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Abstract. Opportunistic routing has increased the efficiency and reliability of Cognitive
Radio Ad-Hoc Networks (CRAHN). Many researchers have developed opportunistic routing
models, among them the Spectrum Map-empowered Opportunistic Routing (SMOR) model,
which is considered a more efficient model in this field. However, there are certain limitations
in SMOR, which require attention and resolution. The issue of delay and degradation of packet
delivery ratio due to non-consideration of network bandwidth and throughput are addressed in
this paper. In order to resolve these issues, a hybrid optimization algorithm comprising firefly
optimization and grey wolf optimization algorithms are used in the basic SMOR routing model.
Thus, developed Hybrid Firefly and Grey-Wolf Optimization-based SMOR (HFGWOSMOR)
routing model improves the performance by high local as well as global search optimization.
Initially, the relationship between the delay and throughput is analyzed and then the
cooperative multipath communication is established. The proposed routing model also
computes the energy values of the received signals within the bandwidth threshold and time;
hence, the performance issues found in SMOR are resolved. To evaluate its efficiency, the
proposed model is compared with SMOR and other existing opportunistic routing models,
which show that the proposed HFGWOSMOR performs better than other models.

Keywords: Cognitive Radio Ad Hoc Networks, Opportunistic routing, Spectrum Map-
empowered Opportunistic Routing, Firefly optimization, Grey-Wolf optimization, bandwidth
threshold.

1. Introduction. Cognitive radio ad hoc network (CRAHN) is a type
of distributed, self-organizing, self-Configuring wireless network in which
the radios in the network can adapt their transmission and reception
parameters in real-time, depending on the availability of the frequency
spectrum.

The cognitive radio devices can sense the presence of other radio
signals in specific bands, and dynamically adjust their transmission
parameters to avoid interference with other devices, and, thus, maximizing
the utilization of the available spectrum. This approach leads to a more
efficient use of the radio spectrum, reducing the possibility of interference
and increasing the capacity of the network. This type of Network uses
cognitive radio technologies to allocate network resources dynamically such
as frequency, bandwidth and power.

In CRAHN, nodes (CR-users) can sense the availability of the radio
spectrum and adjust their transmission parameters accordingly to avoid
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interference with other users. This enables efficient utilization of the free
available spectrum and improves network performance [1, 2].

CRAHNSs can automatically search, monitor and use the available
free spectrum to take care of the problem of the spectrum resource shortage
and low utilization rate without affecting licensed users.

The cognitive radio rule has acquainted the thought with abuse
spectrum holes (i.e., bands) which result from the demonstrated
underutilization of the electromagnetic spectrum by present-day wireless
communication and broadcasting advancements [3].

CRAHNs are often used in military, rural connectivity and
emergency communication scenarios where the availability of spectrum is
limited and rapidly dynamically reconfigure itself to maintain
communication in the face of changing conditions [4].

The components of a Cognitive Radio Ad Hoc Network (CRAHN)
are [4, 5, 6]:

—  Cognitive Radio Nodes: The main component of the CRAHNs
is the cognitive radio nodes (Secondary-User), which are equipped with the
radio transceivers and the processing capabilities to monitor and adapt to
the surrounding radio environment [6].

—  Spectrum Sensing: Each node in CRAHNs infrastructure is
equipped with a spectrum-sensing module to detect the presence of other
users in the radio environment.

—  Decision Making: Based on the information gathered through
the sensing of spectrum, the nodes make decisions on which frequency band
to use for communication, and how to allocate the available spectrum
resources [7].

—  Spectrum Management. The nodes in a CRAHN use their
cognitive abilities to manage the available spectrum resources dynamically
to avoid interference with other users and optimize the performance of the
network.

—  Routing the nodes in a CRAHN use routing protocols to
dynamically establish and maintain communication links with other nodes
in the network [8, 9].

—  Network Management: CRAHNSs use the network management
techniques to monitor network performance and make adjustments to ensure
optimal operation [10]. These components work together to enable
dynamic, self-organizing, and efficient communication in a Cognitive Radio
Ad Hoc Network [5, 6].

In cognitive radio, the secondary users (SUs) refer to a specific
device that dynamically accesses and uses the underutilized portions of the
radio spectrum that are licensed to primary users (PUs) such as government
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agencies or licensed commercial operators. The secondary user (US)
operates on a non-interfering basis with the primary users and can vacate
the spectrum when the primary user requests access [7, 8].

The primary users in a cognitive radio network are the licensed or
authorized users who have been assigned the use of a particular frequency
band by a regulatory authority, such as a government or standardization
organization [8, 9].

They have the primary rights to use the spectrum bands and are
usually traditional users, such as government agencies, television and the
radio broadcast stations, or mobile networks. They have priority over the
secondary users in accessing the radio spectrum and can use it without
interference [10].

The main aim of CR-AHNS is to increase the utilization of available
spectrum by detecting and avoiding busy frequency bands, and exploiting
unused ones. The nodes in CR-AHNs can also cooperate and share
information with each other to make more efficient decisions about
spectrum utilization. This technology results in increased network
performance, efficiency and capacity, energy consumption, provides better
quality of service to users, and improved overall performance [11]. On the
other hand, the key idea behind CRAHNS is to allow wireless devices to
sense and adapt to changes in the radio environment, such as the presence of
other devices, interference, or changes in channel conditions.

In order to handle these difficulties, the opportunistic routing (OR)
strategy has been connected in CRAHNSs with a specific end goal to uncover
the effect of the spectrum availability on the stability of the routing.
Considering the predominance of the broadcast feature and the
exceptionally decent variety of wireless mediums, the OR strategy has been
earlier proposed in the amazingly opportunistic routing protocol (ExOR)
[6, 7, 12]. Instead of firstly deciding the following hop SU and after that
sending the packet to the following hop SU, a SU with the OR strategy
broadcasts the packet keeping in mind the end goal to get the outcomes that
all neighbors of the SU have the chance to get the packet and help with
forwarding the data packets.

Contrasted with the traditional routing methodologies, the OR
strategy brings the high throughput gains. Additionally, it is likewise hard to
keep up the routing table for a SU because of the embodiment of dynamic
spectrum access [13]. Consequently, the pre-decided end-to-end routing
cannot be fitting for the CRAHN situation. Because of the way that the OR
strategy does not require the earlier foundation of the routes, the OR
strategy is more suitable to be utilized in the CRAHN situation with
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dynamic changes of channel availability because of the dynamic behavior of
PUs [9, 14].

On analysis, the SMOR routing model [10] has been found to be the
most efficient OR strategy for CRAHNs. Previously some improved models
of OR have been proposed [11 — 16]. However, due to the limitations of
performance due to network bandwidth and throughput in SMOR, leads this
paper to develop an HFGWO-SMOR routing model, which utilized hybrid
Firefly, and grey-wolf optimization algorithms to improve the delay-
throughput relationship analysis and improve the cooperative multipath
communication.

The main challenges and issues in CRAHNs. Besides the basic
challenges and issues such as (Spectrum Sensing, Spectrum Management
and Allocation, Interference Management, Routing and Network Protocols,
Security and Privacy), there are some of the principal issues are:

—  Minimize the energy consumption of the network while
ensuring the reliable data transmission; it takes into account the dynamic
spectrum availability and channel conditions to make routing decisions.

—  The interaction between primary users and secondary users that
while achieving an optimal network performance.

—  Optimization of spectrum sensing and routing in cognitive
radio ad hoc networks; routing decisions to maximize network throughput
while avoiding interference to primary users.

—  Quality-of-service (QoS)-aware opportunistic routing in multi-
channel cognitive radio ad hoc networks.

The main Contributions of this paper are:

—  Deep study of the Cognitive Radio Ad Hoc Network;

— This work had made significant contributions to the
understanding and development of cognitive radio systems;

—  Analysis of the existing studying of the delay, and degradation
of packet delivery ratio due to non-consideration of network bandwidth and
throughput problems;

—  Proposing a new modeled based on the “hybrid optimization
model” to solve the above problems.

Structure of this research paper. The rest of the article is organized
as Section 2, which presents a review of related research works. Section 3
presents the proposed system model and Section 4 explains the proposed
hybrid optimization model and utilization of it in the OR strategy. Section 5
evaluates the performance of the proposed model while Section 6 makes a
conclusion about this routing model.

2. Related Work. There are several research papers, which focus on
the CRAHNS, these papers, serve as a starting point for understanding and
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exploring the field of hybrid optimization-based spectrum-aware
opportunistic routing in cognitive radio ad hoc networks.

As stated above, the interest in the CRAHN routing models has been
very high recently. Many existing efforts focus on developing OR strategy
with channel assignment and maximizing network throughput. In [17], a
new route metric called multichannel expected any path transmission time is
proposed, which exploits the channel assorted variety and resource of
multiple applicant forwarders for the opportunistic routing. In light of the
new metric, a distributed algorithm named channel-aware opportunistic
routing is also displayed.

In study [18], an online opportunistic routing algorithm is proposed
by utilizing multi-specialist support learning; introduces the concept of
opportunistic spectrum access in cognitive radio networks and proposes an
optimization-based approach for selecting the best available spectrum bands
for communication. The proposed routing plan together addresses the
connection and relay determination in light of transmission achievement
probabilities. This advanced learning system effectively investigates
openings in part recognizable and non-stationary conditions of CRAHNSs.

In study [19], the randomization structure is summed up, which is
initially proposed for the information line changing to a SNR — based
interference model in multi-hop wireless networks. Further, circulated
power assignment and correlation calculation are produced, which
accomplishes about 100% throughput. In study [20], a Bayesian decision
rule-based algorithm to take care of the throughput maximization problem
ideally with steady time multifaceted nature is proposed. To organize PU
transmissions, the throughput maximization problem is re-detailed by
adding a constraint on the PU throughput.

In study [21], the throughput execution of the network is portrayed
by utilizing a lining theoretic investigation, and throughput is additionally
boosted by means of the use of the Lagrangian duality hypothesis. In study
[22], by applying the convex optimization method, the shut-shape
articulation for the ideal time portions is acquired to boost the sum
throughput. To beat this problem, another execution metric known as the
common throughput is proposed, which considers the additional constraint
that all users ought to be designated with an equivalent rate paying little
respect to their distances to the H-AP.

In study [11], presents a hybrid optimization algorithm for
opportunistic routing in cognitive radio ad hoc networks. This algorithm
uses the hybrid artificial bee colony optimization to achieve a trade-off
between exploration and exploitation in the route selection process,
considering spectrum availability and energy efficiency. The authors
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propose a routing protocol that takes into account the variation in channel
conditions and utilizes a particle swarm optimization algorithm to select the
best routes based on spectrum availability and link quality.

In study [10] the authors developed the SMOR model, the Spectrum-
Map-Empowered Opportunistic Routing (SMOR) model focuses on
leveraging spectrum mapping techniques to enhance opportunistic routing
in the cognitive radio ad hoc networks (CRAHNSs). The model is designed
to address the challenges posed by dynamic spectrum availability in
CRAHNS; which was developed separately for both regular CRAHNSs as
SMOR-1 algorithm and large scale as regular CRAHNs as SMOR-2
algorithm. By incorporating spectrum mapping and opportunistic routing,
the SMORT model likely aims to improve spectrum utilization, enhance
overall network performance, and mitigate the effects of varying spectrum
availability in CRAHNS.

SMOR-1 Algorithm (for regular CRAHNs): The SMOR-1 algorithm,
specifically tailored for regular CRAHNS, aims to optimize opportunistic
routing by utilizing a spectrum map. The spectrum map provides
information about the availability and quality of different spectrum bands in
the network. Based on this information, the SMOR-1 algorithm selects the
most suitable spectrum band and path for data transmission, considering
factors such as channel conditions and interference [10, 11, 26].

SMOR-2 Algorithm (for large-scale CRAHNs): The SMOR-2
algorithm, developed for large-scale CRAHNS, extends the concepts of the
SMOR-1 to address the scalability issues inherent in larger networks. It
aims to efficiently utilization of spectrum resources while considering the
challenges of topology dynamics and resource limitations in large-scale
CRAHNs. The SMOR-2 algorithm may incorporate additional
optimizations or techniques to handle the increased complexity and scale of
the network [10].

In Stochastic geometry analysis for regular CRAHNSs, the
mathematical analysis for transmission delay of multi-hop communications
is examined via Markov chain modelling and queuing network theory, and
the SMOR-1 algorithm is proposed to exploit opportunistic selections for
cooperative relay regarding link transmission qualities. For large-scale
CRAHNsS, the corresponding delay of opportunistic links is derived via
stochastic geometry and queuing network analysis, and the SMOR-2
algorithm is proposed to fulfill geographic opportunistic routing, exhibiting
cooperative diversity in such large-scale networks [10, 26].

3. System Model. Due to the challenges that face the decentralized
infrastructure of Cognitive radio ad hoc network, and due to the fact that
CRAHN has no infrastructure backbone, we considered the system to
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involve with a finite of (M= 10) Primary users (PUs), every PU has its own
licensed spectrum to communication in specific spectrum band X' < X
where X is estimated area of 500m x500 m.

PUs share an unused channel with Secondary Users (SUs) which are
specified with (N=100) SUs when PU is in the off state, SU is able to find a
PU spectrum hole to establish connection and communication with a single
transmitter Tx and K receivers Rx over the time interval [0, T'].

Let n denote the number of the transmitting and receiving pairs for
SU and Tn= {1,2,..,n} denotes the set of SU where the pairs of transmitting
and receiving of SU i (SU i for ieN) are changeable based on the PU
activities; that means, the licensed spectrum of PU i should be busy during
transmitting and receiving of PU i, otherwise the opportunistic Spectrum
will be available for SU i. Figure 1 shows the system model utilized in this
paper [25 —31].

This system model proposes a hybrid optimization-based routing
protocol for cognitive radio ad hoc networks. It combines genetic
algorithms and particle swarm optimization to optimize the routing path
selection while considering spectrum availability.

Data Packets
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Fig. 1. System Model

The following Table 1 illustrates the main parameters in the system
model, the energy of transmission in PU i is denoted by pf, as well as the
transmission energy in SU i is denoted by p7, while it is supposed that the
pairs of SU i transmitter/receiver are inside the communication range of each
other.
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Table 1. Simulation Parameter

Simulation Parameters
No.
Parameter Parameter Value
1 Simulation Area Size 500m x500 m.
2 Simulation time 120s
3 Number of CR-Nodes (SUs) 100
4 Number of PU-Nodes 10
5 Size of frames to be scheduled 64 to 196 kb
6 Variable transmission time ranges 10-50 ps
7 Number of chanpels utilized to schedule the 35
frame transmission
8 Size bandwidth available per channel 2 MB/s
9 Distance between the Nodes Random
10 Node Energy Capacity 250mAH

4. Hybrid Firefly and Gray-Wolf optimization based on SMOR
Model. This proposed routing model follows the processes in SMOR; the
existing SMOR model has been shown to improve and enhance the network
throughput, reduce the delay and the packet loss, then, enhance the network
resilience to channel variations and node failures. However, it also required
careful design and optimization of the spectrum sensing, channel selection,
and opportunistic routing algorithms, as well as the handoff criteria and the
routing metrics.

Overall, the SMOR model is a promising approach to improve the
performance and efficiency of cognitive radio ad hoc networks as explained
in the previous relative work section in this paper; therefore, the proposed
new approach is developed to enhance the performance, efficient
opportunistic routing in CRAHN via hybrid firefly and Gray-Wolf
optimization approach.

Based on these strategies, the proposed HFGWO-SMOR model has
developed. The relationship between the delay and throughput is optimized
using the hybrid algorithms.

The behavior of the fireflies and the Gray wolves are merged to
develop this model. First, the basic concept of these two optimization
models has been discussed in [25]. The flashing behaviors of fireflies are
utilized to develop firefly-inspired algorithms.

Firefly Approach (FA) and Gray Wolf Optimization Approach are a
metaheuristic optimization algorithm.
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4.1. Firefly Approach (FA). Xin-She Yang defined the Firefly
Algorithm, which is an optimization algorithm that is based on the flashing
characteristics of fireflies. It was proposed by the author in 2008 as a novel
optimization technique to solve complex optimization problems. The
algorithm is inspired by the properties of fireflies, which use their flashing
behavior to attract mates and communicate with each other [33].

The algorithm then simulates the flashing characteristics of the
fireflies, where the intensity of their flashes represents the quality of the
solution they represent. On the other hand, the algorithm models the
behavior of fireflies, which communicate with each other through
bioluminescence. The brightness of a firefly's light is proportional to its
attractiveness to other fireflies, and fireflies tend to move toward the
brightest light they can see [23, 24].

Firefly Approach; this algorithm uses a set of parameters, such as the
light absorption coefficient and the step size, to control the movement of the
fireflies. On the other hand, the firefly’s movements are also influenced by
the distance between the fireflies, with closer fireflies having a stronger
attraction.

The Firefly algorithm has been shown to be effective in solving a
wide range of optimization problems, including function optimization,
parameter estimation, and machine learning. It is also known for its
simplicity and fast convergence rate.

The proposed hybrid algorithm is developed by hybridizing both of
these behaviors. For a maximization problem, it obtains the highest possible
value of the fireflies function, the brightness and flashing can be
proportional to the value of the possible objective function. In maximum
optimization problems, the brightness I of a firefly at a particular location x
can be chosen as I(x) « f(x). However, the attractiveness B is relative; it
should be seen in the eyes of the beholder or judged by the other fireflies.

Thus, it will vary with the distance rij between firefly i and firefly j.
In addition, light intensity decreases with the distance from its source, and
light is also absorbed in the media, so we should allow the attractiveness to
vary with the degree of absorption [23 — 26]:

ﬂi,j = ﬂoeimz > (M

where (3 is the attractiveness at r=0.and vy is the light exhaust coefficient.
The distance between two transmitters of i and receiver j is arrived using
deff. The movement of transmitter i as its being powered by the brighter
receiver j is calculated as follows:
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Ax, = B (xi —x,.’)+a£[, )

where the y second term is due to the attraction. The third term « is a
randomization vector drawn from a Gaussian disposal.

The algorithm uses the following phases:

1. Initialization: Generate an initial population of fireflies with
random positions and intensities.

2.  Fitness Evaluation: Evaluate the fitness of each firefly based on
the problem's objective function.

3. Attraction: Move each firefly towards the brightest firefly
(i.e., the one with the highest intensity) in its vicinity, where the degree of
attraction is based on the distance between the fireflies and their intensities.

4.  Randomization: Introduce random movement to each firefly to
prevent premature convergence and to explore new areas of the search
space.

5. Updating: Update the positions and intensities of the fireflies
based on their movements and fitness values.

6. Termination: The algorithm stops when a certain stopping
criterion is met, such as a maximum number of iterations, or when the
desired accuracy is achieved.

Definition: Light intensity: The light intensity of each firefly is
calculated as follows:

I_i=f(x_i), 3)

where [ i is the light intensity of firefly i and f(x i) is the fitness value of
firefly i.

Attraction: Each firefly is attracted to other fireflies based on their
light intensity and distance. The attraction of firefly i towards firefly j is
calculated as follows:

r_ij o= |x_j - x_i. (4)
beta = beta 0 * exp(~gamma*r _ij ™), 5)

x_i =x_i +alpha * (x_j — x_i) + beta * epsilon_i, (6)
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where r_ij is the Euclidean distance between fireflies i and j, beta 0 is the
initial attractiveness, gamma is the light absorption coefficient, alpha is the
step size, and epsilon i is a random vector with values drawn from a
Gaussian distribution [27 — 32].

4.2. Gray Wolf Optimization Approach. In 2014, in studies
[31,34] the authors proposed the Gray Wolf Optimization (GWO)
algorithm, inspired by the social hierarchy and hunting behavior of gray
wolves in the wild.

It simulates the hunting behavior of wolves, the algorithm starts with
an initial population of wolf packs where the range of each pack is from 5 to
12 wolves, each pack consisting of alpha, beta, and delta wolves. In the
GWO algorithm, a population of wolves is used to search for the optimal
solution to a problem. The alpha wolf is responsible for leading the hunting,
while the beta and delta wolves assist the alpha wolf in the hunting process
[33, 34].

The GWO algorithm optimizes a function by updating the positions
of wolves, which represent the best solutions found so far. The algorithm is
based on the social behavior of gray wolves, where each wolf has a specific
role in the pack and works together to achieve a common goal.

Definition: The algorithm iteratively searches for the optimal
solution by simulating the hunting behavior of the wolf packs. During each
iteration, the alpha wolf updates its position based on its hunting
experience, while the beta and delta wolves adjust their positions based on
the alpha wolf's position. The alpha wolf represents the best solution found
so far, the beta wolf represents the second-best solution, and the delta wolf
represents the third-best solution [35].

At each iteration, the positions of the wolves are updated using the
following equation [32, 33]:

Xi=xij+ a*(2*rl—1) | Axxalpha — xij|, @)

where x'ij is the updated position of the i-th wolf in the j-th dimension, xij
is the current position of the i-th wolf in the j-th dimension, a is a
coefficient that decreases linearly from 2 to 0 as the number of iterations
increases, r1 is a random number between 0 and 1, and A*xalpha is the
position of the alpha wolf.

The Gray Wolf Optimization algorithm steps:

1. Initialization: The algorithm starts with an initial population of
n search wolves (where CR user searches for free Spectrum holes) that are
randomly distributed in the search space.
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2. Fitness evaluation: The fitness of each search wolf (get a
Spectrum-hole that belongs to PUs) is evaluated by applying the objective
function of the optimization problem to its corresponding search space. The
search wolf is ranked according to their fitness values, with the best (i.c.,
lowest) fitness values having the highest rank.

3. Pack updating (alpha, beta, and delta) wolves: The algorithm
identifies the three best wolves in the population. The position of these
wolves is then updated based on the positions of the other wolves in the
population. The three search agents with the highest ranks are designated as
the alpha, beta, and delta wolves, respectively.

4.  Solution update: The algorithm updates the positions of the
candidate solutions, and checks if the new solutions improve the overall
fitness of the pack.

Definition: The algorithm continues to update the positions of the
wolves until a stopping criterion is met, such as reaching a maximum
number of iterations or a satisfactory solution [35].

Updating the position of the alpha wolf:

D alpha=|CI * X alpha-X i, ®)
X1 =X alpha- Al * D _alpha. 9)

Updating the position of the beta wolf:
D beta=|C2 * X beta- X i, (10)
X2 =X beta-A2 * D beta. (11)

Updating the position of the delta wolf:
D delta = |C3 * X delta - X i|, (12)
X3 =X delta - A3 * D _delta. (13)

Updating the position of the other wolves:

Xi=(XI+X2+X3)/3, (14)

where X i is the position of the i-th wolf, X _alpha, X beta, and X delta are
the positions of the alpha, beta, and delta wolves, respectively, C1, C2, and
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C3 are random vectors between 0 and 1, A1, A2, and A3 are constants that
control the step size of the update.

These equations of GWO are applied to each candidate solution
(wolf) in the population in each iteration of the algorithm, and the process
continues until a stopping criterion is met (e.g., a maximum number of
iterations or a desired level of convergence).

The steps of the HFGWO Approach:

1. Initialize values of Firefly Approach (FA) parameters:
population, maximum iterations, attraction coefficient, etc....

2. Initialize Gray Wolf Optimization (GWO) parameters:
population (primary-users), search agents (CR-User).

Generate initial fireflies.

Evaluate fitness and update light intensity.
Find the brightest firefly.

Update information.

Feed FA results to GWO.

GWO initializes search agents and solutions.

9.  Evaluate fitness.

10. Compare with other agents to determine the best search agent.

11. Verify the result of FA.

12. Return the best grey-wolf firefly agent.

Based on this concept of HFGWO, the SMOR routing model is
modified and improved. The proposed model initializes the nodes as
fireflies and selects the best firefly using FA while it is cross-checked using
GWO to verify the best selection. This concept is presented in the following
algorithm.

NN W

Algorithm 1. HFGWO-SMOR
Initialize network parameters (Number of PUs, SUs, Data Rate, efc...)
Partition traffic into batches of packets
For each time slot
Source Collect link information
Prioritize forwarding nodes
Select data packets for each path via HFGWO
Initialize FA & GWO parameters: (population, maximum iterations, an
attraction coefficient and algorithm parameters).
Find the brightest of fireflies with a high attraction coefficient
Change attractive level and distance
Select the best Firefly node
Feed FA result to GWO
Verify the node information using GWO
Initialize the best three solutions, the first best solution as xa, the second
best solution as xf3, and the third best solution as x0, respectively.
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While (k < maximum number of iterations or a desired level of
convergence)
Fori=1:n
Update the current position of the search agent based on the
desired level of convergence
End for
Evaluate the fitness.
Update the coefficient vector
If there is a better solution, then update the best agents, xa, xB and xd.
k=k+1;
Return the best forwarding node
Update the parameters
Send test data
If ACK is not received
Initiate path-checking process
For each relay node
Check the packet transmission information
Update lists
Return packet data
End While
Transmit data
End For

5. Performance Evaluation. The proposed HFGWO-SMOR routing
model is evaluated using MATLAB. The routing performance of this model
is compared with that of SMOR [10], HABC-SOR [11], HB-SOR [12] and
HFSA-SOR [13]. The simulation environment is set as in [10 — 16] and the
comparisons are simulated in concepts of end-to-end delay (EED), Bit Error
Rate (BER), throughput and packet delivery ratio. MATLAB simulators
provide a framework for modeling the various network components and
their interactions.

5.1. Delay. Simulating delays in cognitive radio ad hoc networks
involves modeling the various factors that contribute to delays in the
network. Delays in the network can be caused by factors such as
propagation delay, queuing delay, processing delay, and transmission delay.
Delay simulation in cognitive radio ad hoc networks can be represented
mathematically using a queuing model; queuing models provide a
framework for modeling the arrival and service processes in a network, and
can be used to estimate the queuing delay and other performance
metrics [29].

One commonly used queuing model for delay simulation in
cognitive radio networks is the M/G/1 queuing model. In this model,
packets arrive according to a Poisson process with rate A. The queuing delay
for each packet can then be calculated as:
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D = (p/u-2)) * (172 + (V/2)"2), (15)

where p = A/p is the traffic intensity, and V is the coefficient of variation of
the service time distribution. This equation assumes that the service time
distribution is memoryless, which is a reasonable assumption for many
communication protocols in cognitive radio networks.

Total delay = Propagation delay + Queuing delay + Processing
= (16)

delay + Transmission delay.

Propagation delay: Propagation delay is the time it takes for a signal to be

traveled from the transmitter to the receiver, and is dependent on the

distance between the nodes and the propagation speed of the medium.

Mathematically, propagation delay can be expressed as:

Propagation delay = distance between nodes / propagation speed (17)
of the medium.

Queuing delay: Queuing delay is the time it takes for packets to wait in a
buffer before they can be transmitted, and is dependent on the network
congestion and the size of the buffer:

Queuing delay = packet size / available bandwidth. (18)

Processing delay: Processing delay is the time it takes for the node to
process a packet before forwarding it, and is dependent on the processing
power of the node [30—37]. Mathematically, processing delay can be
expressed as:

Processing delay = packet size / processing power of the node. (19)
Transmission delay: Transmission delay is the time it takes for the packet
to be transmitted over the wireless medium, and is dependent on the
bandwidth of the channel and the size of the packet. Mathematically,
transmission delay can be expressed as:

Transmission delay = packet size / available bandwidth. (20)

5.2. Throughput: The throughput of a cognitive radio ad hoc
network is affected by various factors such as the number of nodes in the
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network, the data rate of the channel, the propagation delay, the processing
delay, and the queuing delay [28, 29].

By using appropriate values for these parameters and applying the
following equation, one can simulate the throughput of the network and
analyze the performance of the network under different scenarios.

The throughput in HFGWO-SMOR Model is modeled
mathematically using the following equation:

Throughput = total number of bits received / total time, (21)

where the total number of bits received is the number of bits received by all
the nodes in the network during a given period of time, and the total time is
the time taken for all the bits to be received. The total number of bits
received can be calculated as:

Total number of bits received = number of nodes * data rate * time, (22)

where the number of nodes is the number of nodes in the network, data rate
is the data rate of the channel, and time is the period of time for which the
data rate is measured. The total time can be calculated as:

Total time = transmission time + propagation delay + processing
; (23)
delay + queuing delay.

By the way, Table 1 shows the main parameters to simulate the
delays and throughput in our system model, in order to model delays in the
network; one can configure the simulator to include parameters such as the
distance between nodes, the buffer size, the processing power of the nodes,
and the bandwidth of the channel. By adjusting these parameters, one can
simulate different network scenarios and measure the resulting delays.

It is also important to consider the impact of interference in the
network, as cognitive radio networks rely on the ability to detect and avoid
interference. Simulating interference was done by introducing competing
signals in the network, or by modeling the spectrum sensing capabilities of
the nodes.

We obtained the total delay in a cognitive radio ad hoc network in
our research. The resulting delay value is used to evaluate the performance
of the network and to compare different network configurations and
scenarios, the Figure 2 shows the EED vs. lambda comparison of SMOR,
HABC-SOR, HB-SOR, HFSA-SOR and the proposed HFGWO-SMOR.
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HFGWO-SMOR shows a remarkable improvement in the packet
delay aspect, which leads to minimizing the delay in all levels of the offered
load with an average of 4%, HFGWO-SMOR model reduced delay than
other models because of the improved optimal selection of the routing

paths.

—+—5MOR
HB-50R

—#—HFGWO-5SMOR

—=—HABC-50R
HFSA-S0R

1 15 2 25 3 35 4 45 5 53 6

lambda (packets/sec)

Fig. 2. End-to-end delay

Figure 3 shows the BER vs. lambda comparison of SMOR, HABC-
SOR, HB-SOR, HFSA-SOR and the proposed HFGWO-SMOR. HFGWO-
SMOR shows a lower error rate with a 4% decrease on average while other
models have comparatively higher BER. This is because the path selection
is highly reliable in the proposed model.
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Fig. 3. BER comparison
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Figure 4 shows the Throughput vs. lambda comparison of SMOR,
HABC-SOR, HB-SOR, HFSA-SOR and the proposed HFGWO-SMOR.
HFGWO-SMOR provides a higher throughput rate with a 3% increase on
average due to a significant selection of optimal paths while other models
have comparatively less throughput.
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Fig. 4. Throughput comparison

Figure 5 shows the Packet delivery ratio vs. no. of nodes comparison
of SMOR, HABC-SOR, HB-SOR, HFSA-SOR and the proposed HFGWO-
SMOR.
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Fig. 5. Packet delivery ratio
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HFGWO — SMOR provides a higher packet delivery ratio, which is
almost 22% higher than the SMOR model and significantly higher than
other models. From the performance evaluation results, it was found that the
proposed HFGWO-SMOR model has better performance than other models
in providing efficient opportunistic routing.

6. Conclusions. This paper aimed at developing an improved
opportunistic routing model that can resolve the limitations of the SMOR
model. This has been achieved by the HFGWO-based SMOR routing model
that further improves the opportunistic routing behavior. The proposed
HFGWO-SMOR model follows the process of SMOR with additional
improvement achieved in the optimal selection routing paths. The
experimental results also prove that the proposed model has reduced delay,
less error rate, improved throughput and improved packet delivery ratio. This
model provides more efficient opportunistic routing performance than the
other models compared including SMOR, which is evident from the
evaluation results. In the future, the feasibility of improving this model by
adding viable concepts of path loss, node failures, and power consumption
will be examined.
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YK 006.72 DOI 10.15622/ia.22.4.7

X.M. ApIvIUIA, A. KyMAP, A.A. KACEM AXMEJ, M.A. CAZL MOCJIEX
OIIMMOPTYHUCTHUYECKASI MAPIIIPYTHU3ALIASI HA OCHOBE
T'UMBPUIHOM ONTUMMU3ALIMA C YYETOM CIIEKTPA JIJISI
CAMOOPIAHM3YIONMXCS CETE KOTHUTUBHOM
PAITMOCBSI3U

Aboynna XM., Kymap A., Kacem Axmeo A.A., Cauo Mocnex M.A. OnnopryHucTuyecKas
MapHIpYTH3alHsI HA OCHOBe THOPHAHOH ONTHMH3AIMH C Y4YeTOM CHeKTpa AJs
CaMOOPraHU3YIOIHMXCS ceTeil KOTHNTHBHOMH PATHOCBSI3H.

AnHoTtauus. ONNOpTYHUCTHYECKAass MapUIpyTH3alys MOBbICHIA 3()(EKTUBHOCTE U
HaJeKHOCTh B CAaMOOPTaHU3YIOMIUXCS CETIX KOrHHTHBHOH paxuocss3u (CRAHN). Muorue
MCCIIEIOBATENN Pa3paboTany MOJENH ONIMOPTYHHCTHYECKOH MapIIpyTH3allMd, B TOM YHCIIE
MOJIeJIb ONMOPTYHHUCTHYECKON MapiupyTH3auuu Ha 6asze kapthl crnektpa (SMOR), xoTopas
cumuraercs 6onee 3(pekTHBHON Mojenbio B 3Toif obmactu. Omnako B SMOR cymecTByroT
OIIpeJieNICHHBIC OIPaHHYEHHUS, KOTOpble TpeOyIoT BHUMAHUs M YCTpaHeHUs. B naHHON cTaThe
paccMarpuBaeTcs npobiiemMa 3a1epiKKM U yXyIleHHs: Ko3(dHUIMeHTa J0CTaBKH TaKETOB U3-3a
HeydeTa IPOITyCKHOHW cOCOOHOCTH ceTH. UTOObI pemmTs 3TH IpobieMsl, B 6a30BoH Monenu
Mapupytusanud SMOR ucnonb3yercss THOPHIHBINA aNrOpPUTM ONTHMHU3AIMHU, COCTOSIINN 13
anropur™oB ontuMusanun Firefly u Grey Wolf. Paspaborannas Takum 00pa3oM ruOpuHas
Monenb MapmpyTtuzaimi  SMOR  Ha ocnHoBe ontummsauuu Firefly u  Grey-Wolf
(HFGWOSMOR) moBbIIIaeT NPOU3BOAUTENBHOCT 33 CYET BBICOKOH JIOKAIbHOW U
I7I00aIbHOI MOMCKOBON ONTHMH3alUuH. [lepBoHaYaIbHO aHATM3UPYETCS B3aHMOCBS3b MEXKIY
3aJep)KKOH U IPOIMYCKHOH CIIOCOOHOCTBIO, a 3aTeM YCTAaHABIHMBAeTCS COBMECTHAs
MHOTOJIy4eBasi CBsi3b. IIpemmaraemasi MoJenb MapIIpPyTH3alUH TAaKXKe BBIYHCIIET 3HAYCHHS
9HEPrUM IPHHMMAEMBIX CHTHAJIOB B IIpejesiax II0Opora IMOJIOCHl NPONYCKaHHs H IepHoja
BpPEMEHH, U, CIEIO0BATEIbHO, IPOOIEMBI ¢ IPOU3BOAUTENBHOCTEIO, 00HapykeHHbIe B SMOR,
pemarotcsi. UtoObl oneHHUTH €€ 3()(EeKTHBHOCTD, MPEUIOKEHHAsT MOJENb CPaBHHBAETCS CO
SMOR 1 fApyruMH CyLIECTBYIOIIMMH MOJEISAMM ONINOPTYHUCTHYECKOH MapIIpyTH3aluH,
KOTOpBIE IMOKAa3bIBAIOT, uTO mpearaemas moaens HFGWOSMOR pabotaer nyume, uem
Jpyrue MOJenu.

KiloueBble  c10Ba:  caMOOPraHHU3YIOIIMECS  CETH  KOTHMTMBHOW  paguOCBs3H,
OIMOPTYHHCTUYECKAS] MapIIPYTU3ALs, ONIOPTYHUCTHIECKAs! MapIIPYTH3anus Ha 6a3e KapThl
cnekrpa, ontuMusanus Firefly, ontumusanus Grey-Wolf, mopor nporyckHoit crioco6HOCTH.
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