
DOI 10.15622/ia.22.5.3

M. PELOGEIKO, S. SARTASOV, O. GRANICHIN
ON STOCHASTIC OPTIMIZATION FOR SMARTPHONE CPU

ENERGY CONSUMPTION DECREASE

Pelogeiko M., Sartasov S., Granichin O. On Stochastic Optimization for Smartphone CPU
Energy Consumption Decrease.

Abstract. Extending smartphone working time is an ongoing endeavour becoming more and
more important with each passing year. It could be achieved by more advanced hardware or by
introducing energy-aware practices to software, and the latter is a more accessible approach. As the
CPU is one of the most power-hungry smartphone devices, Dynamic Voltage Frequency Scaling
(DVFS) is a technique to adjust CPU frequency to the current computational needs, and different
algorithms were already developed, both energy-aware and energy-agnostic kinds. Following our
previous work on the subject, we propose a novel DVFS approach to use simultaneous perturbation
stochastic approximation (SPSA) with two noisy observations for tracking the optimal frequency
and implementing several algorithms based on it. Moreover, we also address an issue of hardware
lag between a signal for the CPU to change frequency and its actual update. As Android OS could
use a default task scheduler or an energy-aware one, which is capable of taking advantage of
heterogeneous mobile CPU architectures such as ARM big.LITTLE, we also explore an integration
scheme between the proposed algorithms and OS schedulers. A model-based testing methodology
to compare the developed algorithms against existing ones is presented, and a test suite reflecting
real-world use case scenarios is outlined. Our experiments show that the SPSA-based algorithm
works well with EAS with a simplified integration scheme, showing CPU performance comparable
to other energy-aware DVFS algorithms and a decreased energy consumption.

Keywords: Android OS, dynamic voltage frequency scaling, stochastic optimization, SPSA,
energy consumption.

1. Introduction. Mobile devices, such as smartphones, tablets, and
smartwatches, became an integral part of modern life. Digital services provided
by these devices both improve quality of life and form new ways of social
interactions. More than 6.3 billion smartphone subscriptions were active, and
in 2024 this figure is expected to exceed 7 billion people. The most common
operating system (OS) for mobile devices today is Android [1].

As the battery capacity of mobile devices is limited, power consumption
optimization becomes an increasingly important task – no one wants to have
an important call interrupted because of a discharged battery. This issue
could be alleviated by applied software, which is capable of providing energy
consumption models and eco-friendly profiles. Then, a boost of device
longevity is provided by new hardware technologies like Li-Pol batteries or
heterogeneous big.LITTLE CPU architecture. Finally, Android OS contains a
power management subsystemwhich includes three components: energy-aware
scheduling (EAS), dynamic voltage frequency scaling (DVFS) governors and

1004 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

idle state (IS) governors, so improving underlying algorithms improves energy
consumption as well.

In essence, the DVFS algorithm analyzes the current state of the
smartphone and advises the CPU to switch to a particular frequency, so that
the algorithm could meet some optimization criteria. Performance and energy
consumption cannot be optimized at the same time, because to save energy
one has to set a low frequency, and higher computational capabilities call for
higher battery resources. Therefore, every energy-aware DVFS algorithm finds
some form of balance by introducing combined optimization criteria. Ideally,
applications run as slow as perceivable comfortable to save energy.

A significant part of research is mainly concentrated on DVFS
algorithms or better energy models for task scheduling, and there is a reason
behind such attention – energy-aware task allocation combinedwith onlineCPU
performance control could result in considerable energy savings. Simultaneous
perturbation stochastic approximation (SPSA) is one of the possible ways
to track optimal CPU frequency in terms of both energy consumption and
performance. On average, the algorithm will nearly follow the steepest descent
direction [2]. SPSA could be considered a random search technique, and it
helped in solving various computer science-related tasks [3]. In our previous
work, we investigated an SPSA-based DVFS governor using a single noisy
observation [4], and while working on par with commonly used algorithms,
further experiments confirmed that an approach proposed there, although
already usable, was not final. SPSA with two noisy observations is more stable
compared to one observation version [5]. Thus, the optimal frequency tracking
process converges faster on average.

The main contribution of this paper is a proof of the concept that the
energy-aware DVFS algorithm could be built based on SPSA with two noisy
observations. Additionally, we formulate a different average risk function
which takes into account the cost of execution of a program at a particular
frequency to save energy. Technical considerations are also investigated, for
example, whether is it worth running our new DVFS governor with EAS or
Completely Fair Scheduler (CFS), and how to connect it with EAS when
needed. We also take into account the notable fact that the CPU frequency
change cycle could be considerably longer than the DVFS cycle.

This paper is organized as follows. In Section 2, an overview of the
DVFS and EAS alongside the existing algorithms for modern smartphones
for those subsystems is given. It also contains a brief overview of stochastic
optimization in general, a description of the SPSA approach and a review
of the previous work in the field. Section 3 contains a description of the
proposed DVFS algorithms. Experimental setup and methodology discussion

1005Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

are presented in Section 4, while experimental results are analyzed in Section 5.
Final remarks are given in Section 6 to conclude this paper.

2. Overview
2.1. DVFS and EAS. CPUs in modern smartphone systems-on-a-chip

are always multicore. Generally, this architecture is homogeneous – each
core has the same computational capabilities and power profile. However,
there is a novel approach for mobile device CPU design reflected in the ARM
bid.LITTLE architecture – a heterogeneous CPU. Cores are divided into several
clusters, and each core is homogeneous only within its cluster. Therefore
it is possible to run computationally non-demanding programs on weaker,
but energy efficient (so-called "LITTLE") cores, while more powerful and
power-hungry ("big") cores are utilized for prioritized or computationally
intensive tasks. A real-world example of such a design is given in Table 1.

Table 1. Xiaomi Redmi Note 8 Pro CPU clusters frequencies
A55 A76

F (Hz) I (mA) I/F
(mA/GHz) F (Hz) I (mA) I/F

(mA/GHz)
2000000 90.04 45.02 2050000 324.33 158.21
1933000 85.8 44.39 1986000 307.98 155.08
1866000 80.27 43.02 1923000 291.52 151.60
1800000 72.77 40.43 1860000 269.61 144.95
1733000 66.61 38.44 1796000 247.53 137.82
1666000 62.05 37.24 1733000 233.56 134.77
1618000 58.95 36.43 1670000 209.73 125.59
1500000 52.33 34.89 1530000 177.39 115.94
1375000 44.83 32.60 1419000 152.46 107.44
1275000 39.69 31.13 1308000 130.33 99.64
1175000 35.5 30.21 1169000 105.19 89.98
1075000 31.24 29.06 1085000 91.11 83.97
975000 27.86 28.574 1002000 79.53 79.37
875000 25 28.571 919000 70.65 76.88
774000 23.5 30.36 835000 61.38 73.51
500000 19.55 39.10 774000 56.85 73.45

It is important to note for our research that core configuration is available
within OS, and operating frequency is set uniformly for the entire cluster, that
is, every core within a cluster always works at the same frequency. Different
clusters might work at different frequencies at the same time.

1006 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

DVFS as a technique is a control over CPU operating frequency and
voltage at runtime to increase or decrease CPU performance at a cost of power
consumption. Generally, CPU power consumption is related to the cube of
its frequency, and as a side effect CPU heats. However, cooling mechanisms
available to mobile devices are limited both by power usage and form factor,
therefore most of the time heat could only be dissipated by surrounding air.
Thus therefore, operating frequencies are limited to those producing an amount
of heat that could be consistently dissipated – at the time of writing, about 2
GHz for commercially available CPUs.

Although dependency between power consumption and frequency is
still vaguely close to linear at these levels, power efficiency – the relation of
power to performance – is clearly exponential [6]. Power efficiency could also
be interpreted as the cost of instruction execution at a selected frequency. A
complimentary optimization criterion is the execution time, so in practice, the
goal is to achieve a certain balance between power and performance. Android
OS DVFS governors are OS modules that observe the current state of a device
and send signals to the CPU to increase or decrease operating frequency.
For example, powersave and performance governors set minimum and
maximum frequency respectively.

Although we say that DVFS governors "set" some frequency to a
cluster, it is technically a recommendation to the CPU, not a direct assignment.
Frequency change does not happen immediately, and DVFS cycle length – the
time between governor invocations – could be considerably lower than the
frequency change time. For example, the default cycle length for the OnDemand
governor is 10 ms, while both clusters of Xiaomi Redmi Note 8 Pro CPU take
about 30 ms to change frequency. So while the first governor invocation could
initiate hardware frequency update, from the CPU perspective the next two
invocations are as good as non-existing.

Energy-aware scheduling (EAS) [8] is an Android OS task scheduler,
which could only operate in heterogeneous CPU topologies such as ARM
big.LITTLE. Power management for symmetric topologies is uniform, that
is, CPU frequency is set globally for the entire CPU, therefore, the maximum
occupancy and performance are the same for every core. EAS uses a normalized
energy model for every core cluster, taking into account available frequencies
and power usage. When a task needs to be scheduled, EAS chooses the core
to run this task in such a way that CPU power consumption will increase in
the least possible way. However, EAS works while the CPU load is lower
than 80%, otherwise, a Completely Fair Scheduler is used until the load is
decreased. In order to obtain consistent power savings, EAS should be able to

1007Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

issue signals to hardware to control the CPU clusters’ maximum occupancy,
and schedutil DVFS governor is considered to be a part of EAS.

2.2. DVFS algorithms. There is a number of commonly available
DVFS governors for Android OS. Some of them are Android-specific, while
others were initially used in the Linux kernel [9]:

PowerSave: This governor sets the CPU to the minimal available
frequency and keeps it forever. This governor saves the most energy but
provides the worst performance.

Performance: This governor works exactly the opposite, it sets the
maximum frequency for the best performance and highest energy consumption.
Performance and PowerSave reflect two extreme optimization strategies.

OnDemand: This governor sets cluster frequency proportionally to
the maximum core load – active time divided by total time – within a cluster
observed between governor invocations, so the device remains responsive.
When a particular CPU load threshold (∼ 80%) is reached, the maximum
frequency is set until the load is again below the threshold.

Conservative: An improvement over OnDemand, this governor
gradually increases the frequency when there is activity on the CPU and
decreases it is to the lowest value when there is none to little activity.

Interactive: This governor is developed specifically for Android OS
with UI interaction in mind. Operating frequency is once again dependent on
the activity level, but activity level evaluation is event-driven in addition to
timer-driven. User interaction such as screen touch is among tracked events.

schedule: This is a governor designed to work exclusively with EAS.
Its basic idea is the same as in OnDemand, but the definition of the load is
based on the EAS energy model instead of the active time to total time ratio.

While there is a large number of DVFS algorithms created by standalone
developers to enhance the characteristics of the default algorithms, additional
approaches are covered in the literature.

Research is done on replacing EAS and schedutil with a different
approach for better energy efficiency. Unlike the static energy model of EAS,
AdaMD [10] implements a scheduling routine which regularly inspects various
resources that are currently required by executed processes and reassigns
them to a more suitable cores if needed. Compared to other thread-to-core
approaches, this technique allows to save up to 28% o energy while satisfying
95% of performance constraints.

In recent years there is a research trend to evaluate neural network usage
for general-purpose DVFS governors. For example, the “Long Short-term
Memory” effect of the recursive network could be used, as correlations should
be made only for short-term data to prevent gradient attenuation problems [11].

1008 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

Such network architecture reduces CPU power consumption by a maximum of
19% in comparison to common DVFS.

DVFS could be built in mind with other criteria than performance or
energy saving. Chip temperature is another important factor, and by using
decisions from the relatively simple neural network in theDVFS process average
chip temperature could be reduced by up to 18 deg Cwith a minimum execution
overhead and comparable performance [12]. However, chip temperature is
not mutually exclusive with energy efficiency, as using deep reinforcement
learning neural network to determine the temperature of the chip and estimating
environmental temperature could result in 23.9% less energy consumption
while retaining the required level of performance [13].

Application-specific DVFS models could also be built. For instance, a
DVFS model for augmented reality applications that takes into account the
requested frame rates and response time could theoretically be decreased by
up to 80%, but it was not proved in practice yet [14].

Graphical Processing Unit (GPU) is a powerful device to offload
computations from the CPU, and it also could operate on different frequencies,
so it is reasonable to make a joint DVFS strategy for both devices. A simple
rule-based model could reduce energy consumption by 18.11%, while the
smartphone frame rate drops by 3.12% [15]. Another approach is to aggregate
load, energy and temperature data for CPU, GPU and RAM, and assign
frequency for each component by joint priorities list. This technique saves
at least 26.8% power compared to default governors and state-of-the-art
approaches [16].

2.3. Idle states and idle state governors. Modern CPUs are capable to
enter idle states where program execution is suspended. Multi-core processors
can set one or more of their cores to idle state, while other cores remain active.
While in an idle state, part of the processor hardware is switched off, so it
consumes less power. The deeper the state, the more hardware is switched off,
but at the cost of greater entry and exit times. In Linux and Android OS terms,
the total enter latency and minimum time hardware would stay in a particular
idle state is called target residency [17].

For example, without going into much detail, here is a list of idle
states of dual-core ARM CortexA9 processor [18] in order of increasing idle
depth:

– C0 – active state.
– C1 (WFI) – most CPU timers are deactivated. Exit latency is 4 us.
– C2 ((CPUsOFF,MPU+CORE INA) –CPU is off, memory protection

unit (MPU) is activated to protect critical data, and the core is inactive. Exit
latency is 1100 us.

1009Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

– C3 (CPUs OFF, MPU + CORE Closed Switched with Retention) –
similar to C2, but the core is in CSWR mode. Exit latency is 1200 us.

– C4 (CPUs OFF, MPU CSWR + CORE Open Switched Retention) –
similar to C3, but the core is in OSWR mode. Exit latency is 1500 us.

It is important to note that ability of a CPU to enter a particular state
could be or could be not utilized by mobile device system-on-chip and OS,
therefore, it is possible to observe a smartphone capable of entering only C1,
while its CPU could go deeper by design.

The idle state governor is a module within the Android OS kernel that
can track the current system state and send a signal to the CPU to enter or
exit some idle state for one or more of its cores. There are several default
algorithms generally available in Android devices, and at the time of writing
the default algorithm is the menu. It tries to predict the current idle duration,
then adjusts the obtained value based on a number of factors, and then tries
to find the deepest idle state given its target residency and exit latency. The
prediction of the current idle duration is based on the history of the previous
idle times.

2.4. Evaluating Energy Consumption. Measuring smartphone CPU
energy consumption is a non-trivial task, and there are several approaches
available. We classify them into direct and non-direct approaches [7].

Direct approaches involve the physical measurement of momentary
CPU electrical parameters either with external or internal sensors. Energy
consumed over a period of time could be estimated as:

E =

∫ t

0

U(t)I(t) dt,

where U(t) is momentary voltage, I(t) is momentary current. While it is
technically possible to have separate circuits to power the CPU at different
voltages, it is challenging, so in commercially available smartphones DVFS
is in fact dynamic frequency-only scaling, while voltage changes only due
to natural processes within a battery1. Therefore, we may rewrite the above
formula as:

E = U

∫ t

0

I(t) dt, (1)

1Battery voltage drops during discharge, but between 100% and 20% the change is technically
negligible by electronic components

1010 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

where U is a nominal voltage on a CPU. Equation (1) allows to simplify
measurement scheme and use only an ammeter. In practice, as ammeter
readings are discrete, the Riemann sum is calculated instead of the actual
integral.

While this approach could provide the most reliable results, there
are considerable limitations to it. First of all, while the internal sensors
are rather common for smartphone peripherals such as Bluetooth and Wi-Fi
modules, they are seldom used to estimate the CPU power consumption 2. The
frequency and momentary current multiple times over a single second. An
external ammeter should be able to catch such high-frequency changes, so
most advanced commercially advanced ammeters operate in KHz range [19],
but their cost could be a prohibitive factor. Additionally, ammeters should be
connected, consequentially, with the measured device. Smartphone electronics
do not allow us to easily connect CPU power input with ammeter. Alternatively,
one could connect an ammeter to a battery connection slot while also using an
external power device at a constant voltage, but readings acquired with this
approach will be inevitably skewed by other smartphone peripherals such as a
screen or Wi-Fi module.

Non-direct approaches estimate energy consumption by associating
statistics unrelated to energy to it by some model. For example, one could
estimate how much energy is consumed by a specific CPU instruction [20].
Due to the size of instruction sets in modern CPUs, we consider this approach
impractical and instead follow the model proposed by Google [21]. Under this
model, a CPU operating at a specified frequency consumes a specific constant
current. Therefore, equation (1) is simplified even further as:

E = U
n∑

i=1

I(fi)tfi, (2)

where n – number of frequencies available to CPU, fi – particular operating
frequency, I(f)i) – constant current at a specified frequency, tfi – time spent
by CPU at a frequency fi.

Equation (2) is further supported by Android OS, as tfi is stored in
special time-in-state files in the /sys directory. Temporal data is stored in
separate lines for each frequency as “<frequency><time>”. The number of
lines is equal to n. It is worth noting, that the CPU clusters under big.LITTLE
architecture are treated as separate CPUs, so lines in time-in-state also

2Anecdotally, we didn’t encounter them in any devices available to us.

1011Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

differ from core to core depending on the cluster they belong to. Time
is measured in 10 milliseconds units, and the count is started when the
corresponding OS driver is installed or reset to measure processor data. Values
for I(fi) are stored in a weight coefficients file called power_profile.xml.
This file should be provided by the smartphone manufacturer, but unfortunately,
it is not always the case. However, absent power constants could be extracted
from other smartphones using the same CPU model with the same or similar
core topology. An example of such file contents is given in Table I.

To estimate power consumption one needs to multiply timing data to
corresponding weight coefficients in a device power_profile.xml - a file
provided by a smartphone manufacturer which contains power metrics for each
smartphone device or peripheral. A sample of its contents related to CPU is
shown in Table I. Power constants there are reported inmA3.

Different DVFS governors produce different time distributions over
available sets of frequencies. Methodologically, when a voltage is constant,
electrical charge is a main indicator of energy consumption and Equation (2)
could be rewritten as:

qfi = I(fi)tfi,

q =
n∑

i=1

qi,

E = Uq,

where qfi is an electrical charge spent at i-th frequency, q – total electrical
charge. Because of this, we report energy consumption in our experiments in
mAh.

2.5. Simultaneous Perturbation Stochastic Approximation. In a
significant number of control problems target system behavior could be
described in the form of empirical quality functional (also known as medium
risk functional). An optimal control action is taken based on the extrema of
this functional. In our case, CPU operating frequency might be determined
based on the list of available frequencies, current CPU workload and its history
and other quality criteria such as energy consumption.

3It is necessary to point out, that, in general, power constants reported inmA are not enough to
make conclusions on energy consumption, as voltage would also be required. However, as constant
nominal voltage for mobile CPUs available to market is 1V, current constants are numerically
equal to power constants.

1012 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

More formally, let Ft(x,w) be a function of discrete time t, some
parameter x and randomised vector w. The medium risk functional is defined
as:

ft(x) = EwFt(x,w),

and the minimum point of ft(x) as

θt = argmin
x

ft(x).

Then in order to find the optimal point the task is to build the sequence
of estimations {θ̂n} such that ||θ̂n − θt|| → min based on observations of the
random variables Ft(xn, wn), n = 1, 2,..

We define amomentary trial perturbation as a sequence of the observed
uniformly symmetrically distributed independent random vectors ∆n with
covariance matrices:

cov{∆n∆
T
j } = δnjσ

2
∆I,

where δnj ∈ {0, 1} is the Kronecker symbol, 0 < σ∆ < ∞. The Bernoulli
random vectors are suitable and frequently used as a simultaneous trial
perturbation because the vector coordinates∆n are independent of one another
and have equiprobable values of ±1.

It is possible to use three following algorithms when observations are
noisy:

θ̂n = θ̂n−1 −
αn

βn
∆nyn,

θ̂n = θ̂n−1 −
αn

2βn
∆n(y

+
n − y−n),

θ̂n = θ̂n−1 −
αn

βn
∆n(y

+
n − yn),

to build a minimum point estimation sequence for a functional F (x) without
significant loss of convergence rate [22]. We denote noisy observations in the
following way:

1013Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

yn = F (θ̂n−1, w
+
n) + vn,

y−n = F (θ̂n−1 − βn∆n, w
+
n) + vn,

y+n = F (θ̂n−1 + βn∆n, w
+
n) + vn.

{αn} and {βn} here are sequences of non-negative numbers conforming to a
set of conditions, w+

n is a stochastic perturbation vector for y+n observation, v+n
is an arbitrary external noise during the observation. This recurrent procedure
is called simultaneous perturbation stochastic approximation (SPSA) because
it inseparably contains a randomized trial perturbation which is simultaneous
in all coordinates. Overall, SPSA could be classified as a stochastic gradient
descent algorithm.

The first algorithm uses only a single noisy observation, and the second
and third involve two noisy observations. For the purposes of distinction
between those variations of the SPSA algorithm, we will call the version with
a single noisy observation as SPSA1, and the latter two variations – SPSA2.

Among the conditions for consistency of estimates we specifically set
out a condition for a weak correlation between the trial perturbation {∆n} and
sequences of indeterminacies {wn} and {vn} as the most important. SPSA1
has lower mean squared convergence rate compared to SPSA2 but has the
advantage of using only a single noisy observation, which could be more
time-efficient at the end, hence both variations could be used in practice.

Both variations of the SPSA algorithm follow the same general flow:
1. Define an empirical functional F (x).
2. Make an initial optimal estimate of θ̂0.
3. Perturb a current optimal estimate.
4. Obtain the required amount of the noisy observations ofF and update

a current optimal estimate θ̂n.
5. Go to Step 3.
Previously, we developed a DVFS governor based on SPSA with a

single noisy observation [4]. It was shown, that overall its energy consumption
is between OnDemand and Interactive governors under the CFS scheduler
with a performance drop of no more than 3.06%, but in some specific scenarios
it could save up to 16% of the total CPU energy.

1014 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

3. Algorithm
3.1. Defining The empirical Functional. Empirical functional is

a crucial component for SPSA algorithm. Although from a theoretical
perspective, its definition could vary significantly even within the same
problem [2], we used the lessons learned of the SPSA1 governor and added
the following considerations to the functional definition.

We start our discussion by defining a load L on the CPU core as the
percentage of active CPU time from the total CPU time (active and idle) over
some period of time. This definition is the same as the one defined for the
OnDemand governor. Then, a computational volume or simply volume denotes
a product of frequency by load. Essentially, the volume is a number of the
CPU ticks dedicated to active computational processes, and it is closely related
to the number of the executed instructions. The crucial observation for DVFS
is that the same volume produces different loads under different frequencies:
the higher the frequency, the lower the load, and vice versa.

The task of DVFS is peculiar in the sense that we can base our DVFS
strategy on the history of the CPU load observations among other criteria,
but still, the future load cannot be reliably determined – for example, we
can’t predict that smartphone would receive a phone call in the next second.
Therefore, we introduce target load or threshold load LT – a specific constant
value of load over some observation time. In our experiments we used
empirically determined values of LT from 60% to 80% – such values provide
additional computational capacity in a scenario where the actual load proved
to be much higher than anticipated from the load history. LT is used as a
boundary between two different DVFS strategies:

– If the current load exceeds LT , we assume that the smartphone
performs a rather long computational task. Therefore, all CPU resources
should be made available for it, and the optimal frequency that DVFS should
set is the one that provides the closest load to LT under the currently observed
volume. In this case, performance considerations outweigh energy savings.
Long-term, if a load doesn’t drop below LT , the maximum frequency will
eventually be set until the load drops.

– If the load does not exceed LT , it means there is room to optimize
energy consumption by finding such a frequency that provides the best energy
efficiency and the projected load still does not exceed LT .

We now define execution efficiency or cost-of-execution (CoE) of an
operating frequency f in the following way:

CoE =
E(t)

nticks
=

∫ t

0
U(t)I(t) dt

ft
=

IfU

f
,

1015Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

where CoE is cost-of-execution, E(t) is energy spent over a period of time,
nticks is a number of CPU ticks observed during that time, t is the observed
period of time. The discussion on translation from integral to constant product
is given in Subsection 2.4. In essence, CoE is the energy cost of one CPU tick
under a specific operating frequency.

CoE could also be viewed as a priority for the DVFS governor for the
frequency selection – the lower the value, the higher the priority. Under this
point of view, some generalized cost-of-execution GCoE metric could be used
instead of CoE to prioritize the frequency selection, as it only needs to establish
order relationship between frequencies.

In our research, we defined it as:

GCoE =
If
f
.

As discussed, the CPU voltage is safe to be treated as constant, so by
removing U term from the CoE definition we do not change the established
order relationship4.

It is important to note that, given the power constants available, with the
increase of f If also increases, butGCoE(f) is generally a non-monotonically
increasing function. An example is given in Table 1, where the A55 core
consumes the least amount of power at a frequency of 500MHz, but is most
energy efficient at 875MHz.

In the end, when the current load is below LT , the optimal frequency
would be the one with the lowest GCoE among those who could process the
same volume without the projected load exceeding LT .

As we defined the algorithm to determine the optimal frequency in
both scenarios (performance and optimization), the result of our empirical
functional and the quality of the current frequency estimation is determined as
the distance between the current and optimal frequency indexes in a sorted
frequency list.

3.2. Theoretical Foundation. In order for empirical functional to be
usable in the SPSA2 algorithm and to prove the consistency of the algorithm,
some conditions should be satisfied. First, the changes of optimal frequency
are bounded by a task definition:

∥fn − fn−1∥ ⩽ δ < ∞.

4Besides, given that in our case U=1V, CoE and GCoE are numerically equal.

1016 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

Then, F (f) satisfies two assumptions:
Assumption 1: F (f) is strongly convex and have a minimum point f∗:

⟨f − f∗,∇F (f)⟩ ⩾ γln1.5− 1, ∀f ∈ R.

Assumption 2:
The gradient∇F (f) satisfies the Lipschitz condition:

∥∇F (f1)−∇F (f2)∥ ⩽ γ1.5max(f1;f2) · ln21.5∥f1 − f2∥,
∀f1, f2 ∈ R.

It is proved that SPSA2 converges when both assumptions for empirical
functional are met [5], therefore, algorithm from 3.1 converges.

3.3. Strategies to Implement Observations. A straightforward
approach to implementing SPSA2 takes 3 invocations of the DVFS routine.
We note that due to the absence of floating point operations in the Android
OS kernel, it is easier to manipulate with frequency indexes in a sorted array
rather than with the frequencies themselves. In all cases if the index is beyond
array boundaries, it is set to low or high boundary correspondingly.

1. Given the current frequency index ii, a random number∆ = ±1 is
generated, and a frequency with the index ii + ∆β is set to obtain the first
noisy observation y+ of functional.

2. Then the frequency with index ii −∆β is set to obtain the second
noisy observation y−.

3. New frequency is set by index ii+1 = ii − α(y+−y−)
2∆β .

However, by definition of SPSA2 a faster approach is also possible
which takes only two invocations:

1. The current functional value under the current frequency with index
ii is treated as the first noisy observation y0. A random number ∆ = ±1 is
generated, and a frequency with the index ii +∆β is set to obtain the second
noisy observation y+ of functional.

2. New frequency is set by index ii+1 = ii − α(y+−y0)
∆β .

However, waiting for 2 or 3 invocations to be finished could be
detrimental to governor performance and estimation accuracy. Therefore,
we try out another scheme, which is not strict in terms of the SPSA2 definition,
but takes only a single iteration:

1. Given the current frequency index ii, a random number∆ = ±1 is
generated. The load for frequencies with indexes ii ±∆β is calculated in the
assumption that the volume will remain the same, and the functional value for

1017Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

the modelled observations y+ and y− is obtained. Then the new frequency is
set by index ii+1 = ii − α(y+−y−)

2∆β .
In the last scheme, we also added an optimization for the performance

mode. When the observed load is 100%, we modify the value of β and thus
introduce a sequence of βn instead of a single value to increase frequency
more substantially. If, however, this decision would prove excessive, and the
high load would not last long, the next iteration of the algorithm would reduce
operating frequency.

In all schemes, additional precautions are taken before setting ii+1 to
properly handle corner cases. Based on the number of observations, we will
further call those schemes SPSA23, SPSA22 and SPSA21 respectively.

3.4. Accounting for Frequency Change Lag. The time CPU takes to
change frequency could be considerable. For example, the OnDemand governor
is scheduled to re-evaluate optimal frequency every 10 ms. Historically,
OnDemand was developed for desktop computers and servers, and frequency
switch could happen within 10 ms. However, in our preliminary research
with Xiaomi Redmi Note 8 Pro, we found out that after the initial frequency
change request by the OnDemand-based DVFS governor, it could take up to 3
consequent DVFS routine calls to register the updated frequency from the CPU,
and the DVFS governor sends a frequency change request on every invocation.

This situation is indicative that even the most commonly available DVFS
governors are based on assumptions that may not be true for the underlying
hardware.

As our SPSA2 governors are also using the OnDemand governor timer
model, and it is important for the algorithm to make noisy observations at
the requested frequencies, we skip the DVFS routine invocations where the
CPU cluster frequency is still different from the one requested previously. The
algorithm continues when a proper frequency is set, and it is assumed that the
load between two routine invocations was obtained at the requested frequency;
thus, the noisy load observation is properly obtained.

3.5. EAS Integration. Energy Aware Scheduling works closely with
the schedutil DVFS governor, and it is stated that EAS is not guaranteed
to reduce energy consumption if the schedutil is not an active governor. In
fact, schedutil implements the same strategy as the OnDemand governor,
that is, it selects cluster frequency proportional to the maximum load over
cluster cores with the minimum frequency corresponding to 0% load and the
maximum frequency corresponding to 100% load. However, the EAS CPU
load definition is significantly different from the one used in OnDemand. The
CPU load is estimated in terms of the EAS energy model and occupancy of all

1018 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

tasks assigned to a specific CPU core. Instead of a posterior evaluation, it is
estimated a priori.

For our proposed schemes we used the OnDemand load definition even
when EAS is turned on, and, as shown in the experiments, tuning α, β and LT

is enough to align our SPSA2 governors with EAS.
4. Experimental Methodology
4.1. Device Selection. For our experiments, we used Samsung Galaxy

s7 SM-G930F. Its processor, Exynos 8 Octa (8890) has 2 clusters with 4
Cortex-A53 cores (LITTLE) and 4 Exynos M1 cores (big). It is notable that
while originally supporting Android 8, it could be patched to run Android 10
and 11.

The smartphone was patched to run the herolte5 Android 11 kernel,
which could be run on the test device with the EAS scheduler. To test the default
CFS scheduler, we used Samsung android_kernel_samsung_universal8890
for Android 106. This kernel selection allows us to compare our governors’
performance against commonly available Interactive, OnDemand and Schedutil
governors. Our DVFS governors were added as additional modules to both
of those kernels, and it was required to obtain root access for the smartphone
to install custom builds. Switching to our governors was done by the default
cpufreq system calls [9].

4.2. Test Cases. As noted in our previous work [4], it is important
for the general-purpose DVFS governor to be able to handle different kinds
of workloads while providing a trade-off between performance and energy
consumption. However, each governor is built with a particular workload
model in mind, and this model is not bound to reflect real-world scenarios.

We’ve considered the following list of diverse test cases to be
implemented. Each test case was assigned a name for further reference.

1. videoVLC – playing MP4 file using VLC video player, preliminarily
selected as a default video player.

2. trialXTreme3 – imitation of playing Trial Xtreme 3.
3. flappyBird – imitation of playing Flappy Bird.
4. type – creating a note in the Notes application, writing text and

deleting a note.
5. camera – launching a default camera application and recording a

video with it. The resulting video is deleted in the end.
5https://github.com/pascua28/herolt
6https://github.com/8890q/android_kernel_samsung_universal8890/tree/lineage-17.1

1019Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

6. twitch – watching a Twitch stream in a browser and closing the
browser after a while7.

As the Monkeyrunner tool we used previously was not available in the
toolchain for the test device, a set of utilities that mirrors its functionality to
run tests was written in Python8.

All tests are launched 10 times for 5 minutes to average the influence
of system background processes. They are implemented as Python scripts as
well. To launch a test, a smartphone needs to be connected to a controlling PC,
and the test execution is controlled through adb commands.

To test smartphone performance we selected Geekbench 5.5.1, as it has
an open methodology we found valid for our purposes [23]. The performance
tests were launched 3 times for each evaluated governor due to their longevity,
and an average of the obtained score points was calculated.

4.3. Modified Energy Consumption Models. Overall, direct
measurement approaches were not used in the research for this paper due to
the difficulties outlined above. While the basic energy consumption model
could already be used, it does not take into account idle state management.
Moreover, the source code behind time-in-state files is not synchronized
with the idle governors. To address this issue, we propose the following
modifications to the basic model.

Equation (2) implicitly assumes that the CPU consumes a fixed amount
of power by just being at a specific frequency, regardless of the fact if there is
an active computational process or not. This assumption is supported by the
implementation of idle task while the CPU is in C0 (Active) state. When the
OS scheduler cannot schedule an active tasks for the core, it assigns a special
idle task, which consists of NOP (No Operation) instructions. C1, however,
involves stopping CPU core timers, and the computational process cannot be
run.

Given than, only C0 and C1 states are available on the test device,
and given the fact that there could be several clusters of cores with a single
frequency for all cores within a cluster, we modify Equation (2) as:

E =
Ncl∑
i=1

Eidlei(t) +
Ncl∑
i=1

Ui ·
Nfi∑
j=1

Ii(fj) ·
Ncoresi∑

k=1

tfjk, (3)

7We would like to thank @StreamerHouse channel for their dedication to 24/7 streaming
schedule as it allowed to keep test case source code without modifications regardless of the launch
time.

8https://github.com/makar-pelogeiko/freq _gov_test

1020 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

where Ncl is a number of core clusters, Eidlei(t) is energy consumed by a
CPU for just being turned on, Nfi is a number of frequencies for ith cluster,
Ui is a nominal voltage of cores in ith cluster, Ii(f) is a nominal current for
slected frequency f in ith cluster, Ncoresi is a number of cores in ith cluster,
tfjk is a time spent by kth core within ith cluster on jth frequency.

While this model is more elaborate than the one described in (2), it
could be simplified for practical reasons. In the first term, we assume that
each cluster has linear energy consumption over time for just being turned on.
Intuitively, it seems that to properly calculate idle state energy footprint we
should split Eidlei(t) to basic CPU energy consumption and C1 footprint for
each core, but base CPU and C1 idle state power profiles are not available in
power_profile.xml, we omit this term from further analysis.

Moreover, calculating
∑Ncoresi

k=1 tfjk seems excessive, because cores
of the same cluster operate at the same frequency. However, this term becomes
useful when we are trying to estimate the impact of deep sleep idle states
impact on energy consumption.

While idle state stops CPU core timers, it does not change the nominal
core operating frequency, that is, a core operating at 1 GHz before sleep will
continue to work at 1 GHz after sleep. We initially assumed that the core is
put to sleep when there are not enough tasks to schedule in the system overall,
so the DVFS governor sets the minimum operating frequency for the cluster.
Our initial idea was to deduct idle time in C1 from the time spent by the core
on the lowest frequency such as in:

E =
Ncl∑
i=1

Ui · (
Ncoresi∑

k=1

Ii(f1)(tf0k − tidlek) +

Nfi∑
j=2

Ii(fj)tfjk),

where tidlek is the time spent by kth core in idle states. However, this assumption
proved to be wrong, as it was shown experimentally that there were cases
where tf0k < tidlek), which means that the system put a core to sleep at a
higher frequency than minimal.

While it is technically possible to modify the Android OS kernel and to
track at which frequency the core was suspended, instead we assume that idle
state management is independent of DVFS, but not of the OS scheduler, and a
core may be put to sleep at any frequency at any time. Therefore, we propose
to track idle state energy footprint by deducting idle state time from each time
spent on frequency proportionally:

1021Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

E =

Ncl∑
i=1

Ui ·
Nfi∑
j=1

Ii(fj) ·
Ncoresi∑

k=1

(tfjk − tidlek

tfjk∑Nfi
m=1 tfmk

).

As this approach is not precise but gives empirically good insights on
actual energy expenditure, we use both original basic and modified models
into report our results.

4.4. Device Preparation. Validity of experiments and output stability
was enhanced by the following protocol we have described in the previous
research [7]:

– All unnecessary applications were uninstalled, and all application
activities were turned off for those that could not be uninstalled.

– Peripherals that were not used in a particular test case (i.e. Wi-Fi,
4G, GPS) were turned off.

– A cool-down period of 2 minutes was taken between the tests for
background processes to finalize and decrease the device temperature.

– Before running a particular test case, it was run for a single time for
warming-up purposes.

Battery charge levels were not homogenized before each test runs, as it
was unnecessary by our energy consumption models. In fact, for the device to
be controlled by a test run utility, it was connected to a PC via USB, so the
battery was charging during the test runs.

5. Experiments. The governor implementations are available for
Android 119 and Android 1010.

The full experimental data is also available.11
The first set of the experiments was taken under Android 11 with

EAS turned on. By enumerating possible parameters we found out the
best-performing settings for all SPSA algorithms:

1. α = 2, β = 1, LT = 70%;
2. Cluster 0: α = 2, β = 1, LT = 80%; Cluster 1:

α = 3, β = 1, LT = 98%.
Tables 2 to 5 contain the median values for energy consumption under

the basic and modified energy models. Here and in the subsequent tables we
9https://github.com/makar-pelogeiko/herolte _Eas _Idle _modification/tree/Q-stable-spsa_gov
10https://github.com/makar-pelogeiko/android _kernel _samsung _universal8890/tree/lineage-

17.1-spsa _gov
11https://studentspburu-my.sharepoint.com/personal/st076963 _student _spbu _ru/ _layouts/15/

onedrive.aspx?id=%2Fpersonal%2Fst076963%5Fstudent%5Fspbu%5Fru%2FDocuments%
2Fdiploma%2Fresultsga=1

1022 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

highlight scenarios where the SPSA governor energy consumption is higher
than energy consumption of every baseline governor in italic and the cases
where SPSA is better than some of the baseline governors in bold. Table 6
contains performance data. The first line for SPSA governors corresponds to
the first set of parameters, and the second line – to the second set.

Table 2. Energy consumption (mAh) under Android 11 with EAS scheduler (basic
energy model), videoVLC, trialXTreme3 and flappyBird tests
Algorithm videoVLC trialXTreme3 flappyBird
SPSA23 21.67 27.62 24.86

21.43 24.53 24.62
SPSA22 23.40 37.44 40.64

22.65 32.50 34.36
SPSA21 23.75 43.43 47.04

22.17 30.43 31.23
Schedutil 24.56 44.30 43.56
Interactive 141.21 119.08 104.73
OnDemand 34.86 86.06 92.86

Table 3. Energy consumption (mAh) under Android 11 with EAS scheduler (basic
energy model), type, camera and twitch, tests
Algorithm type camera twitch
SPSA23 32.61 22.43 30.59

30.91 22.02 24.86
SPSA22 46.46 25.27 38.62

39.96 23.67 28.93
SPSA21 52.19 26.44 47.06

35.66 22.86 27.32
Schedutil 47.09 27.36 51.83
Interactive 122.31 55.36 91.33
OnDemand 97.43 56.16 80.68

Overall, the energy consumption dispersion is omitted in this paper, but
it is available in the full experimental report. It should be noted that the values
for the SPSA and schedutil governors have a visibly low dispersion in all
experiments, and energy consumption could be compared by the median value
only. It is not true for OnDemand and especially Interactive governors.
For example, Interactive showed in the videoVLC test the minimum and

1023Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

maximum values under the basic energy model of 42.42 and 155.91 mAh
respectively. However, it does not affect the validity of the analysis, as even
the minimum energy consumption of both governors was higher than the
maximum value for schedutil or SPSA governors.

Table 4. Energy consumption (mAh) under Android 11 with EAS scheduler (modified
energy model), videoVLC, trialXTreme3 and flappyBird tests
Algorithm videoVLC trialXTreme3 flappyBird
SPSA23 5.90 14.71 10.23

6.11 13.49 10.15
SPSA22 6.34 19.16 16.27

6.24 16.71 14.16
SPSA21 6.31 19.68 18.21

5.93 15.61 12.75
Schedutil 5.91 20.24 15.70
Interactive 33.74 46.78 35.46
OnDemand 8.59 34.84 32.48

Table 5. Energy consumption (mAh) under Android 11 with EAS scheduler (modified
energy model), type, camera and twitch tests
Algorithm type camera twitch
SPSA23 8.99 14.41 22.84

8.67 13.71 18.98
SPSA22 7.69 17.18 28.18

12.30 15.24 21.88
SPSA21 13.02 17.76 33.25

9.36 15.43 20.70
Schedutil 10.24 15.62 34.92
Interactive 21.83 30.56 58.48
OnDemand 21.35 25.07 47.53

Performance-wise, both existing and novel algorithms perform
comparably. There are no clear outliers, and for single-core test, the difference
between the best and worst performance is within 15%, while it is within 18%
for the multicore scenario. We note that the first set of SPSA parameters
provides better performance than the second set. SPSA23 performance is
worsened by the fact it needs 3 observations, but not too much.

1024 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

Table 6. GeekBench 5.5.1 performance scores
Algorithm Single core Multicore
SPSA23 287 970

282 913
SPSA22 302 1025

290 962
SPSA21 331 1073

324 966
Schedutil 319 970
Interactive 321 1112
OnDemand 296 1068

When we look at energy consumption data, it should be noted that the
modified energy model significantly changes the observed values compared to
the basic model, and in some cases their ratio. The modified model, in our
opinion, still better reflects data reality if direct measurement is not available,
and our next analysis is based on it, even though the basic model is more
complimentary to the SPSA governors.

The Interactive and OnDemand governors are consistently more
power-hungry than schedutil under EAS, and, as a general rule, we definitely
suggest using schedutil over other governors if EAS is available in stock
firmware.

As for the SPSA governors, all of them could be used in place of
schedutil. First of all, they all handle trialXTreme3 and twitch tests better
than schedutil. We assume it to be related to β = 1 in our experiments, as
higher β results in a more rapid gradient descent, and in a quickly changing
reality of CPU load complicated by frequency switch lags relatively smooth
frequency change is good for consistent CPU usage. SPSA21 with the first
set of parameters is shown to consume more energy in most of the tests (up
to 27% for type test), while being only 10% better in performance compared
to schedutil, so the second set of parameters is recommended there, as
performance is at the same level, while energy consumption may be up to 31%
better. SPSA22 is the most balanced governor, as it is up to 20% better in
some tests and up to 10% worse in others energy-wise, but it demonstrates a
5.6% performance increase in multicore case, which is more realistic scenario.
SPSA23 is the most conservative of other governors energy and performance-
wise, but overall multicore performance is comparable to schedutil.

A special case is the videoVLC test, where the SPSA governors tend to
spend more energy than schedutil. The difference is never significant (no

1025Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

more than 7.2% for SPSA22), but our explanation is that the timings of intense
computations (frame decoding) are such that the SPSA governors cannot drop
frequency to lower values. The only exception is SPSA23, but the difference is
within a margin of a statistical error.

Tables 7 to 10 contain the median values for energy
consumption under the basic and modified energy models for the
tests run under Android 10 and CFS scheduler.The situation there is drastically
different. First, schedutil cannot be used there as a benchmark as it would be
running under the conditions it was not designed for. Then, the Interactive
governor demonstrates a remarkable improvement in energy consumption.

Table 7. Energy consumption (mAh) under Android 10 with CFS scheduler (basic
energy model), videoVLC, trialXTreme3 and flappyBird tests
Algorithm videoVLC trialXTreme3 flappyBird
SPSA23 23.52 49.49 48.67

23.55 43.87 44.68
SPSA22 26.14 66.62 71.74

24.34 63.82 62.85
SPSA21 26.58 101.24 116.08

23.65 57.40 85.69
Interactive 22.25 44.31 53.47
OnDemand 29.18 76.41 94.63

Table 8. Energy consumption (mAh) under Android 10 with CFS scheduler (basic
energy model), type, camera and twitch tests
Algorithm type camera twitch
SPSA23 57.73 26.25 38.71

51.96 25.08 30.22
SPSA22 81.87 36.10 45.66

70.70 29.28 33.41
SPSA21 116.36 31.28 50.54

68.21 25.23 32.04
Interactive 59.52 24.32 41.73
OnDemand 101.57 41.39 66.24

However, all SPSA governors demonstrate energy behavior reminiscent
of SPSA1 governor [4], where they are most of the time either between
OnDemand and Interactive, and in some margin cases inconsistently
demonstrate better or worse results.

1026 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

Table 9. Energy consumption (mAh) under Android 10 with CFS scheduler (modified
energy model), videoVLC, trialXTreme3 and flappyBird tests
Algorithm videoVLC trialXTreme3 flappyBird
SPSA23 5.70 13.51 12.07

5.57 11.13 11.07
SPSA22 6.35 17.53 17.27

5.66 14.57 15.38
SPSA21 6.20 19.83 25.58

5.44 11.67 20.35
Interactive 1.31 13.28 12.30
OnDemand 7.08 21.65 24.03

Table 10. Energy consumption (mAh) under Android 10 with CFS scheduler (modified
energy model), type, camera and twitch tests
Algorithm type camera twitch
SPSA23 13.22 4.88 16.53

11.33 4.48 13.54
SPSA22 17.44 4.88 18.98

15.22 4.18 14.61
SPSA21 23.59 3.27 20.50

14.63 2.14 13.91
Interactive 11.71 2.93 16.92
OnDemand 22.03 4.98 23.61

The reason behind such energy behavior is a change in scheduling
strategy. Unlike EAS, CFS does not prioritize LITTLE cores over big ones,
and in similar situations, big cores are loaded more resulting in a higher power
drain.

Additionally, while overall SPSA23 demonstrates an acceptable energy
consumption, its performance is worse, as at load levels of 99–100% it does not
immediately recommend increase frequency. As other algorithms demonstrate
higher overall energy consumption than Interactive, and the latter provides
an acceptable performance to the end user, we did not run performance tests
for the SPSA governors.

6. Conclusion. Our experiments show that all SPSA governors could
be used alongside EAS to obtain better CPU energy efficiency in common use
cases. In CFS-controlled environments, the SPSA governors could also be
used, but they demonstrate energy efficiency comparable to existing governors.

1027Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

We conclude, that like SPSA1 in our previous work [4, 7], the SPSA2 family
of governors performs better than OnDemand, Interactive and schedutil
in the scenarios where the workload is evenly distributed over time or has
prolonged periods of calculations – improvement of up to 31% could be
observed with the same performance under EAS. We observe that stochastic
optimization provides good optimal point tracking in noisy environments in a
long run without setting seemingly optimal frequencies at every step. In the
spiky workloads, a conservative approach to frequency changes causes those
computational spikes to be treated as constant load and therefore could result
in a somewhat higher CPU energy consumption. In the end, the SPSA2 family
could be used to prolong a smartphone’s lifetime on a day-to-day basis.

References
1. Number of smartphone mobile network subscriptions worldwide from

2016 to 2022, with forecasts from 2023 to 2028. Available at:
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/.
(accessed 10.05.2023).

2. Spall J.C. Multivariate stochastic approximation using a simultaneous perturbation
gradient approximation. IEEE Transactions on Automatic Control. 1992. vol. 37. no. 3.
pp. 332–341.

3. GranichinO., AmelinaN. Simultaneous perturbation stochastic approximation for tracking
under unknown but bounded disturbances. IEEE Transactions on Automatic Control.
2015. vol. 60. no. 6. pp. 1653–1658.

4. Bogdanov E., Bozhnyuk A., Bykov D., Sartasov S., Sergeenko A., Granichin O.
Dynamic Voltage-Frequency Optimization using Simultaneous Perturbation Stochastic
Approximation. 60th IEEE Conference on Decision and Control (CDC). 2021.
pp. 3774–3779.

5. Granichin O., Vakhitov A. Accuracy for the SPSA algorithm with two measurements.
WSEAS Transactions on Systems. 2006. vol. 5.

6. Mair H.T., Gammie G., Wang A., Lagerquist R., Chung C.J., Gururajarao S., Kao P.,
Rajagopalan A., Saha A., Jain A., Wang E., Ouyang S., Wen H., Thippana A., Chen
HsinChen, R.S., Chau M., Varma A., Flachs B., Peng M., Tsai A., Lin V., Fu U., Kuo
W., Yong L.-K., Peng C., Shieh L., Wu J., Ko U. 4.3 A 20nm 2.5GHz ultra-low-power
tri-cluster CPU subsystem with adaptive power allocation for optimal mobile SoC
performance. 2016 IEEE International Solid-State Circuits Conference (ISSCC). 2016.
pp. 76–77.

7. Bogdanov E., Bozhnyuk A., Sartasov S., Granichin O. On Application of Simultaneous
Perturbation Stochastic Approximation for Dynamic Voltage-Frequency Scaling in
Android OS. 7th International Conference on Event-Based Control, Communication and
Signal Processing (EBCCSP’21). 2021. DOI: 10.1109/EBCCSP53293.2021.9502396.

8. The kernel development community. Energy Aware Scheduling. Available
at: https://www.kernel.org/doc/html/next/scheduler/sched-energy.html. (accessed
10.05.2023).

9. CPU frequency and voltage scaling code in the Linux (TM) kernel. Linux
CPUFreq. CPUFreq Governors. Available at: https://android.googlesource.com/kernel/
common/+/a7827a2a60218b25f222b54f77ed38f57aebe08b/Docum freq/governors.txt.
(accessed 10.05.2023).

1028 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

10. Basireddy K.R., Singh A.K., Al-Hashimi B.M., Merrett G.V. AdaMD: Adaptive Mapping
and DVFS for Energy-Efficient Heterogeneous Multicores. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. 2020. vol. 39. no. 10.
pp. 2206–2217.

11. Lee J., Nam S., Park S. Energy-Efficient Control of Mobile Processors Based on Long
Short-Term Memory. IEEE Access. 2019. vol. 7. pp. 80552–80560.

12. RappM., Krohmer N., Khdr H., Henkel J. NPU-accelerated imitation learning for thermal-
and QoS-aware optimization of heterogeneous multi-cores. Proceedings of the 2022
Conference and Exhibition on Design, Automation and Test in Europe (DATE ’22). 2021.
pp. 584–587.

13. Kim S., Bin K., Ha S., Lee K., Chong S. ZTT: learning-based DVFS with zero thermal
throttling for mobile devices. Proceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys’21). 2021. pp. 41–53.

14. Song S., Kim J., Chung J.-M. Energy Consumption Minimization Control for Augmented
Reality Applications based on Multi-core Smart Devices. IEEE International Conference
on Consumer Electronics (ICCE). 2019. DOI: 10.1109/ICCE.2019.8661917.

15. Ohk S.-R., Kim Y., Kim Y.-J. Phase-Based Low Power Management Combining
CPU and GPU for Android Smartphones. Electronics. 2022. vol. 11. no. 16. DOI:
10.3390/electronics11162480.

16. Dey S., Isuwa S., Saha S., Singh A.K., McDonald-Maier K. CPU-GPU-Memory DVFS
for Power-Efficient MPSoC in Mobile Cyber Physical Systems. Future Internet. 2022. vol.
14. no. 3. DOI: 10.3390/fi14030091.

17. CPU Idle Time Management. Available at: https://docs.kernel.org/admin-
guide/pm/cpuidle.html. (accessed 10.05.2023).

18. Metri G., Agrawal A., Peri, R., Brockmeyer M., Weisong S. A simplistic way for power
profiling of mobile devices. 2012 International Conference on Energy Aware Computing.
2012. DOI: 10.1109/ICEAC.2012.6471020.

19. Monsoon Power Monitor Specifications. Available at:
https://www.msoon.com/specifications. (accessed 10.05.2023).

20. Chung Y., Lin C., King C. ANEPROF: Energy Profiling for Android Java Virtual Machine
and Applications. 2011 IEEE 17th International Conference on Parallel and Distributed
Systems. 2011. pp. 372–379. DOI: 10.1109/ICPADS.2011.28.

21. Measuring Component Power. Available at: https://source.android.com/docs/core/power/
component. (accessed 10.05.2023).

22. Granichin O. Linear regression and filtering under nonstandard assumptions (arbitrary
noise). IEEE Transactions on Automatic Control. 2004. vol. 49. no. 10. pp. 1830–1837.

23. Geekbench 5CPUWorkloads. Available at: https://www.geekbench.com/doc/geekbench5-
cpu-workloads.pdf. (accessed 10.05.2023).

Pelogeiko Makar – Student, Software engineering department, faculty of mathematics and
mechanics, St. Petersburg State University (SPbSU). Research interests: energy-efficient
programming. m.pelogeiko@mail.ru; 28, Universitetsky Av., 198504, St. Petersburg, Russia;
office phone: +7(812)428-4910.
Sartasov Stanislav – Assistant professor of software engineering department, Faculty of
mathematics and mechanics, St. Petersburg State University (SPbSU); chief technology officer,
Denominator.One. Research interests: sustainable software development, software energy
efficiency, industrial software engineering, biometrics. The number of publications — 10.
stanislav.sartasov@yandex.ru; 28, Universitetsky Av., 198504, St. Petersburg, Russia; office phone:
+7(812)428-4910.

1029Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

Granichin Oleg – Ph.D., Dr.Sci., Professor of software engineering department, Faculty of
mathematics and mechanics, St. Petersburg State University (SPbSU); Laboratory “Control
of complex systems”, Institute for Problems in Mechanical Engineering. Research interests:
randomized optimization and estimation algorithms, stochastic optimization in computer science,
adaptive and optimal control, pattern recognition. The number of publications — 100.
oleg_granichin@mail.ru; 28, Universitetsky Av., 198504, St. Petersburg, Russia; office phone:
+7(812)428-4910.
Acknowledgements. This work was supported in part by the St. Petersburg State University
(project ID 94062114).

1030 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

УДК 004.451.25 DOI 10.15622/ia.22.5.3

М.А. ПЕЛОГЕЙКО, С.Ю. САРТАСОВ, О.Н. ГРАНИЧИН
О СТОХАСТИЧЕСКОЙ ОПТИМИЗАЦИИ

ЭНЕРГОПОТРЕБЛЕНИЯ ПРОЦЕССОРА СМАРТФОНА

Пелогейко М.А., Сартасов С.Ю., Граничин О.Н О стохастической оптимизации
энергопотребления процессора смартфона.

Аннотация. Увеличение времени работы смартфона – это постоянное стремление,
которое с каждым годом становится все более и более важным. Это может быть достигнуто
с помощью более совершенного оборудования или путем внедрения в программное
обеспечение практик с учетом энергопотребления, и последний подход является более
доступным. Поскольку ЦП является одним из самых энергоемких устройств для
смартфонов, динамическое масштабирование частоты напряжения (DVFS) представляет
собой метод настройки частоты ЦП в соответствии с текущими вычислительными
потребностями, и уже были разработаны различные алгоритмы, как энергосберегающие, так
и энергонезависимые. Следуя нашей предыдущей работе по этому вопросу, мы предлагаем
новый подход DVFS для использования стохастической аппроксимации одновременных
возмущений (SPSA) с двумя зашумленными наблюдениями для отслеживания оптимальной
частоты и реализации нескольких алгоритмов на его основе. Кроме того, мы также решаем
проблему аппаратной задержки между сигналом для ЦП об изменении частоты и ее
фактическим обновлением. Поскольку ОС Android может использовать планировщик
задач по умолчанию или планировщик с учетом энергопотребления, который способен
использовать преимущества разнородных архитектур мобильных ЦП, таких как ARM
big.LITTLE, мы также исследуем схему интеграции между предлагаемыми алгоритмами
и планировщиками ОС. Представлена методология тестирования на основе моделей для
сравнения разработанных алгоритмов с существующими, а также описан набор тестов,
отражающий реальные сценарии использования. Наши эксперименты показывают, что
алгоритм на основе SPSA хорошо работает с EAS с упрощенной схемой интеграции,
демонстрируя производительность ЦП, сравнимую с другими алгоритмами DVFS с учетом
энергопотребления, и снижение энергопотребления.

Ключевые слова: ОС Android, динамическое масштабирование частоты напряжения,
стохастическая оптимизация, SPSA, энергопотребление.

Литература
1. Number of smartphone mobile network subscriptions worldwide from

2016 to 2022, with forecasts from 2023 to 2028. Available at:
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/.
(accessed 10.05.2023)

2. Spall J.C. Multivariate stochastic approximation using a simultaneous perturbation
gradient approximation. IEEE Transactions on Automatic Control. 1992. vol. 37. no. 3.
pp. 332–341.

3. Granichin O., Amelina N. Simultaneous perturbation stochastic approximation for
tracking under unknown but bounded disturbances. IEEE Transactions on Automatic
Control. 2015. vol. 60. no. 6. pp. 1653–1658.

4. Bogdanov E., Bozhnyuk A., Bykov D., Sartasov S., Sergeenko A., Granichin O.
Dynamic Voltage-Frequency Optimization using Simultaneous Perturbation Stochastic

1031Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

Approximation. 60th IEEE Conference on Decision and Control (CDC). 2021.
pp. 3774–3779.

5. Granichin O., Vakhitov A. Accuracy for the SPSA algorithm with two measurements.
WSEAS Transactions on Systems. 2006. vol. 5.

6. Mair H.T., Gammie G., Wang A., Lagerquist R., Chung C.J., Gururajarao S., Kao P.,
Rajagopalan A., Saha A., Jain A., Wang E., Ouyang S., Wen H., Thippana A., Chen
HsinChen, R.S., Chau M., Varma A., Flachs B., Peng M., Tsai A., Lin V., Fu U., Kuo
W., Yong L.-K., Peng C., Shieh L., Wu J., Ko U. 4.3 A 20nm 2.5GHz ultra-low-power
tri-cluster CPU subsystem with adaptive power allocation for optimal mobile SoC
performance. 2016 IEEE International Solid-State Circuits Conference (ISSCC). 2016.
pp. 76–77.

7. Bogdanov E., Bozhnyuk A., Sartasov S., Granichin O. On Application of Simultaneous
Perturbation Stochastic Approximation for Dynamic Voltage-Frequency Scaling in
Android OS. 7th International Conference on Event-Based Control, Communication and
Signal Processing (EBCCSP’21). 2021. DOI: 10.1109/EBCCSP53293.2021.9502396.

8. The kernel development community. Energy Aware Scheduling. Available
at: https://www.kernel.org/doc/html/next/scheduler/sched-energy.html. (accessed
10.05.2023).

9. CPU frequency and voltage scaling code in the Linux (TM) kernel. Linux
CPUFreq. CPUFreq Governors. Available at: https://android.googlesource.com/kernel/
common/+/a7827a2a60218b25f222b54f77ed38f57aebe08b/Docum freq/governors.txt.
(accessed 10.05.2023).

10. Basireddy K.R., Singh A.K., Al-Hashimi B.M., Merrett G.V. AdaMD: AdaptiveMapping
and DVFS for Energy-Efficient Heterogeneous Multicores. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. 2020. vol. 39. no. 10. pp.
2206–2217.

11. Lee J., Nam S., Park S. Energy-Efficient Control of Mobile Processors Based on Long
Short-Term Memory. IEEE Access. 2019. vol. 7. pp. 80552–80560.

12. Rapp M., Krohmer N., Khdr H., Henkel J. NPU-accelerated imitation learning for
thermal- and QoS-aware optimization of heterogeneous multi-cores. Proceedings of the
2022 Conference and Exhibition on Design, Automation and Test in Europe (DATE
’22). 2021. pp. 584–587.

13. Kim S., Bin K., Ha S., Lee K., Chong S. ZTT: learning-based DVFS with zero thermal
throttling for mobile devices. Proceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys’21). 2021. pp. 41–53.

14. Song S., Kim J., Chung J.-M. Energy ConsumptionMinimization Control for Augmented
Reality Applications based on Multi-core Smart Devices. IEEE International Conference
on Consumer Electronics (ICCE). 2019. DOI: 10.1109/ICCE.2019.8661917.

15. Ohk S.-R., Kim Y., Kim Y.-J. Phase-Based Low Power Management Combining
CPU and GPU for Android Smartphones. Electronics. 2022. vol. 11. no. 16. DOI:
10.3390/electronics11162480.

16. Dey S., Isuwa S., Saha S., Singh A.K., McDonald-Maier K. CPU-GPU-Memory DVFS
for Power-Efficient MPSoC in Mobile Cyber Physical Systems. Future Internet. 2022.
vol. 14. no. 3. DOI: 10.3390/fi14030091.

17. CPU Idle Time Management. Available at: https://docs.kernel.org/admin-
guide/pm/cpuidle.html. (accessed 10.05.2023).

18. Metri G., Agrawal A., Peri, R., Brockmeyer M., Weisong S. A simplistic way for power
profiling of mobile devices. 2012 International Conference on Energy Aware Computing.
2012. DOI: 10.1109/ICEAC.2012.6471020.

1032 Информатика и автоматизация. 2023. Том 22 № 5. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

___ЦИФРОВЫЕ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

19. Monsoon Power Monitor Specifications. Available at:
https://www.msoon.com/specifications. (accessed 10.05.2023).

20. Chung Y., Lin C., King C. ANEPROF: Energy Profiling for Android Java Virtual
Machine and Applications. 2011 IEEE 17th International Conference on Parallel and
Distributed Systems. 2011. pp. 372–379. DOI: 10.1109/ICPADS.2011.28.

21. Measuring Component Power. Available at: https://source.android.com/docs/core/power/
component. (accessed 10.05.2023).

22. Granichin O. Linear regression and filtering under nonstandard assumptions (arbitrary
noise). IEEE Transactions on Automatic Control. 2004. vol. 49. no. 10. pp. 1830–1837.

23. Geekbench 5 CPU Workloads. Available at:
https://www.geekbench.com/doc/geekbench5-cpu-workloads.pdf. (accessed
10.05.2023).

Пелогейко Макар Андреевич — студент, кафедра разработки программного обеспечения,
факультет математики и механики, Санкт-Петербургский государственный университет
(СПбГУ). Область научных интересов: энергоэффективное программирование.
m.pelogeiko@mail.ru; Университетский проспект, 28, 198504, Санкт-Петербург, Россия; р.т.:
+7(812)428-4910.
Сартасов СтаниславЮрьевич— доцент кафедры разработки программного обеспечения,
факультет математики и механики, Санкт-Петербургский государственный университет
(СПбГУ); главный технический директор, Denominator.One. Область научных интересов:
устойчивая разработка программного обеспечения, энергоэффективность программного
обеспечения, промышленная разработка программного обеспечения, биометрия. Число
научных публикаций — 10. stanislav.sartasov@yandex.ru; Университетский проспект, 28,
198504, Санкт-Петербург, Россия; р.т.: +7(812)428-4910.
Граничин Олег Николаевич — д-р физ.-мат. наук, профессор кафедры разработки
программного обеспечения, факультет математики и механики, Санкт-Петербургский
государственный университет (СПбГУ); лаборатория “управление сложными системами”,
Институт проблем машиноведения РАН. Область научных интересов: рандомизированные
алгоритмы оптимизации и оценивания, стохастическая оптимизация в информатике,
адаптивное и оптимальное управление, распознавание образов. Число научных публикаций
— 100. oleg_granichin@mail.ru; Университетский проспект, 28, 198504, Санкт-Петербург,
Россия; р.т.: +7(812)428-4910.
Поддержка исследований. — Работа была поддержана Санкт-Петербургским
государственным университетом (проект № 94062114).

1033Informatics and Automation. 2023. Vol. 22 No. 5. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

___DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

