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Abstract. Ensemble learning algorithms such as bagging often generate unnecessarily 
large models, which consume extra computational resources and may degrade the 
generalization ability. Pruning can potentially reduce ensemble size as well as improve 
performance; however, researchers have previously focused more on pruning classifiers rather 
than regressors. This is because, in general, ensemble pruning is based on two metrics: 
diversity and accuracy. Many diversity metrics are known for problems dealing with a finite set 
of classes defined by discrete labels. Therefore, most of the work on ensemble pruning is 
focused on such problems: classification, clustering, and feature selection. For the regression 
problem, it is much more difficult to introduce a diversity metric. In fact, the only such metric 
known to date is a correlation matrix based on regressor predictions. This study seeks to 
address this gap. First, we introduce the mathematical condition that allows checking whether 
the regression ensemble includes redundant estimators, i.e., estimators, whose removal 
improves the ensemble performance. Developing this approach, we propose a new ambiguity-
based pruning (AP) algorithm that bases on error-ambiguity decomposition formulated for a 
regression problem. To check the quality of AP, we compare it with the two methods that 
directly minimize the error by sequentially including and excluding regressors, as well as with 
the state-of-art Ordered Aggregation algorithm. Experimental studies confirm that the proposed 
approach allows reducing the size of the regression ensemble with simultaneous improvement 
in its performance and surpasses all compared methods. 

Keywords: ensemble pruning, regression, ensemble learning, error-ambiguity 
decomposition, diversity of regressors. 

 
1. Introduction. Ensemble learning is a method that combines 

several models, which are obtained by applying a learning process to a 
given problem. The main idea of this approach is that models view the 
problem from different points. Therefore, their combination improves 
robustness and accuracy either in classification or regression. However, the 
existing ensemble learning algorithms often generate unnecessarily large 
ensembles, which consume extra computational resources and may degrade 
the generalization ability [1]. There are theoretical and empirical 
publications that have shown that small ensembles can be better than large 
ensembles [1, 2]. 

The ensemble learning process can be described as the overproduce-
and-choose approach [3]. The overproduction phase is aimed to produce a 
large set ℱ0 = [𝑓𝑓𝑖𝑖 , 𝑖𝑖 = 1 …𝑀𝑀0]  of candidate base models 𝑓𝑓𝑖𝑖 . The choice 
phase is intended to select the subset of models ℱ ⊆ ℱ0  that can be 
combined to achieve optimal performance. 

In general, there are two ways to realize the choice phase. The first is 
a sequential selection when the algorithm starts from an empty set and 
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sequentially adds models according to some metric. Often the selection is 
combined with model generation. The second is pruning, in that case, the 
ensemble includes all candidate models, and the goal is to choose their 
optimal subset according to some metric. 

Both the selection and pruning have the potential advantage of 
reducing ensemble size, and improving performance [4]. However, the 
selection and pruning of classifiers, rather than regressors, has previously 
received more attention from researchers [5, 6]. Some of these methods 
have been adapted to the regression task [7], but there is a lack of 
theoretical and empirical works dedicated exclusively to the regression 
problem. 

There are theories considering the specifics of regression, in 
particular, these are the error-ambiguity decomposition [8, 9], which can be 
applied to develop a pruning algorithm. Here we present an ambiguity-
based pruning algorithm that sequentially removes regressors with the worst 
generalization ability. We compare the performance of this algorithm with a 
state-of-the-art Ordered Aggregation [10] method also as with two 
algorithms based on direct optimization of the quality metric. 

The rest of the paper organizes as follows. After the literature 
review, we introduce the mathematical condition that allows checking 
whether the regression ensemble includes redundant estimators, i.e., 
estimators, whose removal improves the ensemble performance. Next, on 
the basis of this approach, we propose the Ambiguity-based Pruning (AP) 
algorithm. In the last part of the paper, we present the results of experiments 
on real datasets that confirm that the proposed approach outperforms known 
methods in terms of accuracy and model complexity. 

2. Literature Review. We consider the typical regression problem, 
and for a clear presentation, we establish the notation that will be used 
below. Take 𝑋𝑋 to be the vector space of all possible inputs, and 𝑌𝑌 ∈ ℝ to be 
the vector space of all possible outputs and there exists some unknown 
probability distribution over the product space 𝑋𝑋 × 𝑌𝑌 . The training set 
𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 = {(𝐱𝐱1,𝑦𝑦1), (𝐱𝐱2, 𝑦𝑦2), … , (𝐱𝐱𝑁𝑁 ,𝑦𝑦𝑁𝑁)} is made up of N samples from this 
probability distribution. Every 𝐱𝐱𝑖𝑖 is an input vector from the training data, 
and 𝑦𝑦𝑖𝑖 is the corresponding output. The goal is to induce on the basis of the 
training set a function 𝑓𝑓:𝑋𝑋 →  𝑌𝑌  that approximates an unknown true 
function such as 𝑓𝑓(𝐱𝐱)~𝑦𝑦. The quality of the approximation is given by the 
generalization error, which usually is a mean squared error: 
 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓) = 𝔼𝔼[(𝑓𝑓(𝐱𝐱)− 𝑦𝑦)2]. 
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Because it is not possible to determine this true error of a model 𝑓𝑓, 
the error is estimated on a different set of data 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, containing 𝐾𝐾 samples: 

 
𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓) ≈ 1

𝐾𝐾
∑ [(𝑓𝑓(𝐱𝐱𝑖𝑖)− 𝑦𝑦𝑖𝑖)]2𝐾𝐾
𝑖𝑖=1 . 

 
We will consider a regression ensemble, i.e., the combination of a 

few models since this should improve robustness and accuracy. In 
regression problems, ensemble integration most often is performed using a 
linear combination of the base models [3, 6]. 
 

𝑓𝑓𝐸𝐸(𝐱𝐱) = ∑ [𝑤𝑤𝑖𝑖(𝐱𝐱) ∗ 𝑓𝑓𝑖𝑖(𝐱𝐱)]𝑀𝑀
𝑖𝑖=1 , 

 
where 𝑤𝑤𝑖𝑖(𝐱𝐱)’s are the weighting functions, and 𝑀𝑀 is a number of models 
𝑓𝑓𝑖𝑖(𝐱𝐱) ∈ ℱ  in the ensemble (models 𝑓𝑓𝑖𝑖  are often also referred to as 
estimators, predictors, regressors or learners). It follows from this that the 
problem of the models' selection is closely related to choosing the optimal 
weights. From now on, we will use notation 𝑓𝑓 instead of 𝑓𝑓(𝐱𝐱) and 𝑤𝑤 instead 
of 𝑤𝑤(𝐱𝐱) for simplicity. 

Study [8] proposed the ambiguity decomposition of ensemble error 
that separates the weighted average error of the individual regressors and 
variability among their estimations at an arbitrary single data point: 

 
(𝑓𝑓𝐸𝐸 − 𝑦𝑦)2 = ∑ 𝑤𝑤𝑖𝑖(𝑓𝑓𝑖𝑖 − 𝑦𝑦)2𝑀𝑀

𝑖𝑖=1 − ∑ 𝑤𝑤𝑖𝑖(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝐸𝐸)2𝑀𝑀
𝑖𝑖=1 . (1) 

 
The first term 𝑤𝑤𝑖𝑖(𝑓𝑓𝑖𝑖 − 𝑦𝑦)2 is the weighted error of the i-th ensemble 

member. The second, 𝑤𝑤𝑖𝑖(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝐸𝐸)2, is the ambiguity term, measuring the 
amount of variability among the ensemble member answers for this pattern. 
This equation explains why the quadratic error of the ensemble is less than 
or equal to the average quadratic error of the component estimators. Note 
that this decomposition is valid only for convex ensembles [9], i.e., when 
𝑓𝑓𝐸𝐸 = ∑ 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖𝑀𝑀

𝑖𝑖=1  and ∑ 𝑤𝑤𝑖𝑖 = 1,𝑤𝑤𝑖𝑖 ≥ 0.𝑀𝑀
𝑖𝑖=1  

An essential assumption of ensemble learning is that the base models 
should be sensitive to variations in the training set, so Decision Trees (DT) 
and Neural Networks (NN) usually are used. 

The most popular ensemble learning algorithms for regression are 
Bagging, Random Forest, Negative Correlation and Gradient Boosting. The 
Bagging algorithm [11] employs bootstrap sampling to generate many 
training sets from the original training set and then trains a model for each 
of those training sets. The component predictions are combined via simple 
averaging for regression tasks. Bagging can be used both with DT and NN. 
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The Random Forest [12] algorithm is similar to Bagging in that they both 
resample the data. However, Random Forest is based exclusively on DT, 
when it performs splitting, a random sample of the features is also selected. 
In Negative Correlation learning [13], all the individual estimators in the 
ensemble are trained simultaneously and interactively through the 
correlation penalty terms in their error functions. This approach is used 
exclusively with NN since in that case there is a possibility to include a 
penalty in the formula for weights tuning in the backpropagation method. 
The Gradient Boosting algorithm [14] on each iteration computes pseudo-
residuals and trains a new model using them as a target. Thus, each new 
estimator attempts to correct the error of its predecessors. The weight of 
each member is found in the process of a linear search. 

The stochastic nature of Bagging and Random Forest leads to 
ensembles that can be significantly improved by pruning. Many authors 
used this fact in their research [7]. The family of Boosting methods 
(including AdaBoost) produces more balanced ensembles in general. 
However, some researchers report on successful applications of pruning 
especially in case of the classification problem solved with the AdaBoost 
algorithm [1, 2]. 

Different authors proposed different classification schemes of 
pruning algorithms. In study [6] the authors classify them as partitioning-
based and as search-based. Partitioning-based methods divide the pool of 
models into subgroups. Then, for each subgroup, one or more models are 
selected using a given selection criterion. Search-based algorithms, in turn, 
are divided into (1) exponential that search the complete space of models, 
(2) randomized that use stochastic methods, such as evolutionary 
algorithms, and (3) sequential that search for a subset of the original pool by 
iteratively adding or removing models. 

In study [1] the authors split pruning algorithms into two categories, 
(1) selection-based that do not weight each model by a weighting 
coefficient and either select or reject the learner, and (2) weight-based 
algorithms that improve the generalization performance of the ensemble by 
tuning the weight on each ensemble member. 

In paper [6] the authors reviewed regression ensemble pruning 
approaches published before 2008, here we will consider some recent 
publications on the basis of the approach to the classification proposed in 
[1]. First, we review some selection-based algorithms. 

Study [5] reviewed a family of pruning methods based on modifying 
the order of estimators in a Bagging ensemble. This order in the original 
Bagging algorithm is unspecified, and the error of the ensemble generally 
exhibits a monotonic decrease as a function of the number of estimators. 

396

_____________________________________________________________________

Информатика и автоматизация. 2023. Том 22 № 2. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПРИКЛАДНАЯ МАТЕМАТИКА



According to pruning strategies based on ordered aggregation, from the 
subensemble ℱ𝐿𝐿−1  of size 𝐿𝐿 − 1 , the subensemble ℱ𝐿𝐿  of size 𝐿𝐿  is 
constructed by incorporating a single estimator selected from the set 
ℱ0\ℱ𝐿𝐿−1 , which contains the estimators from the original ensemble not 
included in ℱ𝐿𝐿−1. This estimator is identified using a rule that attempts to 
optimize the performance of the augmented ensemble ℱ𝐿𝐿 . The ordered 
ensemble that includes 𝐿𝐿 < 𝑀𝑀 estimators generally exhibits the error that is 
below the error of the complete bagging ensemble. 

Assuming that the generalization error of the regression ensemble 
can be expressed as: 

 
𝑀𝑀 = 1

𝑀𝑀2∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑀𝑀
𝑖𝑖=1

𝑀𝑀
𝑖𝑖=1 ,𝐶𝐶𝑖𝑖𝑖𝑖 = 1

𝑁𝑁
∑ �(𝑓𝑓𝑖𝑖(𝐱𝐱𝑡𝑡)− 𝑦𝑦𝑡𝑡)�𝑓𝑓𝑖𝑖(𝐱𝐱𝒏𝒏)− 𝑦𝑦𝑡𝑡��𝑁𝑁
𝑡𝑡=1 , (2) 

 
where the correlation matrix 𝐶𝐶 is estimated over a training dataset. In paper 
[10] the authors proposed Ordered Aggregation (OA) algorithm. The 
algorithm starts with an empty ensemble and then selects at each iteration 
the regressor that, when incorporated, reduces the training error (2) of the 
new ensemble the most. 

As for the disadvantages of this method, we can state the following. 
First, this approach based on the assumption that minimizing training error 
leads to the minimization of generalization error but in fact, this usually 
leads to overfitting. Second, time complexity grows exponentially. Third, 
the number of ensemble members is an external factor; there is no internal 
stopping criterion. 

Later the same authors [7] proposed to use Semidefinite 
Programming (SDP) introduced in [15] for the classification task. In that 
case, it is necessary to find a sub-ensemble for which the sum of the 
elements in the corresponding sub-matrix of 𝐶𝐶 is as low as possible. Note, 
that it is also NP-hard computational problem. 

Authors reported that the minimum of test error obtained either with 
OA and SDP-pruning is generally below the asymptotic error of the 
complete bagging ensemble, and pruned ensembles obtained by retaining 
only 20% of the original bagging ensemble have the best overall 
performance. The main conclusion of [7] is that the key to improvement in 
generalization performance is the selection of subsets of regressors whose 
bias is low and whose correlations are small or negative. 

Study [4] extended the OA approach using dynamic ensemble 
selection technique. Their algorithm consists of two steps. First, the base 
regressors are trained on bootstrap samples of the training dataset, and the 
regressor order is found for every instance in the training set. In the second 
stage, the regressor order that is associated with the training instance closest 
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to the test instance is retrieved. To find the closest training instance the  
k-Nearest Neighbors method is used. Empirical testing on several data sets 
showed that in most cases this approach outperforms original OA-pruning. 

There are also examples of the use of evolutionary methods for 
selecting the optimal set of estimators. For example, a genetic algorithm 
that searches in the space of candidate base models ℱ0 . In that case, binary 
fixed-length strings {0,1}𝑀𝑀0  where 𝑀𝑀0 = |ℱ0|  represent ensembles that 
form the evolving population. The pruned ensemble includes only 
estimators that have a value of 1 in the corresponding position of the coding 
string. In study [16] the authors used such an approach for pruning 
classification ensembles obtained by the AdaBoost algorithm. 

In paper [17] the authors generalized this approach as a multi-
objective optimization problem; they proposed simultaneously to minimize 
two variables – the generalization error of the ensemble and its size. 

Some authors claim that weight-based pruning is a more general 
approach than selection-based [1]. According to [2], the optimal weights of 
the regression ensemble can be obtained as: 

 

𝑤𝑤𝑖𝑖 =
∑ (𝐶𝐶−1)𝑖𝑖𝑖𝑖𝑀𝑀
𝑖𝑖=1

∑ ∑ (𝐶𝐶−1)𝑘𝑘𝑖𝑖𝑀𝑀
𝑖𝑖=1

𝑀𝑀
𝑘𝑘=1

. 

 
However, in real-world applications, some estimators can be quite 

similar, which makes the correlation matrix 𝐶𝐶 (2) ill-conditioned [2]. The 
second problem of this formulation is that the optimal combination of 
weights is computed from the training set, which can lead to overfitting [1]. 

In paper [1] the authors presented the ensemble pruning algorithm by 
expectation propagation that approximates the posterior estimation of the 
weight vector. It produces a «sparse» combination of weights, most of 
which are zeros. For experiments with the regression, authors used Bagging 
and Random Forest algorithms with 100 Decision Trees, they reported that 
the size of the pruned ensemble was reduced, on average, approximately ten 
times. 

In study [18] the authors explored two other weight-based pruning 
techniques: one based on a cocktail ensemble (CE) algorithm [19] and the 
second on stacking generalization [20]. 

CE that was designed for generating the ensemble of ensembles is 
the following. Since the combination of multiple regressors is an NP-hard 
problem, the authors of [19] proposed to use the pair-wise combinations of 
estimators. Through a linear combination of models 𝑓𝑓1  and 𝑓𝑓2 , a new 
ensemble is formed: 
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𝑓𝑓𝐸𝐸(𝐱𝐱) =  𝑤𝑤1𝑓𝑓1(𝐱𝐱) + (1 −𝑤𝑤1)𝑓𝑓2(𝐱𝐱) w.r.t. 𝑤𝑤1 ∈ [0,1]. 
 

Following the error-ambiguity decomposition [8], in study [19] the 
authors proved that given 𝑀𝑀1  and 𝑀𝑀2  as generalization errors of 𝑓𝑓1  and 𝑓𝑓2  
respectively, the optimal weight of 𝑓𝑓1  is 𝑤𝑤1 = (𝑀𝑀2 − 𝑀𝑀1) 2∆⁄ + 0.5, where 
∆= 𝔼𝔼��𝑓𝑓1(𝐱𝐱) − 𝑓𝑓2(𝐱𝐱)�2�  is the squared output difference of the two 
ensembles. 𝑀𝑀1, 𝑀𝑀2 and ∆ can be estimated from training data. CE algorithm 
starts from the selection base model with the lowest error; then each 
subsequently selected regressor is the one which reduces the combined 
estimated error the most. 

Stacking is a popular ensemble learning strategy, where the weights 
of the base models are the regression coefficients of the meta-level 
regressor [20]. The authors of [18] used the linear regression as a meta-
level; the final ensemble consists only of models with greater than zero 
weight. According to the experimental results, in some cases, the stacked-
based approach provides results with less error than standard Bagging and 
CE and generates the shortest ensembles [18]. 

Other authors use various randomized algorithms to search for the 
optimal combination of weights in the ensemble. Study [2] utilized the 
genetic algorithm with a floating coding scheme to represent weights. 
Authors reported that their approach outperforms on regression task original 
Bagging and AdaBoost.R2 algorithms with NN as the base model, an 
average number of networks after pruning was less than 4. 

All approaches discussed above are based on the set of models 
obtained by ensemble methods that produce estimators using a single 
learning algorithm. An alternative approach is the usage of heterogeneous 
models. In this case, a large number of models is generated using various 
learning algorithms, and the goal is to select those, which produce better 
generalization. This task also can be formulated as a pruning problem, there 
is an ensemble that includes all models, and it is necessary to remove non-
effective ones. Most of the works in this scientific flow are dedicated to the 
selection problem [21]. 

To conclude this review we can note that, in general, ensemble 
pruning is based on two metrics: diversity and accuracy [22, 23]. Formally 
the problem is to find a subset of candidate estimators {𝑓𝑓𝑘𝑘} ⊂ ℱ0  with both 
high accuracy (i.e., lower loss 𝐿𝐿({𝑓𝑓𝑘𝑘})) and maximum diversity 𝐷𝐷({𝑓𝑓𝑘𝑘}): 
 

𝑓𝑓𝑀𝑀 = argmin𝑘𝑘 𝐿𝐿({𝑓𝑓𝑘𝑘})  w. r. t. 𝐷𝐷({𝑓𝑓𝑘𝑘}) → max. 
 

Many diversity metrics are known for problems dealing with a finite 
set of classes defined by discrete labels [22, 24]. Therefore, much work on 
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ensemble pruning is focused on tasks of classification [25, 26], clustering 
[27, 28], and selection of an optimal set of features [29, 30]. 

For the regression problem, it is much more difficult to introduce a 
diversity metric. In fact, the only such metric known to date is the 
correlation matrix (2) proposed in [10]. This approach is used in recent 
papers: [31], but in general the number of studies on regression ensemble 
pruning published after 2010 is extremely small. 

We propose a new approach to regressor selection based on error-
ambiguity decomposition, which was introduced in [8], studied in detail in 
[9], and generalized to all supervised learning problems in [32]. Many 
authors have pointed out that this decomposition potentially opens ways of 
optimizing ensembles [33, 34]. Other applications of the error-ambiguity 
decomposition include, for example, adaptive sampling [35, 36]. 

3. Ensemble pruning on the basis of Error-Ambiguity 
decomposition. Study [37] proposed the Reduce-Error pruning algorithm. 
The first learner incorporated into the ensemble is the one with the lowest 
error, as estimated on the selection set. The remaining estimators are then 
sequentially incorporated in the ensemble, one at a time, in such a way that 
the error of the partial subensemble, estimated on the selection set, is as low 
as possible. This method was proposed for the classification problem, but 
we can adapt it to the regression task. So, the regressor 𝑓𝑓𝑀𝑀  that should be 
incorporated into the subensemble 𝑓𝑓𝐸𝐸𝑀𝑀−1 to construct 𝑓𝑓𝐸𝐸𝑀𝑀  is selected by the 
rule: 

 
𝑓𝑓𝑀𝑀 = argmin

𝑘𝑘
� 𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓𝐸𝐸𝑀𝑀−1(𝑥𝑥) ∪ 𝑓𝑓𝑘𝑘(𝑥𝑥), 𝑦𝑦),𝑘𝑘 ∈

(𝑥𝑥,𝑦𝑦)∈𝐷𝐷

ℱ0\𝑓𝑓𝐸𝐸𝑀𝑀−1. (3) 

 
Instead of the selection, we can also use a sequential reduction 

process, i.e., starting from an ensemble that includes all regressors, at each 
step, one of them whose removal reduces error maximally is deleted. This 
regressor is selected by the rule: 

 
𝑓𝑓𝑀𝑀 = argmin𝑘𝑘 ∑ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓𝐸𝐸𝑀𝑀(𝑥𝑥)\𝑓𝑓𝑘𝑘(𝑥𝑥), 𝑦𝑦)(𝑥𝑥,𝑦𝑦)∈𝐷𝐷 , 𝑘𝑘 ∈  𝑓𝑓𝐸𝐸𝑀𝑀 . (4) 
 
In what follows, we will refer to the algorithm presented by 

Equation (3) as a Direct Reduce Error (DR), and to the algorithm 
Equation (4) as a Reverse Reduce Error (RR). 

Consider the conditions under which a regressor selected according 
to Equation (4) must meet to create the maximum effect. Averaging the 
error – ambiguity decomposition (1) for all N samples in the dataset, we 
obtain the following formula: 
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𝔼𝔼[(𝑓𝑓𝐸𝐸𝑀𝑀 − 𝑦𝑦)2] = �𝑤𝑤𝑖𝑖
𝑀𝑀𝔼𝔼[(𝑓𝑓𝑖𝑖 − 𝑦𝑦)2]

𝑀𝑀

𝑖𝑖=1

−�𝑤𝑤𝑖𝑖
𝑀𝑀𝔼𝔼[(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝐸𝐸𝑀𝑀)2]

𝑀𝑀

𝑖𝑖=1

= �𝑤𝑤𝑖𝑖
𝑀𝑀(𝔼𝔼[(𝑓𝑓𝑖𝑖 − 𝑦𝑦)2]−𝔼𝔼[(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝐸𝐸𝑀𝑀)2])

𝑀𝑀

𝑖𝑖=1

, 

(5) 

 
where 𝑤𝑤𝑖𝑖

𝑀𝑀  is the optimal weight of the i-th estimator in the ensemble of 
size 𝑀𝑀. 

The first term 𝑀𝑀𝑖𝑖 = 𝔼𝔼[(𝑓𝑓𝑖𝑖 − 𝑦𝑦)2]  is the mean squared error of 
regressors in the ensemble, and the second one 𝐴𝐴𝑖𝑖𝑀𝑀 = 𝔼𝔼[(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝐸𝐸𝑀𝑀)2] is their 
ambiguity (note that its value depends on all ensemble members). Thus, to 
ensure 𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓𝐸𝐸𝑀𝑀) = 0, it is enough to fulfill the conditions: 

 
∀𝑖𝑖: 𝑀𝑀𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑀𝑀 , 𝑖𝑖 = 1, … ,𝑀𝑀. (6) 

 
This can be explained in terms of diversity. Formula (6) means that 

the i-th estimator, which satisfies this condition, differs from other members 
of the ensemble (i.e., its outputs are correlated with outputs of other 
members) in such a way that its error is compensated by this diversity. 

Using Equation (5), we can find the condition when the removal of 
one regressor will not lead to a growth of the total ensemble error, i.e.: 

 
𝔼𝔼[(𝑓𝑓𝐸𝐸𝑀𝑀 − 𝑦𝑦)2]− 𝔼𝔼[(𝑓𝑓𝐸𝐸𝑀𝑀−1 − 𝑦𝑦)2] ≥ 0. 

 
Let the regressor that is to be removed have index M. Since the 

ensemble can be presented as: 
 

𝑓𝑓𝐸𝐸𝑀𝑀 = ∑ 𝑤𝑤𝑖𝑖
𝑀𝑀𝑓𝑓𝑖𝑖𝑀𝑀

𝑖𝑖=1 = ∑ 𝑤𝑤𝑖𝑖
𝑀𝑀𝑓𝑓𝑖𝑖𝑀𝑀−1

𝑖𝑖=1 +𝑤𝑤𝑀𝑀𝑀𝑀𝑓𝑓𝑀𝑀 , 
 
after some algebra, we get the condition that the removed regressor must 
match in order not to reduce the overall performance: 

 

𝑤𝑤𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀 − 𝐴𝐴𝑀𝑀𝑀𝑀)− �� 𝑤𝑤𝑖𝑖
𝑀𝑀−1(𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑖𝑖𝑀𝑀−1)

𝑀𝑀−1

𝑖𝑖=1

− � 𝑤𝑤𝑖𝑖
𝑀𝑀(𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑖𝑖𝑀𝑀)

𝑀𝑀−1

𝑖𝑖=1

� ≥ 0. (7) 

 
Accordingly, this regressor must have a maximal positive value 

defined by Equation (7). An essential consequence of this formula is that it 
allows us to evaluate the potential of the current ensemble for pruning. If 
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there are no regressors in the ensemble for which the value of Equation (7) 
is positive, then the pruning of such an ensemble is impossible. 

Formula (7) is derived from Equation (4), but Equation (4) presents 
the algorithm that is more effective computationally since it requires just the 
computation of the MSE of each regressor. It can be done once before the 
pruning cycle since the errors of individual estimators do not depend on 
ensemble composition. The procedure presented by Equation (7) requires 
the computation of ambiguity value, which depends on the current ensemble 
composition and therefore changes on each step. 

The term in square brackets in Equation (7) represents the difference 
between the errors of the pruned subensemble and the original ensemble, 
from which the prediction of deleted regressor is excluded. This value 
determines the threshold that the value of 𝑤𝑤𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀 − 𝐴𝐴𝑀𝑀𝑀𝑀)  of deleted 
regressor must exceed. But, since we determine these values based on the 
training set, we are not sure that this takes into account all the information 
about the actual distribution of data. Thus, the assumption is reasonable that 
we can omit the term in square brackets and present the rule for choosing a 
regressor to be deleted as: 

 
max𝑖𝑖[𝑤𝑤𝑖𝑖

𝑀𝑀(𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑖𝑖𝑀𝑀) ≥ 0], 𝑖𝑖 = 1, … ,𝑀𝑀. (8) 
 
On the one hand, this simplification reduces computational 

complexity since we exclude the 𝐴𝐴𝑖𝑖𝑀𝑀−1 term. On the other hand, it could 
facilitate the selection of subensemble with greater generalization since it 
introduces stochasticity in the selection process. In most cases, the regressor 
that is selected for removal from the ensemble by rule Equation (8) will 
coincide with the one chosen by Equation (4). Discrepancies can only be 
observed when the ensemble is already well optimized, and differences 
defined by Equation (7) tend to zero. 

Since for the ensembles based on averaging like Bagging and 
Random Forest 𝑤𝑤𝑖𝑖

𝑀𝑀 = 1 𝑀𝑀⁄ , this rule can be simplified as: 
 

max
𝑖𝑖

[(𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑖𝑖𝑀𝑀) ≥ 0], 𝑖𝑖 = 1, … ,𝑀𝑀. 
 
We can show that this is equivalent to choosing a regressor with a 

maximum distance to the line defined by Equation (4) on the half-plane 
𝑀𝑀𝑖𝑖 ≥ 𝐴𝐴𝑖𝑖𝑀𝑀 . The distance from the point 𝑀𝑀(𝑥𝑥𝑀𝑀 ,𝑦𝑦𝑀𝑀)  to the line  
determined by the equation 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑦𝑦+ 𝐶𝐶 = 0  is defined as  
𝑑𝑑 = |𝐴𝐴𝑥𝑥𝑀𝑀 + 𝐵𝐵𝑦𝑦𝑀𝑀 + 𝐶𝐶| √𝐴𝐴2 + 𝐵𝐵2⁄ .  Substituting into this formula the 
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coordinate values of the 𝑖𝑖th regressor (𝑀𝑀𝑖𝑖 ,  𝐴𝐴𝑖𝑖𝑀𝑀) and the coefficients of the 
equation of the straight line 𝑀𝑀 − 𝐴𝐴𝑀𝑀 = 0, we obtain 𝑑𝑑𝑖𝑖 = |𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑖𝑖𝑀𝑀| √2⁄ . 

Figure 1 presents the example of the averaging ensemble of 
4 regressors trained on the airfoil dataset (its parameters will be given 
below). The left chart shows the values of 𝑀𝑀𝑖𝑖 and 𝐴𝐴𝑖𝑖𝑀𝑀 of these regressors; a 
solid line presents Equation (6). The right graph shows the corresponding 
values of the two terms of Equation (7). As it follows from the data 
presented on the right graph best candidate for removing is estimator 
number 2 according to Equation (7) and estimator number 0 according to 
Equation (8). Corresponding points are marked by red and green circles on 
the left chart, respectively. The exclusion of estimator 2 will lead to better 
performance on the training set, but, as said above, it can also lead to a loss 
of the generalization since the pruned model will be overfitted to training 
data. The ambiguity of the remaining ensemble members changes when any 
estimator is removed; therefore, the use of equations (7) and (8) can lead to 
different final structures. In the next sections, we will present empirical 
data, which confirms that rule Equation (8) allows us to generate more 
effective ensembles. 

 

 
Fig. 1. Bagging ensemble of 4 regressors 

 
The next issue that should be discussed is the data for the creation of 

an initial pool of regressors and their subsequent selection. Some authors 
use separated training and selection datasets. Researchers often use this 
approach to avoid overfitting, but it also can lead to degradation of the 
generalizing ability of the model since it reduces data available for the 
model generation. On the other hand, paper [10] reported that the size of the 
subensembles minimizing the error on the training data tends to be smaller 
than the optimal subensembles when the error is estimated on an 
independent selection set. Besides, the selection of the optimal subensemble 
is an NP-hard problem and not generally feasible in practice. 
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Our experiments in the preparation of this article confirm that the 
separation of data into training and selection sets does not improve overall 
performance. On the contrary, this often leads to a decrease in productivity 
since candidate models obtained on reduced training datasets do not have 
sufficient predictive ability. 

We compared three different approaches. First, we divided all the 
data available for training 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡  into independent sets: the first one for 
generating models and second for selecting 𝐷𝐷𝑡𝑡𝑡𝑡𝑠𝑠. Table 1 shows the results 
for cases when the size of the 𝐷𝐷𝑡𝑡𝑡𝑡𝑠𝑠  includes 50% and 33% of the data 
available. In the third experiment, we performed the generation and 
selection on the same set 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡, which included all available data. 

 
Table 1. The pruning model performance for various combinations of training and 

selection data 
Dataset splitting Bagging AP RR OA DR 

|𝐷𝐷𝑡𝑡𝑡𝑡𝑠𝑠| = 0.5|𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡| 0.273 0.235 0.243 0.259 0.243 
|𝐷𝐷𝑡𝑡𝑡𝑡𝑠𝑠| = 0.33|𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡| 0.250 0.228 0.226 0.234 0.219 
Training and selection on 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 0.223 0.189 0.189 0.202 0.197 

 
Table 1 shows the best average MSE obtained with 10-fold cross-

validation on the airfoil dataset. We used a single-layer artificial neural 
network (NN) as a base estimator. At each iteration, we first optimized the 
number of neurons in the NN, and then we generated the initial pool of 100 
estimates using the Bagging algorithm and, finally, applied reduction and 
selection algorithms. We tested two pruning algorithms Reverse Reduce 
Error (RR) (4) and Ambiguity-based Pruning (AP) (8) and two selection 
methods Direct Reduced Error (DR) (3) and Ordered Aggregation 
(OA) [10]. 

As we can see, the critical factor that defines the pruned model 
performance is the performance of the initial ensemble that improves when 
the amount of data available for training grows. Therefore, here and below, 
we propose to use the single dataset for the generating of candidate models 
and the selection of optimal subsets. 

Summing up the above, the proposed algorithm, which we call 
Ambiguity-Based Pruning (AP), is presented in Table 2. Since instead of 
using the exact expression (7) to select the regressor for reduction, we use 
an approximate value (8), we must stop the algorithm when the current 
MSE value begins to rise to control convergence and prevent the loss of 
generalization (lines 9-13). 
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Table 2. Ambiguity Based Pruning Algorithm 

INPUT Training dataset 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , pool 𝑓𝑓𝐸𝐸 of regressors fitted 
on 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡. 

1 Initialize 𝑒𝑒𝐸𝐸 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓𝐸𝐸) 
2 Repeat 
3        ensPruned is False 
4       For each 𝑓𝑓𝑖𝑖 in 𝑓𝑓𝐸𝐸 do 
5                   𝑒𝑒𝑖𝑖 =  𝑤𝑤𝑖𝑖

𝑀𝑀�𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑖𝑖𝑀𝑀� 
6       End for 
7        𝑗𝑗 = argmax(𝒆𝒆) 
8        𝑓𝑓𝑡𝑡𝑡𝑡𝑛𝑛 = 𝑓𝑓𝐸𝐸\𝑓𝑓𝑖𝑖   
9        If 𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓𝑡𝑡𝑡𝑡𝑛𝑛) ≤ 𝑒𝑒𝐸𝐸  
10               𝑒𝑒𝐸𝐸 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓𝑡𝑡𝑡𝑡𝑛𝑛) 
11               𝑓𝑓𝐸𝐸 = 𝑓𝑓𝑡𝑡𝑡𝑡𝑛𝑛 
12               ensPruned is True 
13        End if 
14 Until ensPruned is True 

RETURN 𝑓𝑓𝐸𝐸 
 

4. Empirical Analysis and Evaluation. In this section, we assess 
the generalization performance of Ambiguity-Based Pruning (AP) and 
compare this technique with other algorithms. As a state-of-art method that 
sets the baseline for the performance of pruning algorithms, we use Ordered 
Aggregation (OA). In study [7] the authors conducted an experimental 
comparison of OA with conventional ensemble methods such as Bagging, 
AdaBoost.R2, and Negative Correlation, and showed that it surpasses them 
in performance. Also, according to [7], OA outperforms other known 
pruning methods such as hybrid ensembles [38], GASEN [2], regularized 
stacked generalization [39, 40], and performs slightly better than SDP-
pruning [7], although the difference between average ranks of OA and SDP 
is not statistically significant. 

In addition to OA, we also included in the set of methods for 
comparing two algorithms discussed in Section 3, Direct Reduce Error 
(DR), and Reverse Reduce Error (RR). 

It should be noted that the authors of [7] defined the number of 
estimators in the OA-pruned ensemble as an external parameter. In our 
experiments, we used a slightly modified OA algorithm: the selection of 
regressors continues while the error in the training data does not increase 
(lines 9-13 in Table 2). Such an approach helps to identify the optimal size 
of the final subensemble. A similar condition was applied to other 
algorithms tested (RR and DR). 
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The experiments are carried out on 20 regression problems from the 
UCI-Repository and other sources. They include real-world problems from 
different fields of application: industry, biology, urban management, etc. 
All datasets were scaled to center around zero and have unit variance. 
Table 3 displays the number of instances (N), the number of attributes (K) 
and the source of the different datasets considered. 

 
Table 3. Datasets used in the experiments 

Dataset Description N / K Source 
abalone  Predicting the age of abalone  4177/8 KEEL 
airfoil  Aerodynamic and acoustic tests of airfoil 1503/5 UCI 
bank8FM  Simulation of how customers choose bank 8192/8 OML 
bike  Count of rental bikes 17379/12 UCI 
california Median house value of the block groups 20640/8 KEEL 
CASP  Properties of protein tertiary structure 45730/9 UCI 
CCPP  Combined Cycle Power Plant 9568/4 UCI 
compactiv  Computer systems activity measures 8192/21 KEEL 
concrete  Predicting the concrete compressive 

h 
1030/8 KEEL 

egrid  Electrical grid stability simulated data 10000/12 UCI 
elevators  Action taken on the elevators of the aircraft 16599/18 KEEL 
facebook  Facebook comment volume 40949/53 UCI 
forestFires Burned area of forest fires in Portugal 517/12 KEEL 
house  Median house price in the regions of USA 22784/16 KEEL 
kin8nm  Forward kinematics of an 8-link robot arm 8192/8 OML 
laser  Far-Infrared-Laser in a chaotic state 993/4 KEEL 
stock  Daily stock prices for aerospace companies 950/9 KEEL 
supercond  Superconductors and their relevant features 21263/81 UCI 
treasury  Economic data of USA 1049/15 KEEL 
wankara  The weather information of Ankara 1609/9 KEEL 

 
Data sources: 
− KEEL – KEEL dataset: https://sci2s.ugr.es/keel/datasets.php 
− OML – OpenML: https://www.openml.org/search?type=data 
− UCI – UC Irvine Machine Learning Repository: 

http///archive.ics.uci.edu/ml/ 
 
The experimental protocol is the following. We used 10-fold cross-

validation to estimate the mean squared error. The experiments involve 
building a bagging ensemble of M = 100 predictors. Following the work [7], 
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we use the feed-forward neural network (NN) with a single hidden layer of 
sigmoidal neurons and a linear unit in the output layer as a base learner. The 
networks are trained during 1000 epochs using the quasi-Newton 
optimization method BFGS. Before the generation of the bagging ensemble, 
the optimal number of hidden units in NN was explored using Bayesian 
optimization and a separate 5-fold cross-validation procedure. Once the best 
architecture of NN is found, a bagging ensemble is generated using neural 
networks with these hyper-parameters. Next, the bagging ensemble is 
pruned using various pruned algorithms. Finally, we computed the mean 
value of MSE on all testing folds for all compared algorithms, also as 
bagging ensemble, to use the last as a benchmark for performance 
comparison. All computations were performed using the Python 
programming language and scikit-learn and scikit-optimize libraries. 

Table 4 shows the average mean squared error and its standard 
deviation estimated by 10-fold cross-validation for each dataset and each 
prediction method. 

 
Table 4. Average mean squared error normalized by the corresponding scaling 

factor 
Dataset Scaling 

factor Bagging AP DR RR OA 

abalone 10-1 4.309 (0.272) 4.318 (0.272) 4.315 (0.272) 4.324 (0.273) 4.319 (0.272) 
airfoil 10-1 2.225 (0.112) 1.890 (0.099) 1.973(0.104) 1.887 (0.094) 2.023 (0.109) 
bank8FM 10-2 3.470 (0.002) 3.443 (0.002) 3.440 (0.002) 3.442 (0.002) 3.467 (0.002) 
bike 10-1 1.448 (0.091) 1.154 (0.065) 1.163 (0.066) 1.155 (0.065) 1.209 (0.071) 
cadata 10-1 2.775 (0.096) 2.685 (0.088) 2.684 (0.089) 2.683 (0.088) 2.756 (0.095) 
CASP 10-1 5.609 (0.012) 5.522 (0.013) 5.521 (0.013) 5.521 (0.012) 5.601 (0.012) 
CCPP 10-2 5.889 (0.005) 5.833 (0.005) 5.833 (0.005) 5.833 (0.005) 5.889 (0.005) 
compactiv 10-2 1.738 (0.001) 1.674 (0.001) 1.672 (0.001) 1.674 (0.001) 1.707 (0.001) 
concrete 10-2 8.629 (0.020) 8.206 (0.019) 8.139 (0.019) 8.140 (0.019) 8.333 (0.021) 
egrid 10-2 4.773 (0.003) 4.523 (0.003) 4.528 (0.003) 4.529 (0.003) 4.623 (0.003) 
elevators 10-2 8.829 (0.014) 8.575 (0.013) 8.575 (0.013) 8.575 (0.013) 8.754 (0.014) 
facebook 10-1 4.599 (0.188) 4.621 (0.181) 4.672 (0.177) 4.659 (0.180) 4.498 (0.181) 
forestFires 100 1.218 (1.664) 1.281 (1.585) 2.722 (2.429) 1.408 (1.553) 1.533 (1.614) 
house 10-1 4.207 (0.057) 4.138 (0.055) 4.140 (0.056) 4.140 (0.056) 4.193 (0.057) 
kin8nm 10-2 9.233 (0.008) 8.648 (0.008) 8.652 (0.008) 8.646 (0.008) 8.816 (0.008) 
laser 10-2 1.362 (0.015) 1.360 (0.015) 1.411 (0.016) 1.430 (0.017) 1.369 (0.015) 
stock 10-1 1.486 (0.112) 1.498 (0.126) 1.541 (0.128) 1.514 (0.126) 1.535 (0.121) 
supercond 10-1 1.759 (0.128) 1.737 (0.123) 1.741 (0.123) 1.735 (0.123) 1.754 (0.127) 
treasury 10-3 4.027 (0.002) 3.818 (0.002) 3.822 (0.002) 3.804 (0.002) 4.003 (0.002) 
wankara 10-3 6.099 (0.001) 6.022 (0.001) 6.043 (0.001) 6.081 (0.001) 6.152 (0.001) 
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The figures displayed are scaled by a factor shown in the first column of the 
table. To check whether the observed improvements in error are statistically 
significant, a paired Wilcoxon test was performed on cross-validation data 
for each dataset. Error values that are significantly better than bagging at an 
𝛼𝛼  - value of 0.05 are highlighted in boldface. Error values that are 
significantly better than OA at an 𝛼𝛼-value of 0.05 are underlined. As it 
follows from Table 4, there were no algorithms that perform analysis 
statistically worse than bagging and OA on the datasets selected for the 
experiment. 

Following the framework proposed by J. Demšar [41], we also 
conducted the Friedman test to compare the overall performance of different 
methods in the collection. The results obtained (FF = 59.14, the 
corresponding p-value is 2E-11, and the critical value of 𝜒𝜒2  distribution 
is 11.07) confirm that the hypothesis of the equivalent performance of all 
algorithms should be rejected at 𝛼𝛼 = 0.05. If the null hypothesis is rejected, 
we can proceed with a post-hoc Nemenyi test. Figure 2 displays the results 
of this test for 𝛼𝛼 = 0.05 . The differences in performance between 
algorithms whose average ranks are further than a critical distance (CD) are 
statistically significant. The obtained value of the CD is 1.686. In Figure 2, 
algorithms whose differences in performance are not statistically significant 
are connected with a solid line. 

 

 
Fig. 2. Comparison of algorithms’ performance against each other with the 

Nemenyi test. Groups of methods that are not significantly different (at 𝛼𝛼 = 0.05) 
are connected with a solid black line 

 
As follows from the data presented in Figure 2, four groups of 

models are distinguished, and models inside one group have statistically 
comparable results. The first group includes algorithms of pruning AP, RR, 
and DR, while AP has a slight advantage within this group. The second 
group consists of the algorithms RR, DR, and OA, the OA; this group 
showed the worst results. The third group comprises the bagging algorithm, 
as well as methods for pruning the DR and OA. The fourth group is 
represented only by a single-layer feed-forward neural network (NN). 
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The following conclusions can be drawn from the presented results. 
First, pruning methods can improve the performance of the initial set of 
regressors generated using the bagging algorithm. Data n Table 4 confirms 
this conclusion generally, but we should note that there are a few 
exceptions, namely results for datasets: abalone, forestFires, and stock. 
Second, methods based on the sequential exclusion of estimators from the 
initial ensemble (AP and RR) are superior to sequential inclusion algorithms 
(DR and OA). One possible explanation is that in the case of the exclusion, 
the algorithm has more information about the interaction of all estimators in 
the ensemble. In the case of the AP algorithm, this information is presented 
explicitly in the ambiguity term (1). When the algorithm implements an 
inclusion scenario, only information about the pair interaction of estimators 
is available explicitly given by correlation matrix Equation (2) in the OA 
algorithm. 

Another critical point associated with the quality of pruning 
algorithms is the size of the ensemble obtained after the algorithm 
application. Table 5 presents these data. 

 
Table 5. Average number of regressors in the pruned sub ensemble 

Data NN AP DR RR OA 
abalone  10.5 (3.4) 12.6 (2.1)  11.2 (2.5) 11.9 (1.9) 98.2 (5.7)  
airfoil  10.5 (3.5) 9.8 (3.0)  7.6 (1.8)  8.8 (2.3)  23.9 (5.2)  
bank8FM  17.1 (1.8) 9.8 (2.0)  9.7 (1.9)  9.6 (2.1)  94.8 (4.0)  
bike  14.9 (3.1) 11.0 (6.6)  7.2 (1.9)  7.7 (1.6)  22.3 (3.5)  
cadata  13.2 (5.3) 8.8 (2.0)  6.5 (1.8)  8.0 (2.4)  65.2 (10.4) 
CASP  19.1 (0.9) 10.8 (2.1)  10.4 (1.9) 10.3 (1.9) 89.7 (4.9)  
CCPP  13.5 (2.0) 5.1 (1.5)  4.2 (1.5)  5.1 (1.5)  99.5 (1.0)  
compactiv  11.2 (4.9) 9.9 (2.9)  8.5 (2.6)  8.5 (2.1)  53.4 (5.2)  
concrete  16.1 (1.7) 14.7 (3.2)  13.5 (2.5) 13.9 (2.8) 27.2 (5.8)  
egrid  18.9 (1.0) 14.4 (2.8)  11.1 (1.3) 12.4 (1.6) 34.2 (5.8)  
elevators  7.9 (2.6)  11.8 (3.3)  6.7 (2.6)  9.7 (1.7)  70.5 (8.2)  
facebook  11.9 (2.4) 8.7 (2.1)  8.3 (1.6)  8.1 (1.4)  31.9 (4.8)  
forestFires 9.1 (3.1)  43.1 (10.1) 13.1 (9.8) 23.7 (3.8) 7.9 (3.3)  
house  16.2 (2.3) 14.6 (3.0)  12.3 (1.9) 13.4 (2.9) 60.2 (7.4)  
kin8nm  18.0 (0.9) 12.4 (2.4)  9.3 (1.3)  11.2 (1.3) 39.3 (4.2)  
laser  11.1 (3.9) 13.8 (5.5)  7.8 (2.9)  8.1 (1.5)  24.0 (5.8)  
stock  13.1 (5.0) 12.0 (3.4)  9.7 (3.4)  10.9 (3.1) 28.4 (3.8)  
supercond  9.2 (4.4)  9.5 (2.0)  8.9 (1.7)  9.2 (1.8)  55.4 (8.6)  
treasury  11.8 (4.4) 7.3 (2.2)  5.5 (1.6)  6.7 (1.6)  45.9 (7.5)  
wankara  9.4 (3.7)  13.6 (3.3)  9.9 (2.2)  11.0 (1.8) 66.9 (10.5) 
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The first column of Table 5 (NN) contains the mean and the standard 
deviation of the number of neurons obtained during the optimization of NN 
at each iteration in the process of 10-fold cross-validation. Other columns 
show the mean and standard deviation of the number of base estimators 
(NN) obtained from the 10-fold cross-validation for each algorithm. Better 
value in each line is highlighted with bold. As we can see, the best value is 
achieved by methods that directly minimize the prediction error (DR and 
RR), AP creates somewhat larger ensembles, while significantly ahead of 
OA. 

We also conducted the Friedman and Nemenyi tests for these data. 
Results confirm that the sizes of ensembles obtained with pruning 
algorithms are statistically different at α=0.05. Figure 3 presents the results 
of the Nemenyi test. 

The ideal pruning algorithm should reduce both the error and size of 
the ensemble relative to the original bagging ensemble. This condition is 
satisfied in most cases; however, Table 4 shows that pruning algorithms 
increase the error for some datasets. However, this degradation is not 
statistically significant (Table 4), and the pruned model can be ten or more 
times smaller than the original bagging ensemble, which can be crucial for 
devices with limited memory (e.g., smart sensors). Distributions of AP, DR, 
and RR results are very similar (with a slight advantage of AP in terms of 
error); OA in our experiments demonstrates the worst performance in terms 
of error and model size. 

 

 
Fig. 3. Comparison of the size of ensembles with the Nemenyi test. CD = 1.364 

 
5. Conclusions. In this work, we investigated regression ensembles 

pruning methods since previous research did not pay enough attention to 
this area. 

The first of the main contributions of our work is the formal 
condition (7), which allows estimating the potential to reduce the size of the 
convex regression ensemble. If there are no regressors in the ensemble for 
which the value of Equation (7) is positive, then the reduction of such an 
ensemble is impossible. 
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Next, we proposed an Ambiguity-based pruning algorithm based on 
well-known error-ambiguity decomposition and compared its performance 
with other pruning techniques such as minimization of error using direct 
and reverse approaches. The results of experiments with real datasets show 
that Ambiguity-based pruning outperforms in most cases other algorithms 
also the state-of-art Ordered Aggregation algorithm. 
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Ю.А. ЗЕЛЕНКОВ 
ОПТИМИЗАЦИЯ РАЗМЕРА АНСАМБЛЯ РЕГРЕССОРОВ 

 
Зеленков Ю.А. Оптимизация размера ансамбля регрессоров. 

Аннотация. Алгоритмы обучения ансамблей, такие как bagging, часто генерируют 
неоправданно большие композиции, которые, помимо потребления вычислительных 
ресурсов, могут ухудшить обобщающую способность. Обрезка (pruning) потенциально 
может уменьшить размер ансамбля и повысить точность; однако большинство 
исследований сегодня сосредоточены на использовании этого подхода при решении 
задачи классификации, а не регрессии. Это связано с тем, что в общем случае обрезка 
ансамблей основывается на двух метриках: разнообразии и точности. Многие метрики 
разнообразия разработаны для задач, связанных с конечным набором классов, 
определяемых дискретными метками. Поэтому большинство работ по обрезке 
ансамблей сосредоточено на таких проблемах: классификация, кластеризация и выбор 
оптимального подмножества признаков. Для проблемы регрессии гораздо сложнее 
ввести метрику разнообразия. Фактически, единственной известной на сегодняшний 
день такой метрикой является корреляционная матрица, построенная на предсказаниях 
регрессоров. Данное исследование направлено на устранение этого пробела. 
Предложено условие, позволяющее проверить, включает ли регрессионный ансамбль 
избыточные модели, т. е. модели, удаление которых улучшает производительность. На 
базе этого условия предложен новый алгоритм обрезки, который основан на 
декомпозиции ошибки ансамбля регрессоров на сумму индивидуальных ошибок 
регрессоров и их рассогласованность. Предложенный метод сравнивается с двумя 
подходами, которые напрямую минимизируют ошибку путем последовательного 
включения и исключения регрессоров, а также с алгоритмом упорядоченного 
агрегирования (Ordered Aggregation). Эксперименты подтверждают, что предложенный 
метод позволяет уменьшить размер ансамбля регрессоров с одновременным 
улучшением его производительности и превосходит все сравниваемые методы.  

Ключевые слова: обрезка ансамбля, ансамбль регрессоров, обучение ансамбля, 
декомпозиция ошибка-разнообразие, разнообразие регрессоров. 
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