of the original bagging ensemble have the best overall
performance. The main conclusion of [7] is that the key to improvement in
generalization performance is the selection of subsets of regressors whose
bias is low and whose correlations are small or negative.

Study [4] extended the OA approach using dynamic ensemble
selection technique. Their algorithm consists of two steps. First, the base
regressors are trained on bootstrap samples of the training dataset, and the
regressor order is found for every instance in the training set. In the second
stage, the regressor order that is associated with the training instance closest
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to the test instance is retrieved. To find the closest training instance the
k-Nearest Neighbors method is used. Empirical testing on several data sets
showed that in most cases this approach outperforms original OA-pruning.

There are also examples of the use of evolutionary methods for
selecting the optimal set of estimators. For example, a genetic algorithm
that searches in the space of candidate base models F;,. In that case, binary
fixed-length strings {0,1}M0 where M, = |F,| represent ensembles that
form the evolving population. The pruned ensemble includes only
estimators that have a value of 1 in the corresponding position of the coding
string. In study [16] the authors used such an approach for pruning
classification ensembles obtained by the AdaBoost algorithm.

In paper [17] the authors generalized this approach as a multi-
objective optimization problem; they proposed simultaneously to minimize
two variables — the generalization error of the ensemble and its size.

Some authors claim that weight-based pruning is a more general
approach than selection-based [1]. According to [2], the optimal weights of
the regression ensemble can be obtained as:

L€ Dy
1}?:1 Zylzl(c_l)kj.

w; =

However, in real-world applications, some estimators can be quite
similar, which makes the correlation matrix C (2) ill-conditioned [2]. The
second problem of this formulation is that the optimal combination of
weights is computed from the training set, which can lead to overfitting [1].

In paper [1] the authors presented the ensemble pruning algorithm by
expectation propagation that approximates the posterior estimation of the
weight vector. It produces a «sparse» combination of weights, most of
which are zeros. For experiments with the regression, authors used Bagging
and Random Forest algorithms with 100 Decision Trees, they reported that
the size of the pruned ensemble was reduced, on average, approximately ten
times.

In study [18] the authors explored two other weight-based pruning
techniques: one based on a cocktail ensemble (CE) algorithm [19] and the
second on stacking generalization [20].

CE that was designed for generating the ensemble of ensembles is
the following. Since the combination of multiple regressors is an NP-hard
problem, the authors of [19] proposed to use the pair-wise combinations of
estimators. Through a linear combination of models f; and f,, a new
ensemble is formed:
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X)) =wfix)+ A —-w)fb(X) wrt.w, €[0,1].

Following the error-ambiguity decomposition [8], in study [19] the
authors proved that given E; and E, as generalization errors of f; and f,
respectively, the optimal weight of f; is w; = (E, — E;)/2A + 0.5, where

A= IE[(f1 x) —f (x))2] is the squared output difference of the two

ensembles. E;, E, and A can be estimated from training data. CE algorithm
starts from the selection base model with the lowest error; then each
subsequently selected regressor is the one which reduces the combined
estimated error the most.

Stacking is a popular ensemble learning strategy, where the weights
of the base models are the regression coefficients of the meta-level
regressor [20]. The authors of [18] used the linear regression as a meta-
level; the final ensemble consists only of models with greater than zero
weight. According to the experimental results, in some cases, the stacked-
based approach provides results with less error than standard Bagging and
CE and generates the shortest ensembles [18].

Other authors use various randomized algorithms to search for the
optimal combination of weights in the ensemble. Study [2] utilized the
genetic algorithm with a floating coding scheme to represent weights.
Authors reported that their approach outperforms on regression task original
Bagging and AdaBoost.R2 algorithms with NN as the base model, an
average number of networks after pruning was less than 4.

All approaches discussed above are based on the set of models
obtained by ensemble methods that produce estimators using a single
learning algorithm. An alternative approach is the usage of heterogeneous
models. In this case, a large number of models is generated using various
learning algorithms, and the goal is to select those, which produce better
generalization. This task also can be formulated as a pruning problem, there
is an ensemble that includes all models, and it is necessary to remove non-
effective ones. Most of the works in this scientific flow are dedicated to the
selection problem [21].

To conclude this review we can note that, in general, ensemble
pruning is based on two metrics: diversity and accuracy [22, 23]. Formally
the problem is to find a subset of candidate estimators {f; } © F, with both
high accuracy (i.e., lower loss L({f;})) and maximum diversity D ({f, }):

fu = argmin; L({f;,.}) w.r.t. D({f;.}) » max.

Many diversity metrics are known for problems dealing with a finite
set of classes defined by discrete labels [22, 24]. Therefore, much work on

Informatics and Automation. 2023. Vol. 22 No. 2. ISSN 2713-3192 (print) 399
ISSN 2713-3206 (online) www.ia.spcras.ru



MATEMATUYECKOE MOAENMPOBAHWE N NMPUKNAOHAA MATEMATUKA

ensemble pruning is focused on tasks of classification [25, 26], clustering
[27, 28], and selection of an optimal set of features [29, 30].

For the regression problem, it is much more difficult to introduce a
diversity metric. In fact, the only such metric known to date is the
correlation matrix (2) proposed in [10]. This approach is used in recent
papers: [31], but in general the number of studies on regression ensemble
pruning published after 2010 is extremely small.

We propose a new approach to regressor selection based on error-
ambiguity decomposition, which was introduced in [8], studied in detail in
[9], and generalized to all supervised learning problems in [32]. Many
authors have pointed out that this decomposition potentially opens ways of
optimizing ensembles [33, 34]. Other applications of the error-ambiguity
decomposition include, for example, adaptive sampling [35, 36].

3. Ensemble pruning on the basis of Error-Ambiguity
decomposition. Study [37] proposed the Reduce-Error pruning algorithm.
The first learner incorporated into the ensemble is the one with the lowest
error, as estimated on the selection set. The remaining estimators are then
sequentially incorporated in the ensemble, one at a time, in such a way that
the error of the partial subensemble, estimated on the selection set, is as low
as possible. This method was proposed for the classification problem, but
we can adapt it to the regression task. So, the regressor f}, that should be
incorporated into the subensemble f7~1 to construct f! is selected by the
rule:

fu=argmin ) MSEGE (U@L K RT3

(x,y)eD

Instead of the selection, we can also use a sequential reduction
process, i.e., starting from an ensemble that includes all regressors, at each
step, one of them whose removal reduces error maximally is deleted. This
regressor is selected by the rule:

fu = argmin, Z(x,y)eD MSE(f#" CO\fi(x), ), k € f. 4)

In what follows, we will refer to the algorithm presented by
Equation (3) as a Direct Reduce Error (DR), and to the algorithm
Equation (4) as a Reverse Reduce Error (RR).

Consider the conditions under which a regressor selected according
to Equation (4) must meet to create the maximum effect. Averaging the
error — ambiguity decomposition (1) for all N samples in the dataset, we
obtain the following formula:
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ELGR = )% = ) wiEI(f - )] = ) wl B[ - )
i=1 u i=1 (5)
= > Wi I~ )2 = EIG - f212D),

where wM is the optimal weight of the i-th estimator in the ensemble of
size M.

The first term E; = E[(f; — y)?] is the mean squared error of
regressors in the ensemble, and the second one AY = E[(f; — f)?] is their
ambiguity (note that its value depends on all ensemble members). Thus, to
ensure MSE(fM) = 0, it is enough to fulfill the conditions:

Vi:E, =AM, i=1,..,M. (6)

This can be explained in terms of diversity. Formula (6) means that
the i-th estimator, which satisfies this condition, differs from other members
of the ensemble (i.e., its outputs are correlated with outputs of other
members) in such a way that its error is compensated by this diversity.

Using Equation (5), we can find the condition when the removal of
one regressor will not lead to a growth of the total ensemble error, i.e.:

E[(f' —»)*] - E[(ff'* —y)?*] = 0.

Let the regressor that is to be removed have index M. Since the
ensemble can be presented as:

7 = Zinawi fi = Zitat wi' fi + wii furs

after some algebra, we get the condition that the removed regressor must
match in order not to reduce the overall performance:

M-1 M-1

D W E - A = ) Wi E - A

i=1 i=1

>0. (7)

wiy (Ey — A¥p) — [

Accordingly, this regressor must have a maximal positive value
defined by Equation (7). An essential consequence of this formula is that it
allows us to evaluate the potential of the current ensemble for pruning. If
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there are no regressors in the ensemble for which the value of Equation (7)
is positive, then the pruning of such an ensemble is impossible.

Formula (7) is derived from Equation (4), but Equation (4) presents
the algorithm that is more effective computationally since it requires just the
computation of the MSE of each regressor. It can be done once before the
pruning cycle since the errors of individual estimators do not depend on
ensemble composition. The procedure presented by Equation (7) requires
the computation of ambiguity value, which depends on the current ensemble
composition and therefore changes on each step.

The term in square brackets in Equation (7) represents the difference
between the errors of the pruned subensemble and the original ensemble,
from which the prediction of deleted regressor is excluded. This value
determines the threshold that the value of wif(E, — AM) of deleted
regressor must exceed. But, since we determine these values based on the
training set, we are not sure that this takes into account all the information
about the actual distribution of data. Thus, the assumption is reasonable that
we can omit the term in square brackets and present the rule for choosing a
regressor to be deleted as:

max;[w} (E; — A}Y) 20],i=1,.., M. (8)

On the one hand, this simplification reduces computational
complexity since we exclude the A¥~* term. On the other hand, it could
facilitate the selection of subensemble with greater generalization since it
introduces stochasticity in the selection process. In most cases, the regressor
that is selected for removal from the ensemble by rule Equation (8) will
coincide with the one chosen by Equation (4). Discrepancies can only be
observed when the ensemble is already well optimized, and differences
defined by Equation (7) tend to zero.

Since for the ensembles based on averaging like Bagging and
Random Forest w} = 1/M, this rule can be simplified as:

max[(E; —A¥) >0],i=1,..,M.
L

We can show that this is equivalent to choosing a regressor with a
maximum distance to the line defined by Equation (4) on the half-plane
E; > AM . The distance from the point M(xy,yy) to the line
determined by the equation Ax+ By+C =0 is defined as

d = |Axy + Byy + C|/VA? + B2, Substituting into this formula the
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coordinate values of the ith regressor (E;, AM) and the coefficients of the
equation of the straight line E — AM = 0, we obtain d; = |E; — AY|/~/2.

Figure 1 presents the example of the averaging ensemble of
4 regressors trained on the airfoil dataset (its parameters will be given
below). The left chart shows the values of E; and AY of these regressors; a
solid line presents Equation (6). The right graph shows the corresponding
values of the two terms of Equation (7). As it follows from the data
presented on the right graph best candidate for removing is estimator
number 2 according to Equation (7) and estimator number 0 according to
Equation (8). Corresponding points are marked by red and green circles on
the left chart, respectively. The exclusion of estimator 2 will lead to better
performance on the training set, but, as said above, it can also lead to a loss
of the generalization since the pruned model will be overfitted to training
data. The ambiguity of the remaining ensemble members changes when any
estimator is removed; therefore, the use of equations (7) and (8) can lead to
different final structures. In the next sections, we will present empirical
data, which confirms that rule Equation (8) allows us to generate more
effective ensembles.

Bagging (MSE = 0.095)

0.035
0.025
0.030
0.025 0.020
0020 0015
0.015
0.010
0.010 G
/(£ - AM)
L] 0.005
0.005 L4 @
- Xw” g —AlY - XwWE Al
0.000 0.000

0.000 0005 0010 0015 0020 0025 0030 0.035
Mean squared error Estimators

Fig. 1. Bagging ensemble of 4 regressors

Ambugulty

The next issue that should be discussed is the data for the creation of
an initial pool of regressors and their subsequent selection. Some authors
use separated training and selection datasets. Researchers often use this
approach to avoid overfitting, but it also can lead to degradation of the
generalizing ability of the model since it reduces data available for the
model generation. On the other hand, paper [10] reported that the size of the
subensembles minimizing the error on the training data tends to be smaller
than the optimal subensembles when the error is estimated on an
independent selection set. Besides, the selection of the optimal subensemble
is an NP-hard problem and not generally feasible in practice.
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Our experiments in the preparation of this article confirm that the
separation of data into training and selection sets does not improve overall
performance. On the contrary, this often leads to a decrease in productivity
since candidate models obtained on reduced training datasets do not have
sufficient predictive ability.

We compared three different approaches. First, we divided all the
data available for training D,,,;, into independent sets: the first one for
generating models and second for selecting Dy,;. Table 1 shows the results
for cases when the size of the Dg,; includes 50% and 33% of the data
available. In the third experiment, we performed the generation and
selection on the same set D;,.4;,, Which included all available data.

Table 1. The pruning model performance for various combinations of training and
selection data

Dataset splitting Bagging | AP RR 0OA DR
[Dgeil = 0.5|Dspqinl 0.273 0.235 | 0.243 | 0.259 | 0.243
[Dgerl = 0.33|Dgrgin 0.250 0.228 | 0.226 | 0.234 | 0.219
Training and selection on Dyyqin 0.223 0.189 | 0.189 | 0.202 | 0.197

Table 1 shows the best average MSE obtained with 10-fold cross-
validation on the airfoil dataset. We used a single-layer artificial neural
network (NN) as a base estimator. At each iteration, we first optimized the
number of neurons in the NN, and then we generated the initial pool of 100
estimates using the Bagging algorithm and, finally, applied reduction and
selection algorithms. We tested two pruning algorithms Reverse Reduce
Error (RR) (4) and Ambiguity-based Pruning (AP) (8) and two selection
methods Direct Reduced Error (DR) (3) and Ordered Aggregation
(OA) [10].

As we can see, the critical factor that defines the pruned model
performance is the performance of the initial ensemble that improves when
the amount of data available for training grows. Therefore, here and below,
we propose to use the single dataset for the generating of candidate models
and the selection of optimal subsets.

Summing up the above, the proposed algorithm, which we call
Ambiguity-Based Pruning (AP), is presented in Table 2. Since instead of
using the exact expression (7) to select the regressor for reduction, we use
an approximate value (8), we must stop the algorithm when the current
MSE value begins to rise to control convergence and prevent the loss of
generalization (lines 9-13).
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Table 2. Ambiguity Based Pruning Algorithm
Training dataset Dyyqim = {(x;,¥:)}\-4, pool fy of regressors fitted

INPUT
on Dtrain'

1 Initialize e; = MSE (fg)

2 Repeat

3 ensPruned is False

4 For each f; in f; do

5 e; = wM(E; — AM)

6 End for

7 j = argmax(e)

8 fnew = fE\E

9 If MSE (frew) < €g

10 g = MSE(fnew)

11 fE = fnew

12 ensPruned is True

13 End if

14 Until ensPruned is True
RETURN f&

4. Empirical Analysis and Evaluation. In this section, we assess
the generalization performance of Ambiguity-Based Pruning (AP) and
compare this technique with other algorithms. As a state-of-art method that
sets the baseline for the performance of pruning algorithms, we use Ordered
Aggregation (OA). In study [7] the authors conducted an experimental
comparison of OA with conventional ensemble methods such as Bagging,
AdaBoost.R2, and Negative Correlation, and showed that it surpasses them
in performance. Also, according to [7], OA outperforms other known
pruning methods such as hybrid ensembles [38], GASEN [2], regularized
stacked generalization [39, 40], and performs slightly better than SDP-
pruning [7], although the difference between average ranks of OA and SDP
is not statistically significant.

In addition to OA, we also included in the set of methods for
comparing two algorithms discussed in Section 3, Direct Reduce Error
(DR), and Reverse Reduce Error (RR).

It should be noted that the authors of [7] defined the number of
estimators in the OA-pruned ensemble as an external parameter. In our
experiments, we used a slightly modified OA algorithm: the selection of
regressors continues while the error in the training data does not increase
(lines 9-13 in Table 2). Such an approach helps to identify the optimal size
of the final subensemble. A similar condition was applied to other
algorithms tested (RR and DR).
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The experiments are carried out on 20 regression problems from the
UCI-Repository and other sources. They include real-world problems from
different fields of application: industry, biology, urban management, etc.
All datasets were scaled to center around zero and have unit variance.
Table 3 displays the number of instances (N), the number of attributes (K)
and the source of the different datasets considered.

Table 3. Datasets used in the experiments

Dataset Description N/ K Source
abalone Predicting the age of abalone 4177/8 KEEL
airfoil Aerodynamic and acoustic tests of airfoil 1503/5 UCI
bank8FM Simulation of how customers choose bank 8192/8 OML
bike Count of rental bikes 17379/12 | UCI
california Median house value of the block groups 20640/8 KEEL
CASP Properties of protein tertiary structure 45730/9 UCI
CCPP Combined Cycle Power Plant 9568/4 UCI
compactiv | Computer systems activity measures 8192/21 KEEL
concrete Predicting the concrete compressive 1030/8 KEEL
egrid Electrical grid stability simulated data 10000/12 | UCI
elevators Action taken on the elevators of the aircraft | 16599/18 | KEEL
facebook Facebook comment volume 40949/53 | UCI
forestFires | Burned area of forest fires in Portugal 51712 KEEL
house Median house price in the regions of USA 22784/16 | KEEL
kin8nm Forward kinematics of an 8-link robot arm 8192/8 OML
laser Far-Infrared-Laser in a chaotic state 993/4 KEEL
stock Daily stock prices for aecrospace companies | 950/9 KEEL
supercond | Superconductors and their relevant features | 21263/81 | UCI
treasury Economic data of USA 1049/15 KEEL
wankara The weather information of Ankara 1609/9 KEEL

Data sources:

—  KEEL - KEEL dataset: https://sci2s.ugr.es/keel/datasets.php

—  OML - OpenML: https://www.openml.org/search?type=data

- UClI - UC TIrvine Machine Learning Repository:
http///archive.ics.uci.edu/ml/

The experimental protocol is the following. We used 10-fold cross-
validation to estimate the mean squared error. The experiments involve
building a bagging ensemble of M = 100 predictors. Following the work [7],
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we use the feed-forward neural network (NN) with a single hidden layer of
sigmoidal neurons and a linear unit in the output layer as a base learner. The
networks are trained during 1000 epochs using the quasi-Newton
optimization method BFGS. Before the generation of the bagging ensemble,
the optimal number of hidden units in NN was explored using Bayesian
optimization and a separate 5-fold cross-validation procedure. Once the best
architecture of NN is found, a bagging ensemble is generated using neural
networks with these hyper-parameters. Next, the bagging ensemble is
pruned using various pruned algorithms. Finally, we computed the mean
value of MSE on all testing folds for all compared algorithms, also as
bagging ensemble, to use the last as a benchmark for performance
comparison. All computations were performed using the Python
programming language and scikit-learn and scikit-optimize libraries.

Table 4 shows the average mean squared error and its standard
deviation estimated by 10-fold cross-validation for each dataset and each
prediction method.

Table 4. Average mean squared error normalized by the corresponding scaling

factor

Dataset Sf;i't':f Bagging AP DR RR 0OA

abalone 107 | 4309 (0.272) | 4.318 0.272) | 4.315 (0.272) | 4324 (0.273) | 4.319 (0.272)
airfoil 10" | 2.225(0.112) | 1.890 (0.099) | 1.973(0.104) | 1.887 (0.094) | 2.023 (0.109)
bank8FM | 107 | 3.470 (0.002) | 3.443 (0.002) | 3.440 (0.002) | 3.442 (0.002) | 3.467 (0.002)
bike 10" | 1.448 (0.091) | 1.154 (0.065) | 1.163 (0.066) | 1.155 (0.065) | 1.209 (0.071)
cadata 10" | 2.775 (0.096) | 2.685 (0.088) | 2.684 (0.089) | 2.683 (0.088) | 2.756 (0.095)
CASP 10" | 5.609 (0.012) | 5.522 (0.013) | 5.521 (0.013) | 5.521 (0.012) | 5.601 (0.012)
CCPP 107 | 5.889 (0.005) | 5.833 (0.005) | 5.833 (0.005) | 5.833 (0.005) | 5.889 (0.005)

compactiv | 102 | 1.738 (0.001) | 1.674 (0.001) | 1.672 (0.001) | 1.674 (0.001) | 1.707 (0.001)
concrete 107 | 8.629 (0.020) | 8.206 (0.019) | 8.139 (0.019) | 8.140 (0.019) | 8.333 (0.021)
egrid 107 | 4.773 (0.003) | 4.523 (0.003) | 4.528 (0.003) | 4.529 (0.003) | 4.623 (0.003)
elevators | 102 | 8.829(0.014) | 8.575 (0.013) | 8.575 (0.013) | 8.575 (0.013) | 8.754 (0.014)
facebook | 107 | 4.599 (0.188) | 4.621 (0.181) | 4.672 (0.177) | 4.659 (0.180) | 4.498 (0.181)
forestFires| 10° | 1.218 (1.664) | 1.281 (1.585) | 2.722 (2.429) | 1.408 (1.553) | 1.533 (1.614)

house 10" | 4.207 (0.057) | 4.138 (0.055) | 4.140 (0.056) | 4.140 (0.056) | 4.193 (0.057)
kin8nm 107 | 9.233 (0.008) | 8.648 (0.008) | 8.652 (0.008) | 8.646 (0.008) | 8.816 (0.008)
laser 107 | 1.362 (0.015) | 1.360 (0.015) | 1.411 (0.016) | 1.430 (0.017) | 1.369 (0.015)
stock 10" | 1.486 (0.112) | 1.498 (0.126) | 1.541 (0.128) | 1.514 (0.126) | 1.535 (0.121)
supercond | 107 | 1.759 (0.128) | 1.737 (0.123) | 1.741 (0.123) | 1.735 (0.123) | 1.754 (0.127)
treasury 10° | 4.027 (0.002) | 3.818 (0.002) | 3.822 (0.002) | 3.804 (0.002) | 4.003 (0.002)

wankara 107 | 6.099 (0.001) | 6.022 (0.001) | 6.043 (0.001) | 6.081 (0.001) | 6.152 (0.001)
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The figures displayed are scaled by a factor shown in the first column of the
table. To check whether the observed improvements in error are statistically
significant, a paired Wilcoxon test was performed on cross-validation data
for each dataset. Error values that are significantly better than bagging at an
a -value of 0.05 are highlighted in boldface. Error values that are
significantly better than OA at an a-value of 0.05 are underlined. As it
follows from Table 4, there were no algorithms that perform analysis
statistically worse than bagging and OA on the datasets selected for the
experiment.

Following the framework proposed by J. Demsar [41], we also
conducted the Friedman test to compare the overall performance of different
methods in the collection. The results obtained (Fp=59.14, the
corresponding p-value is 2E-11, and the critical value of y? distribution
is 11.07) confirm that the hypothesis of the equivalent performance of all
algorithms should be rejected at « = 0.05. If the null hypothesis is rejected,
we can proceed with a post-hoc Nemenyi test. Figure 2 displays the results
of this test for ¢ = 0.05. The differences in performance between
algorithms whose average ranks are further than a critical distance (CD) are
statistically significant. The obtained value of the CD is 1.686. In Figure 2,
algorithms whose differences in performance are not statistically significant
are connected with a solid line.

D

1 2 3 4 5 &

RR Eagging
DR 04

Fig. 2. Comparison of algorithms’ performance against each other with the
Nemenyi test. Groups of methods that are not significantly different (at « = 0.05)
are connected with a solid black line

As follows from the data presented in Figure 2, four groups of
models are distinguished, and models inside one group have statistically
comparable results. The first group includes algorithms of pruning AP, RR,
and DR, while AP has a slight advantage within this group. The second
group consists of the algorithms RR, DR, and OA, the OA; this group
showed the worst results. The third group comprises the bagging algorithm,
as well as methods for pruning the DR and OA. The fourth group is
represented only by a single-layer feed-forward neural network (NN).
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The following conclusions can be drawn from the presented results.
First, pruning methods can improve the performance of the initial set of
regressors generated using the bagging algorithm. Data n Table 4 confirms
this conclusion generally, but we should note that there are a few
exceptions, namely results for datasets: abalone, forestFires, and stock.
Second, methods based on the sequential exclusion of estimators from the
initial ensemble (AP and RR) are superior to sequential inclusion algorithms
(DR and OA). One possible explanation is that in the case of the exclusion,
the algorithm has more information about the interaction of all estimators in
the ensemble. In the case of the AP algorithm, this information is presented
explicitly in the ambiguity term (1). When the algorithm implements an
inclusion scenario, only information about the pair interaction of estimators
is available explicitly given by correlation matrix Equation (2) in the OA
algorithm.

Another critical point associated with the quality of pruning
algorithms is the size of the ensemble obtained after the algorithm
application. Table 5 presents these data.

Table 5. Average number of regressors in the pruned sub ensemble

Data NN AP DR RR OA
abalone 10.5(3.4) 12.6 (2.1) 11.2 (2.5) 11.9(1.9) 98.2 (5.7)
airfoil 10.5(3.5) 9.8 (3.0) 7.6 (1.8) 8.8 (2.3) 23.9(5.2)
bank8FM 17.1(1.8) 9.8 (2.0) 9.7 (1.9) 9.6 (2.1) 94.8 (4.0)
bike 14.9(3.1) 11.0(6.6) 7.2 (1.9) 7.7 (1.6) 22.3(3.5)
cadata 13.2(5.3) 8.8 (2.0) 6.5 (1.8) 8.0 (2.4) 65.2(10.4)
CASP 19.1(0.9) 10.8 (2.1) 10.4 (1.9) 10.3 (1.9) 89.7 (4.9)
CCPP 13.5(2.0) 5.1(1.5) 4.2 (1.5) 5.1(1.5) 99.5(1.0)
compactiv |11.2 (4.9) 9.9 (2.9) 8.5 (2.6) 8.5(2.1) 53.4(5.2)
concrete 16.1 (1.7) 14.7 (3.2) 13.5(2.5) 13.9(2.8) 27.2(5.8)
egrid 18.9(1.0) 14.4 (2.8) 11.1 (1.3) 12.4 (1.6) 34.2(5.8)
elevators 7.9 (2.6) 11.8(3.3) 6.7 (2.6) 9.7 (1.7) 70.5 (8.2)
facebook 11.9(2.4) 8.7(2.1) 8.3 (1.6) 8.1(1.4) 31.9(4.8)
forestFires |9.1 (3.1) 43.1(10.1) |13.1(9.8) 23.7(3.8) 7.9 (3.3)
house 16.2(2.3) 14.6 (3.0) 12.3 (1.9) 13.4(2.9) 60.2 (7.4)
kin8nm 18.0(0.9) 12.4(2.4) 9.3 (1.3) 11.2(1.3) 39.3(4.2)
laser 11.1(3.9) 13.8(5.5) 7.8 (2.9) 8.1(1.5) 24.0 (5.8)
stock 13.1(5.0) 12.0(3.4) 9.7 (3.4) 10.9(3.1) 28.4(3.8)
supercond |9.2 (4.4) 9.5 (2.0) 8.9 (1.7) 9.2 (1.8) 55.4(8.6)
treasury 11.8(4.4) 7.3(22.2) 5.5 (1.6) 6.7 (1.6) 45.9(7.5)
wankara 9.4 (3.7) 13.6 (3.3) 9.9 (2.2) 11.0 (1.8) 66.9 (10.5)
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The first column of Table 5 (NN) contains the mean and the standard
deviation of the number of neurons obtained during the optimization of NN
at each iteration in the process of 10-fold cross-validation. Other columns
show the mean and standard deviation of the number of base estimators
(NN) obtained from the 10-fold cross-validation for each algorithm. Better
value in each line is highlighted with bold. As we can see, the best value is
achieved by methods that directly minimize the prediction error (DR and
RR), AP creates somewhat larger ensembles, while significantly ahead of
OA.

We also conducted the Friedman and Nemenyi tests for these data.
Results confirm that the sizes of ensembles obtained with pruning
algorithms are statistically different at 0=0.05. Figure 3 presents the results
of the Nemenyi test.

The ideal pruning algorithm should reduce both the error and size of
the ensemble relative to the original bagging ensemble. This condition is
satisfied in most cases; however, Table 4 shows that pruning algorithms
increase the error for some datasets. However, this degradation is not
statistically significant (Table 4), and the pruned model can be ten or more
times smaller than the original bagging ensemble, which can be crucial for
devices with limited memory (e.g., smart sensors). Distributions of AP, DR,
and RR results are very similar (with a slight advantage of AP in terms of
error); OA in our experiments demonstrates the worst performance in terms
of error and model size.

D

DR
RE —m———————————— o}
AP

Fig. 3. Comparison of the size of ensembles with the Nemenyi test. CD = 1.364

5. Conclusions. In this work, we investigated regression ensembles
pruning methods since previous research did not pay enough attention to
this area.

The first of the main contributions of our work is the formal
condition (7), which allows estimating the potential to reduce the size of the
convex regression ensemble. If there are no regressors in the ensemble for
which the value of Equation (7) is positive, then the reduction of such an
ensemble is impossible.
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Next, we proposed an Ambiguity-based pruning algorithm based on

well-known error-ambiguity decomposition and compared its performance
with other pruning techniques such as minimization of error using direct
and reverse approaches. The results of experiments with real datasets show
that Ambiguity-based pruning outperforms in most cases other algorithms
also the state-of-art Ordered Aggregation algorithm.
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1O.A. 3EJIEHKOB
OIITUMU3AIIUA PASMEPA AHCAMBJISI PETPECCOPOB

3enenxoe FO.A. OnTuMu3anus pasmepa aHcamoJisl perpeccopoB.

AHHOTanUs. AJITOpUTMBI 00y4YeHHUS aHcaMOJIel, Takue Kak bagging, 4acTo reHepUpyT
HEONpPaBJaHHO OOJbIIME KOMIIO3UIIUHU, KOTOpPbIC, OMHMO IOTPEOJICHHS BBIYHCIHTEIbHBIX
pecypcoB, MOTYT YXYIIIHTh 0000IIar0IIy0 crocobHocTh. OOpe3ka (pruning) MOTEHIHUATBHO
MOXKET YMEHBIIUTh pa3Mep aHCaMOJss W TMOBBICHTh TOYHOCTh, OJHAKO OOJBIIMHCTBO
HCCIIEN0BAHUN CEroJHs COCPEJOTOYEHBl Ha MCIOJIb30BAHUM 3TOr0 MOAXOAA INpPU PEIIEHHU
33129 KIacCH(HKAUH, a He PErPecCHH. DTO CBSA3aHO C TEM, UTO B 00IIeM cirydae oOpeska
aHcaMOJIeil OCHOBBIBACTCSI Ha JIByX METPHKAX: pa3HOOOpa3uH M TOYHOCTH. MHOTHE METPHKH
pa3HooOpa3usi pa3paboTaHbl sl 3a]ad, CBSA3aHHBIX C KOHEYHBIM HAOOPOM KIIACCOB,
OIpEeNsIeMbIX JHCKPETHBIMH MeTKamu. IlodTomMy OompmmHCTBO padoT 1o  oOpeske
aHcaMOJIeil COCpPeIOTOYCHO Ha TakKHX MpodiemMax: Kiacch(HKalus, KiIacTepu3anus U BeIOOp
ONTUMAJILHOTO IIOJMHOMKECTBA HPU3HAKOB. [l MpoOJEMbl PErpeccuu Tropasfo CIOKHEe
BBECTH METPUKY pa3HOoOpa3us. DakTHUECKH, CIMHCTBEHHOM M3BECTHOM HAa CErOAHSIIHHUN
JIeHb TaKOW METPUKOM SIBISICTCSI KOPPEISILIMOHHAS MaTpHIla, TOCTPOCHHAS Ha MPEICKa3aHHUsIX
perpeccopoB. JlaHHOE MCCII€[OBaHHE HAIPaBJIEHO HA YCTPaHEHHE 3Toro mpobena.
IpennoxeHno ycioBue, MO3BONISIONIEE NPOBEPUTH, BKIIFOUAET JIM PErpecCHOHHbIH aHcaMOIb
N30BITOYHBIE MOJIEIH, T. €. MOJEIH, yoaleHne KOTOPBIX YJydIlaeT HPOH3BOJUTENbHOCTE. Ha
0aze 9ITOro yCIOBUS IPEIJIOKEH HOBBIH alrOPHUTM OOpEe3KH, KOTOPBI OCHOBaH Ha
JICKOMITO3ULINK OLIMOKM aHcaMOJsl PerpeccopoB Ha CyMMY HHAMBHAYaJIbHBIX OIIHOOK
pErpeccopoB M HX PaccOriacoBaHHOCTb. IIpensiolkeHHbII METOJ CpaBHUBAETCA C JABYMs
MOAXO0AaMH, KOTOpPbl€ HANPSIMYH MHHUMH3UDPYIOT OIIMOKY IIyT€M I10CJIEA0BATEIbHOrO
BKIIFOUEHUsSI M MCKJIIOYEHHsI PErPeccopoB, a TaKKe C aJrOpPUTMOM YHOPSJOYEHHOro
arperupoBanust (Ordered Aggregation). DKCIIEPUMEHTBI MOJTBEPXKIAIOT, YTO IPEIIIOKECHHBIN
METOJl TMO3BOJSET YMEHBLINTh pa3Mep aHcaMOJs perpeccopoB ¢  OXHOBPEMEHHBIM
YIIY4IIEHHEM €ro NPOU3BOAUTENBHOCTH U PEBOCXOAUT BCE CPABHUBAEMbIE METO/IbI.

KiioueBble cioBa: obpeska aHcamOIs1, aHCaMOlIb perpeccopoB, o0ydeHHe aHcamoOus,
JIEKOMITO3ULINSI OLIMOKa-pa3Hoo0pasue, pa3HO0Opa3He perpeccopos.
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