ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

DOI 10.15622/ia.23.2.7

D. BALONI, D. RAIL P. SIVAGAMINATHAN, H. ANANDARAM, M. THAPLIYAL,
K. JOSHI
H-DETECT: AN ALGORITHM FOR EARLY DETECTION OF
HYDROCEPHALUS

Baloni D., Rai D., Sivagaminathan P., Anandaram H., Thapliyal M., Joshi K. H-Detect:
an Algorithm for Early Detection of Hydrocephalus.

Abstract. Hydrocephalus is a central nervous system disorder which most commonly
affects infants and toddlers. It starts as an abnormal build-up of cerebrospinal fluid in the
ventricular system of the brain. Hence, early diagnosis becomes vital, which may be performed
by Computed Tomography (CT), one of the most effective diagnostic methods for diagnosing
Hydrocephalus (CT), where the enlarged ventricular system becomes apparent. However, most
disease progression assessments rely on the radiologist's evaluation and physical measures,
which are subjective, time-consuming, and inaccurate. This paper develops an automatic
prediction utilizing the H-detect framework for enhanced accurate hydrocephalus prediction.
This paper uses a pre-processing step to normalize the input image and remove unwanted
noises, which can help extract valuable features easily. The feature extraction is done by
segmenting the image based on edge detection using triangular fuzzy rules. Thereby, the exact
information on the nature of CSF inside the brain is highlighted. These segmented images are
saved and again given to the CatBoost algorithm. The Categorical feature processing allows for
quicker training. When necessary, the overfitting detector will stop model training and thus
efficiently predicts Hydrocephalus. The outcomes demonstrate that the new H-detect strategy
outperforms the traditional approaches.

Keywords: Hydrocephalus, Computed Tomography (CT), H-detect technique,
Cerebrospinal fluid (CSF), Triangular fuzzy rules, Edge detect.

1. Introduction. Hydrocephalus is a typical central nervous system
disorder engendered by abnormalities in Cerebrospinal Fluid (CSF)
circulation. It is caused by an aberrant development of dynamic CSF
balance inside the brain's ventricular system [1]. As a result, the ventricles
bulge and compress the surrounding brain tissue, resulting in potentially
dangerous intracranial hypertension. The degree of ventricular enlargement
is frequently considerable, necessitating neurosurgery. It has some of the
most severe conditions affecting the central nervous system in children and
calls for early neurosurgical treatment [2]. Although this disorder can affect
patients of any age, it most commonly affects newborns and babies in their
early period of living. Hydrocephalus is predicted to affect one out of every
500 newborns [3]. Hydrocephalus has been examined and scanned;
nevertheless, there is no standard solution or efficient strategy for the
precise detection and quantitative assessment. Existing measuring methods
are predominantly qualitative and produce unsatisfactory results [4].
Radiological methods, such as Computer Tomography (CT) and Magnetic
Resonance Imaging (MRI), play a major role in the evaluation of
Hydrocephalus (MRI). These tests yield three-dimensional (3D), volumetric
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pictures of the brain. However, Hydrocephalus is still primarily assessed
manually. It is often based on a qualitative study of the lesion size and other
distinguishing characteristics [5].

These methods and procedures use various biophysical factors
to depict anatomical features and pathological changes in the human brain.
The advancement of medical imaging technology can significantly improve
the identification and treatment of numerous lesions and pathological
alterations [6]. Radiological diagnostics enable the precise identification
of the lesion. A comprehensive analysis of the condition is required before
making a treatment approach. The development of tools for automated
pathogenic change recognition and classification is thus one of the trickiest
problems in contemporary clinical image processing and analysis [7].
There are several methods for segmenting the CSF and the brain ventricular
system from CT and MRI imaging. However, only a few papers have been
undertaken regarding image processing and analysis in the quantitative
assessment of Hydrocephalus [8]. These works are typically significant,
and there has been no comprehensive research in this field. It is difficult
because of the intricacy and wide range of brain regions. As a result,
most known algorithms are based on manual or semi-manual CSF
extraction or automated segmentation utilizing basic image processing
methods [9].

As a result, this paper aims to propose an H-detect framework which
aims:

—  To remove the noise existing in the raw data and normalize that
can be understandable by the model developed.

— To develop an edge detection using a triangular fuzzy rules
model for a significant feature extraction process that can contribute highly
to a better understanding of the predicting algorithm.

—  To utilize the efficient CatBoost algorithm that can learn the
extracted features and predict the disease, thereby improving the accuracy
of hydrocephalus diagnosis.

This essay is divided into five distinct sections: Section 1, which
discusses the introduction of the research; Section 2, which highlights
earlier work completed with the same goal; Section 3, which elaborates the
proposed method with three subsections; Section 4, which discusses the
implementation of the model and the findings achieved; and Section 5,
which wraps up the essay.

2. Literature Survey. In paper [10] analysis of the DL-based MRI
image recognition system for bone fracture diagnosis. The study
demonstrated that the MRI pictures could be categorised and arranged using
deep convolutional neural networks. The CNN was able to gather
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information at a high rate and was not hindered by the surrounding tissues
of the hydrocephalus when collecting the 3D images of the hydrocephalus.
The research still has significant drawbacks, such as the fact that deep
learning depends on data.

According to the authors in [11], convolutional neural networks were
used to extract patient-specific information from pictures, create dimensions
for the lesion location in the picture, and apply a predetermined recognition
system. Besides a classifier, the questionable components were categorised.
The properties of the conventional physically constructed identification
entity were altered by a small modification to the recognition system. The
deep convolutional network can precisely identify the lesion's site and has
a wealth of characteristics. But still, there is a need to enhance the accuracy
of the paper by utilizing the data from the features in an efficient manner.

Convolutional network segment brain MRI semantic pictures were
employed by the authors in [12]. In accordance with the findings, the brain
MRI separation study indicated good precision, as well as the area of
technology, had great reliability in the anatomical outcomes of the
classification of brain MRI. The MRI characteristics of CI patients were
retrieved using a convolutional network, and the results were outstanding.
Since the network has not saved the segmented image and processed it,
hence the features are not clearly estimated.

Brain tumours were classified using DL characteristics and machine
learning algorithms by the authors in [13]. The support vector machine
(SVM) with the basis function kernel outperformed other machine learning
classifiers, and the incorporation of DL greatly enhanced effectiveness.
Additionally, the properties of the sensors were examined, and the WHGO
descriptor demonstrated outstanding recognition accuracy for the model
classifiers. But it is also time-consuming and operator-dependent.

In [14] the objective of this study is to create a screening method to
identify hydrocephalus cases from head MRIs. A 3D convolutional neural
network was utilised to autonomously partition the other 480 exams and
retrieve volumetric anatomical information after being trained on 16 manual
segmentation exams (ten of which had hydrocephalus). On 240 exams,
a logistic learner of these variables was developed to spot instances
of hydrocephalus that needed surgical treatment for therapy. This approach
can speed up and improve neuroradiology reads as well as help with the
diagnosis of probable hydrocephalus. Still, this method needs to be further
enhanced to be automated.

The fuzzy brain-storm optimal solution, which combines fuzzy and
brain-storm objective functions, was suggested by the authors in [15] for the
segmentation and classification of medical images. Brainstorm optimizing
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prioritises the cluster centroids and focuses on them; like other swarm
techniques, it may fall into local optimization. The brain-storm optimizer is
interesting and surpasses the other strategies with superior outcomes in this
investigation. The fuzzy runs numerous cycles to propose an ideal network
model. But it can only be used to detect high-grade hydrocephalus.

Study [10] still needs to rely on data. In [11] there is a need
to enhance the accuracy of the paper by utilizing the data from the features
in an efficient manner. In [12], the network has not saved the segmented
image and processed it, hence the features are not clearly estimated.
Paper [13] is time-consuming and operator-dependent, [14] must be further
enhanced to be automated and [15] can only be used to detect high-grade
hydrocephalus. So, there is a need to develop a model which can overcome
all the above-mentioned issues in an accurate manner.

3. H-Detect Framework for Prediction of Hydrocephalus. This
research work proposes a code-based H-detect model that pre-processes
MRI brain images, segments them using Fuzzy and extracts the necessary
features, based on the features classifies them, and predicts them for early
recognition of hydrocephalus. We used an original dataset of 100 patients
from several testing facilities to test the algorithm. In order to extract better
features and weed out incorrect predictions, the input photos are first pre-
processed to reduce noise and normalise the image into a similar
comprehensible format. Then the normalized images are segmented using
the triangular membership function in fuzzy rules for Edge detection. The
edge-featured images are then used as a training and testing set. For training
and testing, we use datasets from the UCI machine learning laboratory and
mridata.org for our larger requirements. The training and testing set
includes characteristics of healthy individuals and cancer patients at various
stages. CatBoost is an open-source platform that is tailored in this paper to
predict hydrocephalus. CatBoost is an excellent choice because of its
resilience, capacity to handle various datasets from various sources, work
on non-numeric data and lack of knowledge of rigorous data preparation.
The algorithm can also accept categorical variables without displaying the
conversion type mistake, allowing the programmer to fine-tune the model
rather than correcting trivial errors.

The H-detect framework is a combination of segmentation
techniques, triangular fuzzy rules and the CatBoost algorithm. Feature
extraction is done by segmenting the image based on edge detection using
triangular fuzzy rules. Therefore, the exact information on the structure of
CSF inside the brain is efficiently highlighted. The segmented images are
given to the CatBoost algorithm. Thus, the H-detect strategy efficiently
predicts hydrocephalus.
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Steps followed in the proposed method:

Step 1. Pre-process image to remove noise.

Step 2. Design fuzzy input and outputs.

Step 3. Define membership functions.

Step 4. Define Fuzzy rules.

Step 5. Fuzzified images to get the segmented images.

Step 6. Label the segmented images and add them to the digitized
dataset.

Step 7. Construct a structure and append labels and images to that.

Step 8. Split the data into training and testing sets.

Step 9. Apply the CatBoost algorithm to generate results.

Step 10. Take an MRI of a new patient and segment using fuzzy
rules in step 2. Create labelled data.

Step 11. Apply predictive analysis.

The proposed method, H-detect, can be categorized into three
sections: pre-processing, segmentation, and classification as shown in
Figure 1. The subsequent sub-sections explain the overall methodology
under the three steps mentioned earlier.

_..—l

Input Image Image Bre- Image
Processing Segmentation

CatBoost
Algorithm
-« «—

-

Detected Assess Image
Hydrocephalus Accuracy Classification

Fig. 1. Process flow diagram of the proposed H-detect method

3.1. Pre-processing. In computer-aided medical diagnostics, image
pre-processing is a crucial component, specifically in hydrocephalus-related
classification, thereby the segmentation and feature extraction algorithms
can perform efficiently. Accurate hydrocephalus detection and
segmentation lead to precise feature extraction and classification of
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hydrocephalus. If the image is pre-processed according to image size and
quality, precise hydrocephalus segmentation is feasible which is essential
since most real-world data is noisy, inconsistent, and incomplete.

The quality of the acquisition equipment to capture the scene being
imaged, such as the structures of the human body, is fundamental for visual
interpretation and analysis of digital pictures. It is standard procedure to
pre-process images to adjust or improve them before feeding them into
more sophisticated processing steps. When deep machine learning is used to
edit images, common pre-processing tasks include adjusting their initial
dimensions and the augmentation of their intensity. Before feeding the
learning machines, the dimensions of the input images are normally reduced
to an appropriate size. The basic assumption of size reduction is to reduce
the learning machines' compute times at the rate of image quality.

There is a requirement to establish a baseline dimension for all
photos input into our Al algorithms in order to extract the features quickly
without generating any incorrect predictions because the size of some
images captured by the camera and provided to our Al technology
fluctuates. The proposed framework employs the following approach to
eliminate noise and provide a suitable scale to the input image shown in
Figure 2.

Fig. 2. MRI Image of the brain with Hydrocephalus
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Algorithm 1. Pre-processing

Setup: Initialize required variables

Start

Step 1: Read the MRI image

Step 2: Get the dimensions of the image I
Step 3: Get a grey threshold of Ig

Step 4: Get the class type of red channel of I
Step 5: Determine the scaling factor

Step 6: Get a red channel of

Step 7: Lcareq = Ig/scaling Factor

In this paper, the input image is first imparted to the H-Detect
algorithm, which retrieves the image information first. Sound interruption,
offset field effects, and short-channel impacts could happen while
processing brain images. The converted grey threshold function is then used
to compute a threshold value. As just one channel is evaluated in each
iteration, the algorithm determines the original image's grey threshold value.
The image's scaling factor is also determined using the threshold value and
Class type.

Step 1. Get Step 2. Find Step 3. Find Step 4. Crop
the original image the biggest contour the extreme points the image

Fig. 3. Pre-processing steps involved in the proposed method

Figure 3 clearly shows the normalization of the image by finding the
biggest contour, finding the extreme points and scaling the image. Finally,
one image channel is retrieved and split by the scaling factor to generate
anormalized image, allowing the algorithm to gather features through
correct segmentation and eliminating erroneous classification. The next
phase in identifying Hydrocephalus is feature extraction with segmentation,
detailed in the next section.

3.2. Segmentation based feature extraction. The process of
simplifying and modifying the representation of an image into a much more
relevant and simpler form to analyse is known as segmentation. Image
segmentation is commonly used to find objects and borders in images.
Medical image segmentation is critical in demarcating areas of interest
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under investigation. It is required in nearly all medical imaging applications
and is necessary for automated disease state identification in diagnostic
imaging. Nevertheless, because of separate variations and the difficulty of
human organs like the brain, segmentation outputs from medical images,
particularly those of brain hydrocephalus, are insufficient.

Medical brain pictures are ambiguous by nature and are therefore
rife with ambiguity in diagnosis and prediction. The pixel grayscale border
between the limit of the brain image and the background becomes hazy and
overlapped due to the interaction between light and spatial resolution with
brain pictures. It is also challenging to accurately depict the connections
between the borders, points, and areas of the locations in the scene due to
the influence of equipment elements, which increases the uncertainty, since
voxels on a boundary often include two substances, such as border and
item.

In order to improve the effectiveness of brain image classification as
well as diagnostics, this work makes use of the boundary information of
unlabelled and labelled data in brain medical imaging. The human brain
MRI image is divided into various situations. Finally, the enhanced
algorithm creates a brain disorder medical image segmentation system via
fuzzy rules with a triangular membership function.

Algorithm 2. Segmentation

Setup: Initialize required variables from the pre-processed image

Start

Step 1: Create a new fuzzy structure based on the triangular membership
function.

f@=m (m (G=.==).0) (M

where f(x) is the Triangular membership function,
a, b, c are the parameters,
x is the input value.
Step 2: Add image gradients as input and add output variables.
Step 3: Declare the membership function as P, , P;.
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(OifFSSW
(F,—w)
KB =N py 2)
(e—b) "P=f=¢
Oif Fs>e

where u(F,) is the membership function,

Fs is universe of discourse,

w is white,

b is black,

e is edge.

Step 4: If all the membership function equals 0, then black.

Step 5: If anyone or more numbers of the membership function are
not equal to 0, then edge.

Step 6: If all the membership functions are not equal to 0, then white.

Step 7: Create an empty matrix for the output.

Step 8: Collect the rules, and create the array.

Step 9: Evaluate fuzzy rules and add the rules to FIS based on the
following function:

ZVR ZVG ZVB F(Imri)VRGB’ (3)

where VR: Red Channel,

VG: Green Channel,

VB: Blue Channel,

L,is: Pre-processed MRI image, (dcom converted to jpg).

Step 10: Segment the image based on fuzzy rule-based feature
extracted image:

vai Imri n F(Imri)a (4)

where V,,,;: All the elements of the MRI image,

Sseg: Edges detected using (3),

Iyri: Pre-processed MRI image (converted into jpg),

F (I,;,yi): Fuzzified image.

The segmentation is computed with fuzzy membership values using
the triangular membership function. The augmented image shown in
Figure 4 obtained after pre-processing for separate channels is taken as
input. Then the proposed H-detect has designed a fuzzy model to segment
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the RGB MRI images with a triangular membership function. The
mathematical representation of the triangular membership function is
explained in steps 1 and 3. The images are segmented with different
membership functions to choose the right membership function as shown in
Figure 5. The other parameters remained the same. The functions in steps 9
and 10 are employed to design the Fuzzy model, and then the designed rules
are applied to detect the edges. The whole algorithm is repeated for green
and blue channels also. Thus finally, the segmented RGB image is obtained
by overlaying the segmented R, B and G channel images.

Fig. 4. Augmented image with a single channel for edge detection

Fig. 5. Segmented Hydrocephalus Images

3.3. Classification. All the segmented images are stored in a folder
and are scaled to bring uniformity. The scaled images are read one by one
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from the folder, and a threshold value is predicted by calculating the mean
of the minima of an Image. The threshold of all the images is summed up
and then divided by the number of images in the folder. It gives us the
scaling factor. The folder is again iterated, and every image is divided by
the scaling factor and forms the image dataset; thus, the image will be free
from all falsifying factors, enhancing accuracy.

Then a label is assigned to each dataset for classification. Before
applying CatBoost, the data type is changed to float. It is then flattened and
then divided by 255 (pixel value). We use steps 4 and 5 to design the model
and then fit the data on the model. Once the model fits, a new image is
taken, and predictive analysis is done, as explained in Step 7.

Setup: Initialize required variables

Start

Step 1. Read folder having Edge featured images.

Step 2. Create a learning dataset using fn (3):

VSeg

> {F(sie) ) )

i=1

where VS, ,: All the elements of the segmented image from (4)

{F (Sseg)i}: The segmented image taken as features

Step 3. Label the data.
Step 4. Create the CatBoost classifier model:

S0 {F (Seeq) ) (©6)

where VS, ,: All the elements of the segmented image from (4),

{F (Sseg)i}: The segmented image taken as features.
Step 5. Train the CatBoost classifier model with training data:

Z DC ({Ftrain ’ Ftest })l (7)
VF

where VF: All the features,
D.({Fyain» Frest }): Apply CatBoost on the Training and testing set
Created after (6).

Informatics and Automation. 2024. Vol. 23 No. 2. ISSN 2713-3192 (print) 505
ISSN 2713-3206 (online) www.ia.spcras.ru



WCKYCCTBEHHbBIN MHTEJIJIEKT, UHKEHEPUS JIAHHBIX M 3HAHUI

Step 6. Fit the model on Dataset, Data Label.
Step 7. Test the model using (8):

Z P(VR! Nfeature )' (8)
VR

where VR: Results of CatBoost,

P(VR, Ngnive ): Predictive analysis of New Features.

The CatBoost classifier is one machine learning technique that's also
effective in forecasting classified variables. Gradient boosting is carried out
via CatBoost, which uses binary decision trees as baseline forecasts [16].

Xj = X, X7 e .., %] vector of n features and response feature y; € R,
which can be binary (i.e., yes or no) or encoded as a numerical feature
(Oor1). Samples (X;,y;) are independently and identically distributed
according to some unknown distribution (+,). The goal of the learning task
is to train a function H : R® — R, which minimizes the expected loss given

as:

L(H) = EL(y, H(X)), 9)

where L(:,) is a smooth loss function, and (X, y) is testing data sampled
from the training data D.

The procedure for gradient boosting constructs iteratively a sequence
of approximations H: R™ - R,t = 0,1,... in a greedy fashion. From the
previous approximation Hf™1, H® is obtained in an additive process, such
that H® = H*™! + ag'. With a step size a and function g*:R™ — R,
which is a base predictor, is selected from a set of functions G to reduce or
minimize the expected loss defined below:

g" = argminge; L(H™ + g), (10)

= argmingeg EL(y, H1(X) + g(X)). (11)

Often, the minimization problem is approached by the Newton
method using a second-order approximation of L(H*™* + g%) atH!™?! or by
taking a (negative) gradient step.
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Thus, the suggested H-detect algorithms accurately identify
Hydrocephalus in brain MRI images with minimal processing time. One
ofthe predictions is depicted in Figure 6. The suggested technique
effectively eliminates incorrect predictions and overfitting. The next part
evaluates and discusses the results gained by applying the proposed strategy
and its performance.

Actual class: 0
Predicted class: 1

Fig. 6. Prediction of labelled image classes

4. Result and Discussion. The proposed H-detect technique is
implemented in MATLAB. MRI images are converted from DCOM to jpg
format using a third-party tool. If we discuss about pattern recognition we
may use the YOLO technique but in this section, we initialized the basic
approach to segmentation for hydrocephalus detection. 3D image
processing technique is used for visualization, processing, and analysis of
3D image data through geometric transformations. The 3D approach can be
also applicable for such tasks since CT is a sequence of images of a brain
and the 3D approach can also be useful for the diagnosis of hydrocephalus
with a couple of datasets. 3D is an older technique. Here, we use the
Catboost algorithm which is used for prediction and classification. It is
much better than 3D for various factors such as segmentation, classification,
decision-making, precision and accuracy. By applying Catboost with fuzzy
logic, the proposed system works better than the existing work. The output
of the implementation and the obtained results are discussed in this section.

4.1. System Configuration.

Processor : Intel Core i5, V generation

RAM : 16 GB
Graphics : Nvidia
HDD :1TB

(0N : Windows 10
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4.2. Dataset description. Hydrocephalus datasets from three testing
labs have been taken. Due to the non-disclosure agreement, further details
cannot be shared. The dataset also includes records of Tumor, Malignant,
Benign, and Hydrocephalus which were taken from Brigham and Women's
Hospital, Surgical Planning Laboratory, Department of Radiology, Harvard
Medical School (Boston, MA, USA), BRATS, BITE, metadata.org, and
cancerimagingarchive.net.

4.3. Implementation results. The image of Figure 7, 8 shows the
input dataset containing both brain MRI images with and without
hydrocephalus. The distribution of the images with respective ratio values is
given below in Figure 9. The H-detect model predicts the hydrocephalus
efficiently.

" T ! [ \
iﬁ:‘" \ ‘ J ‘ .
- \.- - . . .

Fig. 8. Dataset images without hydrocephalus
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Count

: _ ooen N |

0.8 10 12 14 16 18
Ratio Value
Fig. 9. Distribution of Image Ratios

The cat boost model has 34 Iterations, 0.05 Learning rate, depth of
12 and multi-class loss function.

4.4. Performance metrics. The following formulae from (12)
to (15) are calculated for checking the robustness of H-detect Precision,
Recall, Accuracy, and F1 scores. True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) are the metrics used to
calculate the scores:

Precision = — (12)
recision = (TP n FN),
Recall = —— 13
ecatt = (TN_I_FP); ( )
(TP + TN)
A = , 14
CCUracy =Tp + TN + FP + FN) (14)
2 x (Precision X Recall)
Fl1= (15)

(Precision + Recall)

The confusion matrix that was produced after using the proposed
approach is shown in Figure 10. A True Positive (TP) value of 19, a True
Negative (TN) value of 0, a False Positive (FP) value of 1, and a False
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Negative (FN) value of 30 are displayed in the matrix. Thus, utilizing the
proper extracted features obtained from the fuzzy triangular membership
function increases the accuracy which is clear as the model has just a 1%
loss.

Confusion matrix

{0, "NO'}

Tue label

{1, "YES")

L Lo

Predicted label

Fig. 10. Confusion matrix obtained for the proposed method

The proposed model's accuracy and loss function are depicted above
in Figure 11. The validation set performs significantly better than the
training set as the CatBoost algorithm performs efficient prediction. With
40 epochs, the maximum accuracy of 0.99 was achieved. The validation
set's loss is similarly lower than the training sets. With 40 epochs, only 0.1
of loss was observed.

Model Accuracy Model Loss

" _/\Nv\_/v\_/ W o

gnw /\/ £a0
]

— Tanset
—— Vi St

AN

a B n I3 £ E3 n E3 = [ s it 15 3 E3 »n E3 Ll
Epachs Epochs

Fig. 11. Performance Graph obtained for the proposed method

T T A
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Table 1 displays the performance of the proposed H-detect method
based on its precision, accuracy, F1 score and recall. As this research
removed the unwanted noises, normalized and extracted features from fuzzy
logic and utilized the CatBoost algorithm for prediction the findings
indicate that the proposed technique has obtained 99% precision, accuracy,
F1 score, and 100% recall.

Table 1. Performance metrics of the proposed method

Performance measures Value
Precision 0.99009901
Recall 1
Accuracy 0.995
F1-score 0.995025

4.5. Comparison Metrics. Table 2 shows the variation in time taken
for the segmentation proposed method compared with Consecutive deep
encoder-decoder networks, Morphological adaptive fuzzy thresholding and
Fuzzy c-means. The graph shows that a Consecutive deep encoder-decoder
network takes 3021 ms, Morphological adaptive fuzzy thresholding takes
1894 ms, and Fuzzy c-means takes 189 ms. Our proposed method, H-detect,
takes just 62 ms, as fuzzy logic uses the triangular membership function
which is much faster than the conventional methods.

Table 2. Comparison of time taken in segmentation with different techniques

Model Time (in ms)
[17] Consecutive Deep Encoder-Decoder Network 3021
[18] fuzzy c-means 189
[19] Morphological Adaptive Fuzzy Thresholding 1894
H-detect 62

Table 3 above exhibits how the proposed methodology compares
to the Consecutive deep encoder-decoder network, Morphological adaptive
fuzzy thresholding, and Fuzzy c-means in terms of classification duration.
The graph shows that the Deep Convolutional Neural Network requires 261
milliseconds, Spark-based parallel fuzzy c-means requires 278 milliseconds,
F score-based method requires 176 milliseconds. Our proposed method,
H-detect requires only 98 milliseconds, which is significantly superior to
the conventional methods by utilization of the CatBoost algorithm.
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Table 3. Comparison of time taken in classification with different techniques

Model Time (in ms)
[20] Deep Convolutional Neural Network 261
[18] Spark-based parallel fuzzy c-means 278
[21] F score-based method 176
H-detect 98

Table 4 tends to parallel the accuracy of the proposed method
founded on the membership function used. The proposed method uses
triangular membership, compared with singleton, gaussian, generalized bell,
and sigmoidal functions. The results show that the proposed membership
function has 100% exactness, accurateness, F1 score and recall, which
shows that the proposed triangular membership function is the most
superior function to the traditional one in all aspects.

Table 4. Performance metrics based on membership function

%{lennclzzflsshlp Precision Accuracy F1-score Recall
Singleton 0.900901 0.945 0.947867 1
Gaussian 0.925926 0.96 0.961538 1
Generalized Bell | 0.884956 0.935 0.938967 1
Sigmoidal 0.943396 0.97 0.970874 1
Trapezoidal 0.961538 0.98 0.980392 1
Triangular 1 1 1 1

Table 5 compares the suggested method's performance dependent on
various types of cancer data like tumour, benign, malignant and
Hydrocephalus. The suggested technique compares the exactness,
correctness, F1 score and recall. The findings indicate that 100 percent
exactness, accurateness, F1 score, and recall have been obtained for
Hydrocephalus, demonstrating that the proposed H-detect method
is outstanding to the conventional one.

Table 5. Performance based on the type of cancer

Type Precision Accuracy F1-score Recall
Tumour 0.99009901 0.995 0.9950249 | 1
Benign 0.981 0.99 0.989 1
Malignant 0.980392157 | 0.99 0.990099 1
Hydrocephalus 1 1 1 1
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Table 6 shows the accuracy of 7 various methods compared with our
proposed method with and without noise. The graphs depict that the
proposed method has shown outstanding results than the previously
proposed method, with 99.9% accuracy with and without noise as the pre-
processing step efficiently contributes to the accuracy.

Table 6. Accuracy comparison with different techniques

Method With Noise Without Noise

[22] KM 0.9720 0.6239
[23] RKM 0.9743 0.7832
[24] FCM 0.9728 0.7698
[25] RFCM 0.9782 0.7806
[26] GRFCM 0.9679 0.7622
[27] SFRCM 0.9264 0.7786
[28] RIFCM 0.8992 0.9016
Proposed 0.99 0.99

Table 7 compares three other conventional models based on
precision, accuracy, F1 score and recall. The results obtained showed that
the proposed model has the best precision of 99%, the accuracy of 99.5%,
the F1 score of 99.5 %, and the recall of 100% proving that the proposed
method is the best one with précised pre-processing step, fuzzy logic with
triangular membership function-based segmentation, edge-based features
and the CatBoost classification methodology.

Table 7. Comparison of performance with different techniques
Algorithm Precision Accuracy | Fl-score | Recall
[29] Fuzzy Reasoning Model | 0.917431193 0.955 0.956938 1
[30] Modified Timed
Automata Model 0.934579439 0.965 0.966184 1
[31] Gaussian Mixture Model | 0.952380952 0.975 0.97561 1
H-Detect 0.99009901 0.995 0.995025 1

5. Conclusion. This research adopted MRI data to detect various
kinds of Hydrocephalus early. The brain and hydrocephalus volumes are
heavily influenced by the spatial resolution of successive brain cross-
sections and the slice thickness employed during CT imaging. As a result,
the focus of this study is on two major enhancements. Firstly, the image
segmentation method will be enhanced, allowing for better separation of the
targeted brain areas by utilizing a neural fuzzy method with a triangular
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membership function. Then for predictive analysis, a classifier based on the
cat boost method is presented to classify Hydrocephalus. For novelty, we
aggregate the fuzzy rules and CatBoost for better results. According to the
observations, the suggested model has a precision, accuracy, and an F1
score of 99% and a recall of 100%. In each aspect, the comparative findings
have shown to be superior to the conventional ones. As a result, the
proposed H-detect approach can reliably diagnose Hydrocephalus early
without any false predictions or overfitting issues, allowing numerous
people's lives to be saved. In future studies, we may impose a particular
feedback system to monitor the diagnosis system for hydrocephalus in a
medical era so that the processing time may be reduced.
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J. BAJioHM, 1. PAiA, IT. CUBATAMUHATAH, X. AHAHJAPAM, M. TAIUIMSLI,
K. JIxomm
H-DETECT: AJITOPUTM PAHHET'O BBISIBJIEHUS
TUJAPOLE®AJINN

Banonu /1., Pau ., Cusacamunaman I1., Anandapam X., Tanmusn M., Jorcowu K. H-Detect:
aJITOPUTM PaHHEr0 BbISIBJICHHS ruapouedannm.

AnHoranus. I'maponedamms — 3710 3aboneBaHHe LEHTPATLHOH HEPBHOH CHCTEMBI,
KOTOpOE 4Yallle BCEro MopaxkaeT MIIAJCHIEB U JeTeil sicenbHoro Bo3pacra. OHO HauMHAeTCs
C aHOMAJIBHOTO HAKOIUICHHS CIIMHHOMO3IOBOH JKMAKOCTH B JKEIYJOYKOBOH CHCTEME
ronoBHOro Mosra. CreoBaTenbHO, KU3HEHHO BAXKHOH CTAHOBHUTCS DaHHSSA IUATHOCTUKA,
KOTOpasi MOXKET OBITh BBIOJHEHA C IIOMOIIBIO KoMIbioTepHOi Tomorpaduu (KT), oguoro us
HauOonee HddexTuBHBIX MeTonoB auarHoctiku ruapouedamuu (KT), mpu koropom
CTaHOBUTCS OUCBUIHBIM YBEIUUCHHE JKeIyJ0UKOBOI cucTeMbl. OHAKO OONBIIMHCTBO OLEHOK
NPOrPECCUPOBaHMsl 3a00JICBaHUSI OCHOBAHBI Ha OLCHKE PEHTICHONora M (H3HYECKUX
[IOKA3aTeNsiX, KOTOPHIC SBISIIOTCS CYOBCKTUBHBIMH, OTHHMAIOIIMMH MHOTO BpPEMEHH
U HETOYHBIMH. B 9Toif crathe paspabaTeiBaeTCs aBTOMATHYECKOE IPOTHO3HPOBAHHE
¢ HCTIONB30BaHueM (¢peliMBopka H-detect 1Jisi TMOBBINICHHS TOYHOCTH HPOTHO3MPOBAHMUS
rugpouedanuu. B aTol craThe HCHONB3yeTCs OdTal MpEeNBAapUTENBHOH 00paboTKU  uis
HOpPMa/M3alMi BXOJHOTO M300paKCHHS U yHAICHUS HEKEIATCIbHBIX IIYMOB, YTO MOXET
IIOMOYb JICTKO M3BJICYb IICHHBIC NMPH3HAKH. BEIIeNeHNe NMPU3HAKOB OCYIIECTBILSIETCS MyTEM
CErMEHTALMH H300paKeHHs Ha OCHOBE ONPE/ICICHHS TPAHMIL C UCIIOIB30BaHUEM TPEYTOIbHBIX
HedeTKHX mpaBumi. TakuM o0pa3oM, BBIAESCTCS TOYHAs MH(OPMALUS O MPUPOAE JIUKBOPA
BHYTPH MO3ra. DTH CErMEHTHPOBaHHBIC M300PAKCHUSI COXPAHSIOTCS M CHOBA IIEPEIAIOTCS
anroputMmy CatBoost. OOpaboTka KaTeropuajibHBIX IPH3HAKOB I0O3BOJISIET YCKOPUTH
oOyuenue. [Ipu HEOOXOAUMOCTHU IETEKTOP HEepeoOydeHHsI OCTAaHABIMBAET O0YYEHUE MOJICIH H,
TakuM 00pa3oM, 3((HEeKTHBHO MPOrHO3UPYeT rujapouedanuio. Pe3yabraTsl JEMOHCTPUPYIOT,
41O HOBast ctparterus H-detect mpeBOCXOANT TpaUIIMOHHbIE HOJXO/IbL.

KaroueBble cioBa: rungponedanus, kommbioTepHas ToMorpadus (KT), wmerox
H-nereknuy, CNMHHOMO3roBas JKHIKOCTh (JIMKBOP), TPEYrONbHBIC HEUYETKHUE IIpPaBHIIA,
oOHapyXeHHE KpacB.
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