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Abstract. The study presents a method for iterative parameter tuning of tree ensemble-
based models using Bayesian hyperparameter tuning for states prediction, using breast cancer 
as an example. The proposed method utilizes three different datasets, including the Wisconsin 
Diagnostic Breast Cancer (WDBC) dataset, the Surveillance, Epidemiology, and End Results 
(SEER) breast cancer dataset, and the Breast Cancer Coimbra dataset (BCCD), and 
implements tree ensemble-based models, specifically AdaBoost, Gentle-Boost, LogitBoost, 
Bag, and RUSBoost, for breast cancer prediction. Bayesian optimization was used to tune the 
hyperparameters of the models iteratively, and the performance of the models was evaluated 
using several metrics, including accuracy, precision, recall, and f1-score. Our results show that 
the proposed method significantly improves the performance of tree ensemble-based models, 
resulting in higher accuracy, precision, recall, and f1-score. Compared to other state-of-the-art 
models, the proposed method is more efficient. It achieved perfect scores of 100% for 
Accuracy, Precision, Recall, and F1-Score on the WDBC dataset. On the SEER BC dataset, 
the method achieved an accuracy of 95.9%, a precision of 97.6%, a recall of 94.2%, and an  
F1-Score of 95.9%. For the BCCD dataset, the method achieved an accuracy of 94.7%, a 
precision of 90%, a recall of 100%, and an F1-Score of 94.7%. The outcomes of this study 
have important implications for medical professionals, as early detection of breast cancer can 
significantly increase the chances of survival. Overall, this study provides a valuable 
contribution to the field of breast cancer prediction using machine learning. 

Keywords: iterative tuning, tree ensemble-based models, bayesian optimization, breast 
cancer, machine learning. 
 

1. Introduction. Machine learning (ML) has a crucial role in 
predicting breast cancer (BC) and offers several benefits, including early 
detection and diagnosis, improved accuracy, personalized risk assessment, 
handling complex interactions, reducing false positives and negatives, and 
enabling continuous learning and improvement. By analyzing a vast 
amount of medical data, including mammograms, MRI scans, and patient 
health records, ML algorithms can identify patterns that might indicate the 
early stages of BC, leading to more effective treatment and improved 
patient outcomes [1]. 

Traditional methods of BC prediction, such as the BC Risk 
Assessment Tool (BCRAT) and Breast and Ovarian Analysis of Disease 
Incidence and Carrier Estimation Algorithm (BOADICEA) models, have 
limitations in their predictive accuracy [2, 3]. However, ML models can 
achieve higher accuracy rates, which are significantly higher than those of 
traditional models [4]. 
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Furthermore, ML models have the ability to consider a wide range 
of risk factors, such as genetic data, lifestyle factors, and medical history, 
providing personalized risk assessments for individuals. This can help 
stratify prevention strategies and customize clinical management for each 
patient. In addition, ML algorithms can identify complex interactions 
among multiple heterogeneous risk factors, capturing nonlinear 
relationships and interactions that traditional models may overlook. ML 
models also have the potential to reduce false positives and negatives in BC 
diagnoses, preventing unnecessary treatments for those wrongly diagnosed 
and ensuring timely treatment for those with the disease. Finally, ML 
models can continuously learn and improve over time as they are exposed 
to more data, which can result in improved predictive accuracy as they 
analyze more patient data and learn from previous predictions [5]. Tree 
ensemble-based models, such as AdaBoost, Gentle-Boost, LogitBoost, Bag, 
and RUSBoost, are powerful ML tools that can be used for a variety of 
tasks, including predicting BC. These models work by creating decision 
trees and making predictions based on iteratively improving the 
predictions [6]. 

Traditionally, hyperparameters are tuned using methods like grid 
search or random search, which involve trying out many different 
combinations of hyperparameters and selecting the one that performs best 
on a validation set. However, these methods can be computationally 
expensive and do not guarantee finding the optimal set of 
hyperparameters [7]. 

Bayesian hyperparameter tuning is a more sophisticated approach 
that treats hyperparameter tuning as a Bayesian optimization problem. It 
builds a probabilistic model of the objective function (i.e., the validation 
error as a function of the hyperparameters) and uses this model to select the 
most promising hyperparameters to try next. This approach can be more 
efficient than grid search or random search because it uses information 
from previous evaluations to make smarter decisions about what 
hyperparameters to try next [8]. 

1.1. Authors Contributions. This study makes a significant 
contribution to the field of BC prediction across different datasets. By 
applying Bayesian hyperparameter tuning to tree ensemble-based models 
through several iterations, the study aims to enhance the performance of the 
models and generalization capabilities for BC prediction in diverse datasets. 
The challenges of model adaptability and robustness are tackled in this 
study through systematic evaluation and assessment of various datasets. 
The findings of this study can provide valuable insights into the 
effectiveness and transferability of the proposed approach across various 
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BC datasets, contributing to the development of more reliable and versatile 
prediction models. 

In the following sections, we will review relevant literature, describe 
the methodology employed in this study, present the experimental results, 
discuss the implications of our findings, and A comparative analysis is 
conducted to compare the results obtained from the proposed method to 
those of state-of-the-art models and to the findings of a literature review. 
By the end of this research, we will have provided valuable insights into the 
iterative tuning of tree ensemble-based models using Bayesian 
hyperparameter tuning for BC prediction. 

2. Review of Literature. This literature review aims to investigate 
prior research on using ML for BC prediction, with a particular emphasis 
on tree-ensemble-based models. The review will also cover various tree 
ensemble-based models such as AdaBoost, GentleBoost, LogitBoost, Bag, 
and RUSBoost and their applications in BC prediction. Additionally, 
current approaches to hyperparameter tuning, such as grid search and 
Bayesian hyperparameter tuning, will be discussed. The objective of this 
review is to identify the most efficient tree-ensemble-based models and 
parameter tuning methods for BC prediction. 

Table 1 serves as a comprehensive summary of the related works, 
providing a clear and concise overview of the studies analyzed in this 
research. 

2.1. Previous studies on breast cancer prediction. The research 
objectives of previous studies regarding BC prediction were diverse. Some 
studies aimed to predict the presence or absence of BC, using the BCCD 
dataset. Other studies focused on classifying breast tumors as benign or 
malignant, utilizing the WDBC dataset. Additionally, some studies aimed 
to predict patient survival or death, and the SEER dataset was used for this 
purpose. In this section, we delve into the studies carried out for each of 
these datasets. 

2.1.1. Studies Utilizing the WDBC Dataset in Prior Research. 
Numerous studies have utilized the WDBC dataset to assess various 
machine learning (ML) algorithms and techniques for binary classification. 
These studies have employed a diverse range of classification methods, 
including Support Vector Machine (SVM), Random Forest (RF), Extreme 
Learning Machine (ELM), and Naive Bayes. In some of these studies, 
optimization techniques were utilized to enhance the performance of the 
classification algorithms. 

In one such study, [9] achieved the highest accuracy of 99.3% by 
utilizing an optimized SVM with Bayesian hyperparameter optimization. 
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This study exemplified the effectiveness of leveraging a well-established 
optimization technique to boost the classification algorithm's performance. 
 

Table 1. Summary of the related works 

Ref. Year Dataset Methods / Techniques Accuracy 
(%) 

[10] 2019 WDBC WQPSO with smooth SVM 98.42 
[12] 2019 WDBC SVM with 10 selected features 96.72 

[13] 2020 WDBC Optimized FSTBSVM with Jaya 
optimization techniques 94.36 

[11] 2021 WDBC Cloud-based ELM 98.68 
[14] 2021 WDBC SVM and RF 96.5 

[9] 2022 WDBC Optimized SVM with bayesian 
hyperparameter optimization 99.3 

[15] 2019 SEER BC Gradient Boosting with Genetic 
Algorithm 75.03 

[16] 2020 SEER BC Improved Random Forest - based 
rule extraction 80.5 

[17] 2020 SEER BC J48 93 
[18] 2022 SEER BC RF 94.6 

[19] 2020 BCCD GA and Gradient Boosting 
Classifier 79 

[20] 2021 BCCD Adaboost Classifier 80 
[9] 2022 DCCD polynomial SVM 76.9 

 
Study [10] achieved an accuracy of 98.42% using Water Quality 

Prediction using Particle Swarm Optimization (WQPSO) with smooth 
SVM, indicating that the algorithms used in these studies are effective for 
the WDBC dataset. 

Study [11] achieved an accuracy of 98.68% using cloud-based ELM, 
which is slightly higher than the accuracy achieved by [10]. ELM is a 
relatively new algorithm that has been shown to be effective for 
classification tasks, and this study demonstrated its usefulness for the 
WDBC dataset. 

Study [12] achieved an accuracy of 96.72% using SVM with 10 
selected features, which is slightly lower than the other studies. However, 
this study used feature selection techniques to identify the most relevant 
features, which can reduce the computational complexity of the 
classification models and improve their performance. 

Study [13] achieved an accuracy of 94.36% using optimized 
FSTBSVM with Jaya optimization techniques, which is lower than the 
other studies. However, this study explored a relatively new technique for 
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classification and demonstrated its effectiveness in achieving high 
accuracy. 

Study [14] examined the performances of six different classification 
algorithms and achieved an accuracy of 96.5% using SVM and RF. While 
this study did not achieve the highest accuracy, it provided a 
comprehensive evaluation of different algorithms' performances on the 
WDBC dataset. 

The studies included in this comparison exhibited high accuracy in 
classifying the WDBC dataset. The performance of the classification model 
was considerably influenced by the selection of algorithm, technique, and 
feature selection. While study [9] achieved the highest accuracy by utilizing 
optimized SVM with Bayesian hyperparameter optimization, indicating its 
efficacy in classifying the WDBC dataset, other studies also attained high 
accuracy using different algorithms and techniques. These findings 
demonstrate the significance of exploring various methods for classification 
tasks. 

2.1.2. Studies Utilizing the SEER BC Dataset in Prior Research. 
Several other studies have concentrated on improving ML techniques to 
develop models for predicting the survival of BC patients using the SEER 
BC dataset. These studies employed different algorithms and techniques for 
classification, such as Gradient Boosting, RF, and J48 decision tree. 

Study by [18] achieved the highest accuracy of 94.64% using RF, 
indicating the effectiveness of this algorithm for the SEER BC dataset. RF 
is a well-established algorithm for classification tasks, and its success in 
this study further emphasizes its utility for BC prediction tasks. Similarly, 
study by [17] achieved an accuracy of 93.02% using the J48 decision tree 
algorithm, demonstrating the effectiveness of Decision Tree (DT) 
algorithms for the SEER BC dataset. 

In contrast, study [15] achieved the lowest accuracy of 75.03% 
using Gradient Boosting with Genetic Algorithm (GA). While this study 
demonstrated the potential of using optimization techniques to improve the 
performance of classification algorithms, it was not as effective as other 
studies in achieving high accuracy for the SEER BC dataset. 

Study [16] explored a novel approach for rule extraction and 
classification, achieving an accuracy of 80.45%, which is lower than the 
accuracies achieved by the other studies. However, this study's approach 
has the potential to improve the accuracy of classification models, 
demonstrating the importance of exploring novel techniques in the field of 
BC prediction using ML. 

In general, the studies presented in this revision achieved varying 
levels of accuracy in classifying the SEER BC dataset. The choice of 
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algorithm significantly affected the performance of the classification model. 
Studies [18] and [17] achieved high accuracy using well-known algorithms 
such as RF and J48, while study [16] explored a novel approach for rule 
extraction and classification. 

2.1.3. Studies Utilizing the BCCD Dataset in Prior Research. 
Similarly, several studies have explored the use of ML techniques in the 
development of models for BC diagnosis using the BCCD dataset. These 
studies have used different algorithms such as Adaboost, Gradient 
Boosting, and SVM, among others. They have also employed feature 
selection and optimization techniques to improve model performance. 

Study [20] achieved the highest accuracy of 80% using the Adaboost 
Classifier. This study demonstrated the effectiveness of using Adaboost for 
the BCCD dataset, which is a well-known algorithm for classification tasks. 

Study [19] achieved an accuracy of 79% using the Gradient 
Boosting Classifier with the Genetic Algorithm for feature selection. This 
study demonstrated the effectiveness of using feature selection techniques 
to identify the most relevant features for classification, which can reduce 
the computational complexity of the classification models and improve 
their performance. 

Study [9] achieved an accuracy of 76.9% using a polynomial SVM, 
which is lower than the other studies. However, this study explored a 
different algorithm than Adaboost and Gradient Boosting and demonstrated 
the potential of using a polynomial SVM for the BCCD dataset. 

Overall, the studies presented in this comparison achieved varying 
levels of accuracy in classifying the BCCD dataset. The choice of algorithm 
and technique significantly affected the performance of the classification 
model. Studies [20] and [19] achieved high accuracy using Adaboost and 
Gradient Boosting with GA for feature selection, respectively. Study [9] 
explored a different algorithm and achieved lower accuracy but 
demonstrated the potential of using a polynomial SVM for the BCCD 
dataset. 

2.2. Existing tree ensemble-based models. This section focuses on 
reviewing the tree-ensemble-based models that exist, including AdaBoost, 
GentleBoost, LogitBoost, Bag, and RUSBoost, and their applications in 
breast cancer (BC) prediction. Each of these models possesses unique 
characteristics that can be effective for different datasets and objectives. A 
detailed description of each model and its algorithm will be presented. 
Additionally, we will examine the applications of these models in BC 
prediction, including their performance on different datasets and feature 
selection. The objective of this section is to offer insights into the strengths 
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and weaknesses of each model and identify the most effective models for 
BC prediction. 

2.2.1. Bagged Trees. It is an ML ensemble meta-algorithm designed 
to improve the stability and accuracy of ML algorithms used in statistical 
classification and regression. The algorithm was first introduced by 
Breiman in 1996 and has since been widely used in various applications 
such as text classification, image classification, and bioinformatics [21]. 

The basic idea behind bagging is to generate multiple versions of a 
predictor and use these to get an aggregated predictor. The aggregation 
averages usually over the predictions for regression problems and does a 
majority vote for classification problems. The Bagged Trees algorithm has 
several advantages. Firstly, it can reduce overfitting and improve the 
generalization performance of the model. Secondly, it is robust to noise and 
outliers in the data. Finally, it can handle high-dimensional feature spaces 
and large datasets. However, Bagged Trees have some limitations. One of 
the main limitations is that it can be computationally expensive, especially 
when the number of trees in the ensemble is large. Additionally, the 
interpretability of the model is reduced as the number of trees increases. 
Finally, the quality of the predictions can be affected by the choice of 
hyperparameters such as the number of trees, the depth of each tree, and the 
size of the bootstrap samples [22, 23]. 

The process of Bagged Trees can be described as follows [22]. 
 

Algorithm 1. Bagging algorithm when applied to decision trees for a 
classification problem 

Initialize: Determine the number of bootstrap samples, B, to be created. 
For b = 1 to B, repeat steps 1-3: 

Step 1. Bootstrap Sampling: Create a bootstrap sample by randomly 
selecting N instances from the original dataset with replacement, where 
N is the size of the dataset. 

Step 2. Tree Building: Build a decision tree based on the bootstrap 
sample. Grow the tree to maximum size and do not perform any 
pruning. 

Step 3. End of the loop: Return to step 2 and repeat the process until 
B trees have been grown. 

Prediction: For a new data point, make a prediction with each of the B trees. 
The final prediction is the class that gets the most votes among the B trees. 

 
Several studies have investigated the efficacy of the bagged trees 

algorithm for BC classification. However, there are variations in the 
datasets utilized and the accuracy achieved by these studies. 
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One study [24] applied the SMOTE technique for oversampling the 
data acquired from Shengjing Hospital of China Medical University. The 
study used the Bagged Tree algorithm and achieved an accuracy of 70.3%. 

Another study [25] investigated a supervised learning technique for 
classifying BC using four different classifiers, namely Boosted Tree, 
Bagged Tree, Logistic Regression (LR), and Artificial Neural Networks 
(ANN). The ANN outperformed the other classifiers with an accuracy of 
97.56%, while the bagged tree achieved the second-best accuracy. This 
study highlights the effectiveness of the ANN and bagged tree in 
classifying BC and demonstrates the importance of comparing multiple 
classifiers to identify the best-performing one. 

In a third study [26], the performance of the bagged trees algorithm 
was evaluated on a dataset of 23 attributes containing 575 samples obtained 
from the Mizoram State Cancer Institute of Aizawl, Mizoram, India. An 
accuracy of 82.5% was achieved, which is higher than the first study but 
lower than the second study. However, the study was limited by the small 
size of the dataset, which may affect the generalization of the results. 

2.2.2. Adaboost Trees. It is a variant of AdaBoost, which uses DT 
as a weak classifier. In each iteration, a DT is trained on the weighted 
samples, and the weights are updated based on the misclassification rate. 
The final prediction is made by combining the predictions of all the DTs, 
typically by taking the weighted average. 

Studies have widely used the Adaboost algorithm for BC 
classification. For example, in [27], the performance of DT and Adboost 
was evaluated on an imbalanced dataset such as WDBC. Both models 
achieved high accuracy, with DT achieving 88.8% and Adboost achieving 
92.5%. The study highlights the importance of selecting appropriate models 
for imbalanced datasets, such as Adboost, which is designed to handle such 
datasets, and demonstrates its efficacy in classifying BC. 

In another study [28], ten models, including Adboost, RF, Tree, 
Gradient Boosting, KNN, ANN, Naïve Bayes, SVM, LR, and SGD, were 
compared for their performance in BC classification. Adboost achieved the 
best performance with an accuracy of 98.3%, an f1-score of 98.3%, a 
precision of 98.4%, a recall of 98.3%, and an AUC of 99.9%. The other 
models achieved varying levels of accuracy, with RF achieving 88.7%, 
Tree achieving 89.0%, Gradient Boosting achieving 86.3%, KNN achieving 
77.3%, ANN achieving 74.7%, Naive Bayes achieving 71.7%, SVM 
achieving 73.7%, LR achieving 73.0%, and SGD achieving 71.3%. The 
study demonstrates the importance of comparing multiple models and 
selecting the best-performing one for BC classification. 
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The algorithm for AdaBoost classification is described as 
follows [29]. 

 
Algorithm 2. Real AdaBoost 

Initialize: Start with weights wi= 1/N, i= 1, 2, …, N.  
For m= 1, 2, …, M, repeat steps 1-3: 

Step 1: Fit the classifier to obtain a class probability estimate pm(x) = 
pw

∧ (y=1| x) ∈ [0,1], using weights wi on the training data. 

Step 2: Set fm(x) ← 1 
2

 log pm(x) / (1-pm(x)) ∈ R. 

Step 3: Set wi← exp [-yi fm(xi)], i = 1, 2, …., N, and renormalize so 
that ∑ wii = 1. 

Output the classifier sign [� fm (x)
M

m=1
]=1 

 
2.2.3. GentleBoost Trees. It is an ML method used to improve the 

performance of DTs on binary classification problems. GentleBoost is 
known for its robustness and simplicity, and it is particularly effective when 
dealing with noisy data or outliers. 

The GentleBoost algorithm works by iteratively adding weak 
classifiers (in this case, decision trees) to the model in a way that minimizes 
the overall error. 

The algorithm for GentleBoost classification is described as 
follows [29]. 
 

Algorithm 3. GentleBoost 

Initialize: Start with weights wi = 1/N, i= 1, 2, …, N, F(x)= 0.  
For m= 1, 2, …, M, repeat steps 1-3: 

Step 1: Fit the regression function fm(x) by weighted least-squares of 
yi to xi with weight wi. 

Step 2: Update F(x) ← F(x) = f (x). 

Step 3: Update wi ← wi exp [-yi fm(xi)] renormalize. 

Output the classifier sign [F(x)] = sign [� fm (x)
M

m=1
]. 
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2.2.4. LogitBoost Trees. It is a boosting algorithm used for binary 
classification problems. It was introduced by Jerome Friedman, Trevor 
Hastie, and Robert Tibshirani in 1998 [29]. The algorithm is based on 
additive logistic regression and uses decision trees as base learners. The 
main idea behind LogitBoost is to iteratively fit a simple model (like a 
decision stump) to the current residuals, then add this model to the 
ensemble, and update the residuals. The process is repeated until a stopping 
criterion is met. 

The LogitBoost algorithm has several advantages. Firstly, it can 
handle noisy and complex datasets and achieve high accuracy. Secondly, it 
is robust to overfitting and can generalize well to new data. Finally, it is 
computationally efficient and can handle large datasets. However, 
LogitBoost also has some limitations. One of the main limitations is that it 
can be sensitive to outliers in the data. Additionally, the quality of the 
predictions can be affected by the choice of hyperparameters such as the 
number of weak classifiers and the learning rate. 

The LogitBoost algorithm was utilized for BC classification and 
showed significant results compared to other methods; i.e., Study [30] 
compared the performance of several ML models in classifying tumors as 
metastatic or non-metastatic using two different datasets (Vijver dataset and 
Wang dataset). The study evaluated the performance of Logitboost, LR, 
SVM, Tree, Adaboost, and RF models. The results showed that the 
performance of the models varied depending on the dataset used. With the 
Vijver’s dataset, the models achieved moderate to good accuracy, with 
Logitboost achieving the highest accuracy of 79% and an AUC of 0.810. 
SVM attained commendable results in terms of accuracy and AUC values, 
achieving an accuracy rate of 77.1% and an AUC of 0.806. Adaboost also 
performed well, achieving an accuracy of 77.7% and an AUC of 0.782. 
However, the accuracy and AUC values of the other models were relatively 
lower. With the Wang dataset, the models achieved higher accuracy and 
AUC values, with Logitboost achieving the highest accuracy of 89.7% and 
an AUC of 0.923. RF achieved high accuracy and AUC values, with an 
accuracy of 87.6% and an AUC of 0.915. Adaboost performed well, 
achieving an accuracy of 86.3% and an AUC of 0.893. SVM and Tree also 
achieved moderate to good accuracy and AUC values, while LR achieved 
relatively lower accuracy and AUC values. The results suggest that 
Logitboost, SVM, RF, and Adaboost are effective models for the Wang 
dataset, while Logitboost, SVM, and Adaboost are effective models for the 
Vijver dataset. However, it is important to consider the limitations of the 
study, such as the relatively small sample sizes and limited number of 
features used in the datasets. 
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The algorithm for LogitBoost classification is described as 
follows [29]. 
 

Algorithm 4. LogitBoost 

Initialize: Start with weights wi = 1/N, i= 1, 2, …, N, F(x)= 0 and probability 
estimates p(xi)=

1 
2

 . 

For m= 1, 2, …, M, repeat steps 1-3: 

Step 1: Compute the working response and weights 

Z_i = (yi 
*)-P(Xi) 

P(Xi)(1-P(Xi) )' . 

Step 2: Fit the function f(x) by a weighted least-square regression of zi 
to xi using weights wi. 

Step 2: update F(x) ← F(x) = 1 
2

 f_m (x) and P(x) ← (eF(x))/ (eF(x) + 

(e-F(x)). 

Output the classifier sign [F(x)] = sign [∑ fm(x) M
m=1 ]. 

 
2.2.5. RUSBoost Trees. It is a hybrid ML algorithm that combines 

Random Under-Sampling (RUS) and AdaBoost to handle imbalanced data 
classification problems. It was proposed is study [31] in 2010. The 
algorithm is designed to improve the performance of AdaBoost on 
imbalanced datasets by integrating a data sampling strategy. The RUSBoost 
algorithm exhibits several strengths. Primarily, it is capable of managing 
imbalanced datasets and achieving exceptional accuracy for the minority 
class. Moreover, it is resilient to overfitting and can generalize effectively 
to novel data. Lastly, it is computationally efficient and can handle sizable 
datasets. Despite these advantages, RUSBoost has certain drawbacks. 
Foremost among these is its susceptibility to noise and outliers in the data. 
Additionally, the quality of its predictions can be affected by 
hyperparameter selection, such as the number of weak classifiers and the 
size of the randomly selected negative class samples. 

RUSBoost and SMOTE are used by several studies to handle 
imbalanced datasets; i.e., Study [32] aimed to examine the performance of 
two methods, RUSBoost and SMOTE-Boosted C5.0, for handling the 
problem of an imbalanced WDBC dataset for the classification of BC. The 
results showed that RUSBoost outperformed SMOTE-booted C5.0 in terms 
of accuracy, sensitivity, and specificity. With RUSBoost, the study 
achieved an accuracy of 94.4%, a sensitivity of 93%, and a specificity of 
95.4%. On the other hand, with SMOTE-Boosted C5.0, the study achieved 
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an accuracy of 92.5%, a sensitivity of 93.9%, and a specificity of 91.15%. 
These results suggest that RUSBoost is a more effective method for 
handling the imbalanced dataset in this context. 

The algorithm for RUSBoost classification is described as 
follows [31]. 

 
Algorithm 5. RUSBoost 

Given: Set S of examples (x1, y1), …, (xm, ym) with minority class yr∈ Y, |Y| = 
2  
Weak learner, WeakLearn 
Number of iterations, T 
The desired percentage of total instances to be represented by the minority class, 
N  

Initialize: D1(i)= 1 
m

 for all i. 

Do For t= 1, 2, …, T, repeat steps 1-7: 
Step 1: Create a temporary training dataset S'

t with distribution D'
t 

using random undersampling. 

Step 2: Call WeakLean, providing it with example S'
t and their 

weights D'
t. 

Step 3: Get back a hypothesis ht: X × Y →[0.1]. 
Step 4: Calculate the pseudo-loss (for S and Dt): 

∈t = � Dt(i)(1- ht�xi, yi�+ ht�xi, yi�)(i,y): yi≠y
. 

Step 5: Calculate the weight update parameter: 
              αt= ∈t

1-∈t
. 

Step 6: Update Dt: 

               Dt+1 = Dt(i) α_t(
1 
2

 (1+ht�xi, yi�- ht�xi, yi : yi≠y�   

Step 7: Normalize Dt+1 : Let Zt = ∑ Dt+1(i)i . 
                Dt+1(i) = Dt+1 (i)

Zt 
 

Output the final hypothesis: H(x) = argmaxy∈Y � ht�xi, yi� log 1 
αt

 
T

t=1
. 

 
2.3. Current methods of parameter tuning. Parameter tuning is a 

crucial step in the process of building an ML model. It involves selecting 
the optimal values for the parameters of a model to improve its 
performance. The current methods of parameter tuning can be broadly 
categorized into Grid search and Bayesian optimization. 
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2.3.1. Grid Search. It is a traditional method for hyperparameter 
tuning. It involves specifying a subset of the hyperparameter space as a 
grid, and then systematically checking every point in the grid. For each 
combination of parameters, the model is trained, and its performance is 
measured. The main disadvantage of grid search is that it can be 
computationally expensive, especially for models with a large number of 
parameters. The following presents several studies that investigated the 
use of grid search to improve the performance of various ML 
models [33 – 36]. 

In study by [33], the authors employed grid search to fine-tune the 
hyperparameters of nine ML models, including Naive Bayes, LR, SVM, 
LASSO, DT, KNN, RF, AdaBoost, and XGBoost. The objective of the 
study was to identify which algorithms perform best for both balanced and 
imbalanced datasets. The results indicated that RF and XGBoost 
outperformed the other algorithms when the data was less balanced, 
whereas SVM, LR, and LASSO performed better than the other algorithms 
when the data was balanced. This finding highlights the importance of 
selecting the appropriate ML algorithm based on the dataset's balance or 
imbalance. 

Another study [34] utilized grid search to optimize the 
hyperparameters of the SVM algorithm for BC classification. The authors 
compared the performance of SVM with and without grid search and found 
that grid search significantly improved the recall and precision of the SVM 
algorithm. The recall and precision were 83% and 61%, respectively, 
without grid search, while they were 95% and 95%, respectively, with grid 
search. This result suggests that hyperparameter tuning using grid search 
can enhance the performance of SVM for BC classification. 

Similarly, study [35] employed grid search to optimize the 
hyperparameters of the RF algorithm for BC classification. The authors 
compared the performance of RF with and without grid search and found 
that grid search improved the recall, precision, and F1 score of the RF 
algorithm. The recall, precision, and F1 scores were 96% without grid 
search, while they were 97% with grid search. This result supports the 
effectiveness of hyperparameter tuning using grid search in enhancing the 
performance of ML algorithms in various applications.  

Finally, study [36] used grid search to optimize the hyperparameters 
of the KNN algorithm for BC classification. The authors compared the 
performance of KNN with grid search and default tuning and found that 
grid search significantly improved the accuracy of the KNN algorithm. The 
accuracy was 94.35% with grid search, while it was 90.10% with default 
tuning. This result emphasizes the importance of hyperparameter tuning 
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using grid search in improving the performance of KNN for BC 
classification. 

These studies demonstrate the effectiveness of hyperparameter 
tuning using grid search in enhancing the performance of ML algorithms 
for BC classification. The results highlight the importance of selecting the 
appropriate algorithm and tuning the hyperparameters for the specific 
dataset. 

2.3.2. Bayesian Optimization. It is a more advanced method for 
hyperparameter tuning. It builds a probabilistic model of the function 
mapping from hyperparameter values to the objective evaluated on a 
validation set. By using this model, the algorithm can choose the most 
promising hyperparameters to evaluate in the true objective function. This 
method is more efficient than grid search and random search, especially for 
high-dimensional hyperparameter spaces [7, 37, 38]. 

Several studies have investigated the use of Bayesian optimization to 
enhance the performance of various ML models. In one study [7], a 
comprehensive comparative analysis was conducted on different ML 
models using various hyperparameter optimization methods, including 
Bayesian, grid search, and random search optimization. The findings 
revealed that the Bayesian hyperparameter optimization method was more 
stable than grid search and random search methods. Additionally, the 
XGBoost algorithm achieved a high accuracy of 94.74% and a sensitivity 
of 93.69%. In another study [37], a hybrid feature selection approach was 
implemented along with Bayesian hyperparameter tuning, resulting in the 
Extra tree classifier algorithm achieving the best accuracy of 96.2%. In a 
third study [38] a performance comparison was conducted on several ML 
algorithms, including SVM, DT, Naive Bayes, KNN, and Ensemble 
Classifiers, and the Bayesian optimization algorithm was applied to all 
classifiers to maximize the prediction accuracy. The results showed that the 
Bayesian optimization-based KNN algorithm outperformed the other ML 
algorithms, achieving an accuracy of 95.833%. Overall, these studies 
demonstrate the importance of selecting the appropriate optimization 
method and tuning hyperparameters to improve the performance of ML 
algorithms. 

2.4. Research gap. The literature has shown that the performance of 
machine learning models heavily relies on the selection of appropriate 
hyperparameters. While several studies have investigated the use of various 
optimization methods to tune these hyperparameters, there is a research gap 
in exploring the potential benefits of Bayesian hyperparameter optimization 
for iterative tuning of Tree-Ensemble-Based machine learning models. 
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Tree-Ensemble-Based models, such as AdaBoost, Gentle-Boost, 
LogitBoost, Bag, and RUSBoost, are commonly used in various 
applications, including classification and regression tasks. However, the 
optimal hyperparameters for these models are not always known and can be 
challenging to determine given the large number of possible combinations. 

Bayesian optimization is a promising approach for hyperparameter 
tuning that has been shown to outperform other optimization techniques in 
various applications. However, to the best of our knowledge, there is no 
investigation in the literature that explores the use of Bayesian 
hyperparameter optimization for iterative tuning of Tree-Ensemble-Based 
machine learning models. 

Therefore, the research gap in the literature is the lack of studies that 
investigate the potential benefits and limitations of using Bayesian 
hyperparameter optimization for iterative tuning of Tree-Ensemble-Based 
machine learning models, such as AdaBoost, Gentle-Boost, LogitBoost, 
Bag, and RUSBoost. This research gap highlights the need for further 
exploration of this approach to improve the performance of these models in 
various applications. 

3. Methodology. The aim of this study is to develop an iterative 
machine learning approach based on tree ensemble-based models with 
Bayesian hyperparameter tuning. The methodology involves the following 
steps. 

3.1. Data collection and preparation. This study utilized three BC 
datasets, namely the WDBC, BCCD and the SEER BC dataset. The 
WDBC, BCCD, and SEER BC datasets are distinct from one another and 
have been utilized for different classification purposes, rather than being 
employed for the same classification task. Therefore, these datasets do not 
intersect. In the case of the WDBC dataset, the target class is labeled as 
"classification" and pertains to determining whether a tumor is malignant or 
benign, as presented in Table 2. On the other hand, the BCCD dataset 
assigns the target class as "Diagnosis," indicating the presence or absence 
of breast cancer, as specified in Table 3. Lastly, the SEER breast cancer 
dataset employs a target class called "STATUS," which indicates whether 
the patient is alive or deceased, as described in Table 4. 

WDBC dataset is a well-known dataset used for breast cancer 
classification tasks. It contains 569 samples, each of which corresponds to 
a breast mass detected in a patient. Each sample is described by 30 
different features, which provide information about the characteristics of 
the mass [39]. Table 2 shows a brief description of each feature in the 
dataset. 
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Table 2. WDBC dataset description 
No. Feature Description 
1 radius_mean The mean radius of the mass 
2 texture_mean The mean texture of the mass. 
3 perimeter_mean The mean perimeter of the mass 
4 area_mean The mean area of the mass 
5 smoothness_mean The mean smoothness of the mass 
6 compactness_mean The mean compactness of the mass 
7 concavity_mean The mean concavity of the mass 
8 concave points_mean The mean number of concave points on the mass 
9 symmetry_mean: The mean symmetry of the mass 
10 fractal_dimension_mean The mean fractal dimension of the mass 
11 radius_se The standard error of the radius of the mass 
12 texture_se The standard error of the texture of the mass 
13 perimeter_se The standard error of the perimeter of the mass 
14 area_se The standard error of the area of the mass 
15 smoothness_se The standard error of the smoothness of the mass 

16 compactness_se The standard error of the compactness of the 
mass 

17 concavity_se The standard error of the concavity of the mass 

18 concave points_se The standard error of the number of concave 
points on the mass 

29 symmetry_se The standard error of the symmetry of the 
mass 

20 fractal_dimension_se The standard error of the fractal dimension of the 
mass 

21 radius_worst The worst (largest) radius of the mass 
22 texture_worst The worst (most irregular) texture of the mass 
23 perimeter_worst The worst (largest) perimeter of the mass 
24 area_worst The worst (largest) area of the mass 
25 smoothness_worst The worst (least smooth) smoothness of the mass 

25 compactness_worst The worst (most compact) compactness of the 
mass 

26 concavity_worst The worst (most severe) concavity of the mass 

27 concave points_worst The worst (most severe) number of concave 
points on the mass 

28 symmetry_worst The worst (least symmetrical) symmetry of the 
mass 

29 fractal_dimension_worst The worst (most irregular) fractal dimension of 
the mass 

30 Classification Malignant (cancerous) or benign (non-cancerous) 
 
BCCD is a dataset used for BC classification tasks. It contains 116 

(64 patients and 52 healthy controls) samples, each of which corresponds to 
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a breast mass detected in a patient. Each sample is described by 10 different 
features, which provide information about the characteristics of the 
mas [40]. Table 3 shows a brief description of each feature in the dataset. 
 

Table 3. BCCD dataset description 
No. Feature Description 
1 Age The age of the patient at the time of diagnosis 
2 BMI The body mass index of the patient 

3 Glucose The fasting plasma glucose concentration of 
the patient 

4 Insulin The fasting serum insulin level of the patient 

5 HOMA The homeostasis model assessment (HOMA) 
index, which estimates insulin resistance 

6 Leptin The concentration of leptin, a hormone 
involved in regulating energy balance 

7 Adiponectin The concentration of adiponectin, a hormone 
involved in regulating glucose levels 

8 Adiponectin The concentration of resistin, a hormone 
involved in regulating insulin sensitivity 

9 MCP-1 

The concentration of monocyte 
chemoattractant protein-1, a cytokine 
involved in inflammation and immune 
response 

10 Diagnosis Presence or absence of breast cancer 
 

The SEER BREAST CANCER dataset is a dataset used for survival 
analysis tasks of breast cancer patients. It contains information on patients 
diagnosed with breast cancer between 2006 and 2010 and includes 4024 
instances, of which 3408 are alive and 616 are deceased. Each instance is 
described by 15 different features, which provide information about the 
characteristics of the patients and their cancer [41]. Table 4 shows a brief 
description of each feature in the dataset: 

To prepare the datasets for analysis, the study used several 
preprocessing techniques. One of the preprocessing techniques used is the 
Synthetic Minority Over-sampling Technique (SMOTE) to address the 
imbalance problem that was obvious in the three datasets. SMOTE 
generates synthetic samples for the minority class to balance the dataset and 
improve the performance of the classification models. 
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Table 4. SEER BC dataset description 
No. Feature Type 
1 AGE The age of the patient at the time of diagnosis 

2 RACE The race of the patient 

3 MARITAL STATUS The marital status of the patient 

4 T STAGE The size and extent of the primary tumor at 
diagnosis 

5 N STAGE The spread of cancer to nearby lymph nodes at 
diagnosis 

6 6TH STAGE The stage of the cancer at diagnosis, based on 
the TNM system 

7 GRADE 
The grade of the tumor, indicating how 
abnormal the cancer cells look under a 
microscope 

8 A STAGE The stage of the cancer at diagnosis, based on a 
different staging system 

9 TUMOR SIZE The size of the tumor at diagnosis, in 
millimeters 

10 ESTROGEN STATUS The status of the estrogen receptor in the tumor 

11 PROGESTERONE 
STATUS 

The status of the progesterone receptor in the 
tumor 

12 REGIONAL NODES 
EXAMINED 

The number of lymph nodes examined during 
surgery 

13 REGIONAL NODES 
POSITIVE 

The number of lymph nodes with cancer cells 
found during surgery 

14 SURVIVAL MONTHS The number of months between diagnosis and 
last follow-up or death 

15 STATUS 
(classification) Alive or Dead 

 
Additionally, the study removed outliers from the WDBC and SEER 

BC datasets using the method of three standard deviations (3 SD) above 
and below the mean. This method removes extreme data points that may 
skew the analysis or modeling results. Figures 1, 2 display a comparative 
analysis of three distinct outlier detection techniques. The first technique 
employed in the analysis is the three standard deviations (3-SD) above and 
below the mean, which are depicted in red. The second technique involves 
1.5 times the interquartile range (IQR) above or below the third and first 
quartiles and is represented by a blue color. The third technique is based on 
three scaled median absolute deviations above and below the median and is 
displayed in black. 
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Fig. 1. Outlier detection techniques for the WDBC dataset 
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Fig. 2. Outlier detection techniques for the SEER dataset 

 
3.2. The proposed iterative process. The study used five tree 

ensemble-based models: AdaBoost, GentleBoost, LogitBoost, Bag, and 
RUSBoost. Each model was trained with the default hyperparameters and 
with iterative tuning using Bayesian hyperparameters tuning. Figure 3 
shows the workflow of the proposed iterative training process while the 
iterative tuning process involved the following steps. 
 

Algorithm 6. Steps of iterative tuning process 
Let i be the number of the models i [1,2,3,4,5]. 
Let N be the number of iterations. 

 Step 1. Split the dataset into training and validation sets. 
 Step 2. Train the modeli with the default hyperparameters on the training set 

and evaluate its performance on the validation set. 
 Step 3. Use Bayesian hyperparameters tuning to select the best 

hyperparameters for the model based on the performance on the validation 
set. 

 Step 4. Train the model with the selected hyperparameters on the training set 
and evaluate its performance on the validation set. 

 Step 5. Repeat the above steps until the performance on the validation set no 
longer improves or a maximum number of iterations is reached. 

 Step 6. Repeat the above steps until the performance on the validation set no 
longer improves or a maximum number of iterations is reached. 

 Step 7. If the performance of modeli  best than modeli-1  then set the best 
result = the performance of modeli. 

 Step 8. Repeat steps 1-7 for all i. 
 Step 9. Repeat steps 1-7 for N iteration. 

Output The final prediction result including the Method name, best performance 
metrics, and the optimal hyperparameters. 
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3.3. Evaluation. The performance evaluation of each ML model in 
the study is conducted based on their effectiveness in predicting the target 
class. To assess their performance, a range of metrics, including accuracy, 
precision, recall, and F1-score, are employed. These metrics provide a 
comprehensive evaluation of the predictive capabilities and overall 
performance of the ML models. The calculation details of these evaluation 
metrics can be found in Table 5, which illustrates how each metric is 
computed and provides further insights into the model performance. 

Table 5. Evaluation Metrics Equations 
Measure Equation 
Accuracy (TP+TN)/(TP+TN+FN+FP) 
Precision TP/(TP+FP) 
Recall TP/(TP+FN) 
F1 score (2×Precision×Recall)/(Precision + Recall) 

 

 
Fig. 3. Iterative tuning workflow 
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4. Result and Discussion. The experiments were conducted on three 
different datasets: WDBC, SEER BC, and BCCD. In the case of the WDBC 
dataset, the results showed that Gentle-Boost and AdaBoost achieved the 
highest accuracy of 100% across multiple iterations. These algorithms 
outperformed other models such as LogitBoost, which achieved an 
accuracy of 99.1%, Bagged trees with 98.2% accuracy, and RUSBoost with 
95.5% accuracy. The detailed results can be found in Table 6. Moving on to 
the SEER BC dataset, Gentle-Boost demonstrated superior performance 
compared to the other models in all experiments with varying iterations. It 
consistently outperformed the rest and achieved the highest accuracy of 
96% with 100 iterations. These findings are presented in Table 8. For the 
BCCD dataset, the Bagged trees algorithm stood out by achieving the 
highest performance. It attained an accuracy of 94.7% in the case of 60 
iterations. The detailed results for this dataset can be found in Table 10. 

4.1. Discussion of the results obtained by implementing the 
proposed framework on the WDBC. Table 6 shows the best accuracy 
achieved by the proposed iterative tuning of the tree ensemble-based model 
using Bayesian hyperparameter tuning. The results displayed in Table 7 
show the performance of several tree ensemble-based algorithms applied to 
the WDBC dataset for different numbers of iterations. The results show that 
the various tree ensemble-based algorithms achieve very high accuracy, 
precision, recall, and F1-score values, indicating that they are generally 
effective in classifying the WDBC dataset. The Gentle-Boost algorithm 
appears to be the most effective, achieving the highest performance in six 
of the 12 cases, including the highest accuracy and F1-score values for 10, 
30, 40, 60, 90, 110, and 100 iterations. AdaBoost also performed well, 
achieving the highest performance for 20 and 80 iterations. LogitBoost 
achieved the highest performance over 70 iterations, whereas RUSBoost 
achieved the highest performance over 50 iterations. Finally, the Bagged 
trees algorithm achieved the highest performance for 120 iterations. The 
performance of the different algorithms varied depending on the number of 
iterations. For example, AdaBoost achieved the highest performance for 20 
and 80 iterations, but its performance was not as good for other numbers of 
iterations. Similarly, RUSBoost achieved the highest performance for 50 
iterations, but its performance dropped sharply for higher or lower numbers 
of iterations. Overall, the results suggest that the Gentle-Boost algorithm is 
robust and effective for classifying the WDBC dataset. However, the choice 
of algorithm may depend on the specific application and the number of 
iterations required. 
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Table 6. The accuracy achieved in different numbers of iterations of the WDBC 
dataset 

No. Iteration AdaBoost GentleBoost LogitBoost Bagged 
trees RUSBoost 

10 Iteration - 100 - - - 
20 Iteration 100 - - - - 
30 Iteration - 99.1 - - - 
40 Iteration - 99.1 - - - 
50 Iteration - - - - 95.5 
60 Iteration - 99.1 - - - 
70 Iteration - - 99.1 - - 
80 Iteration 99.1 - - - - 
90 Iteration - 99.1 - - - 

100 Iteration - 100 - - - 
110 Iteration - 100 - - - 
120 Iteration - - - 98.2 - 

 
Table 7. Evaluation of the performance of the proposed framework applied to the 

WDBC dataset 

No. 
Iteration Model 

Evaluation Metrix 

Accuracy Precision Recall F1-Score 

10 Iteration GentleBoost 100 100 100 100 
20 Iteration AdaBoost 100 100 100 100 
30 Iteration GentleBoost 99.1 100 98.3 99.1 
40 Iteration GentleBoost 99.1 100 98.3 99.1 
50 Iteration RUSBoost 95.5 94.3 96.6 95.4 
60 Iteration GentleBoost 99.1 100 98.3 99.1 
70 Iteration LogitBoost 99.1 100 98.3 99.1 
80 Iteration AdaBoost 99.1 100 98.3 99.1 
90 Iteration GentleBoost 99.1 100 98.3 99.1 

100 Iteration GentleBoost 100 100 100 100 
110 Iteration GentleBoost 100 100 100 100 
120 Iteration Bagged trees 98.2 100 96.6 98.3 
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4.2. Discussion of the results obtained by implementing the 
proposed framework on the SEER BC dataset. Table 8 shows the best 
accuracy, whereas Table 9 displays the performance achieved by the 
proposed methodology applied to the SEER BC dataset for different 
numbers of iterations. The results show that the Gentle-Boost algorithm 
achieves high accuracy, precision, recall, and F1-score values, indicating 
that it is effective for classifying the SEER BC dataset. It is interesting to 
note that the performance of the Gentle-Boost algorithm is consistently 
high across all different numbers of iterations. In particular, the algorithm 
achieved the highest performance in all 12 cases, with an accuracy ranging 
from 90.1% to 96%, a precision ranging from 96.4% to 98%, a recall 
ranging from 93.8% to 94.2%, and an F1-score ranging from 95% to 96%. 
Compared with the results obtained for the WDBC dataset, the performance 
of the Gentle-Boost algorithm for the SEER BC dataset was generally 
lower. This is likely due to the fact that the SEER BC dataset is more 
complex and noisier than the WDBC dataset. In general, the results suggest 
that the Gentle-Boost algorithm is effective for classifying the SEER BC 
dataset, and that its performance is consistent across different numbers of 
iterations. 
 
Table 8. The accuracy achieved in different numbers of iterations of the SEER BC 

dataset 

No. Iteration AdaBoost GentleBoost LogitBoost Bagged trees RUSBoost 

10 Iteration - 90.1 - - - 
20 Iteration  95.3 - - - 
30 Iteration - 95.8 - - - 
40 Iteration - 95.9 - - - 
50 Iteration - 95.6 - -  

60 Iteration - 95.7 - - - 

70 Iteration - 95.7  - - 
80 Iteration  95.8 - - - 
90 Iteration - 95.8 - - - 

100 Iteration - 96 - - - 

110 Iteration - 96 - - - 

120 Iteration - 95.6 -  - 
 

____________________________________________________________________

155Informatics and Automation. 2024. Vol. 23 No. 1. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING



Table 9. Evaluation of the performance of the proposed framework applied to the 
SEER dataset 

No. Iteration Model Evaluation Metrix 
Accuracy Precision Recall F1-Score 

10 Iteration GentleBoost 90.1 96.4 93.8 95 
20 Iteration GentleBoost 95.3 96.9 93.8 95.3 
30 Iteration GentleBoost 95.8 97.4 94.2 95.8 
40 Iteration GentleBoost 95.9 97.6 94.2 95.9 
50 Iteration GentleBoost 95.6 97.4 93.8 95.6 
60 Iteration GentleBoost 95.7 97.4 94 95.7 
70 Iteration GentleBoost 95.7 97.4 94 95.7 

80 Iteration GentleBoost 95.8 97.4 94.2 95.8 

90 Iteration GentleBoost 95.8 97.4 94.2 95.8 
100 Iteration GentleBoost 96 98 94 96 
110 Iteration GentleBoost 96 97.4 94.2 95.7 
120 Iteration GentleBoost 95.6 97.3 94 95.6 

 
4.3. Discussion of the results obtained by implementing the 

proposed framework on the BCCD. Table 10 presents the accuracy 
achieved in different numbers of iterations of the BCCD dataset. The 
results in Table 11 show the performance of several tree ensemble-based 
algorithms applied to the BCCD dataset for different numbers of iterations. 
Among all the algorithms, the Bagged trees algorithm achieved the highest 
performance in the case of 60 iterations, with an accuracy of 94.7%, a 
precision of 90%, a recall of 100%, and an F1-score of 94.7%. The results 
suggest that the Gentle-Boost algorithm is generally effective in classifying 
the BCCD dataset, achieving the highest performance in six of the 12 cases. 
However, the performance of the Gentle-Boost algorithm is not consistent 
across different numbers of iterations. For example, the algorithm achieved 
high performance in cases with 10, 20, 50, and 100 iterations, but its 
performance decreased in cases with 70, 80, and 120 iterations. Other tree 
ensemble-based algorithms, such as AdaBoost, LogitBoost, and RUSBoost, 
also achieved high performance in some cases; however, their performance 
was generally less consistent than that of Gentle-Boost. For example, 
AdaBoost achieved the highest performance in the cases of 40 and 90 
iterations, but its performance was not as good in other cases. Similarly, 
LogitBoost and RUSBoost achieved the highest performance in the cases of 
30 and 110 iterations, respectively; however, their performance dropped off 
in other cases. Overall, the results suggest that the bag algorithm is 
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effective for classifying the BCCD dataset. However, compared to the 
results obtained for the SEER BC dataset and the WDBC dataset, the 
performance of the tree ensemble-based algorithms for the BCCD dataset 
was generally lower. 
 

Table 10. The accuracy achieved in different numbers of iterations of the BCCD 
dataset 

No. Iteration AdaBoost GentleBoost LogitBoost Bag RUSBoost 
10 Iteration - 78.9 - - - 

20 Iteration  78.9 - - - 
30 Iteration -  84.2 - - 
40 Iteration 89.5  - - - 
50 Iteration - 68.4 - -   
60 Iteration -  - 94.7 - 
70 Iteration - 84.2   - - 
80 Iteration  84.2 - - - 
90 Iteration 78.9  - - - 

100 Iteration - 68.4 - - - 
110 Iteration -  - - 84.2 
120 Iteration 84.2 - -  - 

 
Table 11. Evaluation of the performance of the proposed framework applied to 

BCCD 
No. 

Iteration Model Evaluation Metrix 
Accuracy Precision Recall F1-Score 

10 Iteration GentleBoost 78.9 70 88.9 78.3 
20 Iteration GentleBoost 78.9 70 88.9 78.3 
30 Iteration LogitBoost 84.2 70 100 82.4 
40 Iteration AdaBoost 89.5 90 88.9 89.4 
50 Iteration GentleBoost 68.4 70 66.7 68.3 
60 Iteration Bag 94.7 90 100 94.7 
70 Iteration GentleBoost 84.2 90 77.8 83.5 
80 Iteration GentleBoost 84.2 90 77.8 83.5 
90 Iteration AdaBoost 78.9 70 88.9 78.3 
100 Iteration GentleBoost 68.4 70 66.7 68.3 
110 Iteration RUSBoost 84.2 70 100 82.4 
120 Iteration GentleBoost 84.2 90 77.8 83.5 
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5. Comparison of the results. This section presents a comparative 
analysis of the performance of multiple machine learning models for 
predicting BC using publicly available datasets such as WDBC, BCCD, and 
SEER BC. We evaluate the performance of both state-of-the-art models and 
the proposed framework. The performance of each model is assessed based 
on accuracy, precision, recall, and F1-score, and the best-performing model 
for BC prediction is identified. Additionally, we compare the performance 
of the proposed framework to the results reported in the literature for BC 
prediction. 

5.1. Comparative Analysis of the Performance of Various 
Machine Learning Models in Predicting Breast Cancer. Table 12 
showcases the results obtained from several machine learning models that 
were applied to three distinct datasets: WDBC, SEER, and BCCD, with a 
training and testing ratio of (80:20), (80:20), and (85:15), respectively. The 
experimental setup for these datasets is identical to the one mentioned in 
Section 3.1. The performance of the machine learning models was 
evaluated using metrics such as accuracy, precision, recall, and F1-Score. 
The metrics used to evaluate the performance of these models were 
accuracy, precision, recall, and F1-Score. 

The best-performing model across all datasets was the proposed 
model, with perfect scores on the WDBC dataset and impressive results on 
the SEER and BCCD datasets. The proposed model's F1-Score, a measure 
that balances precision and recall, is particularly high, indicating strong 
performance in both identifying positive cases and limiting false positives. 

The Cubic SVM and the Narrow, Wide, and Bilayered Neural 
Networks also achieved perfect scores on the WDBC dataset. However, 
their performance on the SEER and BCCD datasets is not as strong as that 
of the proposed model. 

The Fine, Medium, and Coarse Trees, as well as the Linear SVM, 
showed consistent performance across all datasets; however, their scores 
were generally lower than those of the aforementioned models. The fine 
trees performed slightly better than the Medium and Coarse Trees, 
indicating that a more complex decision boundary might be beneficial for 
these datasets. 

The Gaussian SVMs and KNN models exhibited varied 
performance. For instance, the Fine Gaussian SVM had high recall but 
lower precision, indicating a higher rate of false positives. The Course 
KNN, on the other hand, had high precision but low recall on the BCCD 
dataset, indicating a higher rate of false negatives. 

The Neural Networks showed strong performance, particularly the 
Wide Neural Network and the Bilayered Neural Network. These models 
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achieved perfect scores on the WDBC dataset, and performed well on the 
SEER and BCCD datasets. 
 

Table 12. The performance of various ML models 
ML Model Name Dataset Accuracy Precision Recall F1-Score 

Fine Tress 
WDBC 94.6 92.5 96.6 94.5 
SEER 91.9 94 89.8 91.9 
BCCD 84.2 70 100 82.4 

Medium Tree 
WDBC 94.6 92.5 96.6 94.5 
SEER 88 90.3 85.8 88 
BCCD 84.2 70 100 82.3 

Coarse Tree 
WDBC 92 86.8 96.6 91.4 
SEER 82.7 96.7 68.6 80.3 
BCCD 87.9 70 88.9 78.3 

Linear SVM 
WDBC 97.3 100 94.9 97.4 
SEER 80.1 83.2 77 80 
BCCD 84.2 100 66.7 80 

Quadratic SVM 
WDBC 99.1 100 98.3 99.1 
SEER 86 92.3 79.7 85.5 
BCCD 78.9 80 77.8 78.9 

Cubic SVM 
WDBC 100 100 100 100 
SEER 89.2 92.5 85.9 89.1 
BCCD 73.7 80 66.7 72.7 

Fine Gaussian 
SVM 

WDBC 92 83 100 90.7 
SEER 90.9 86.3 95.4 90.6 
BCCD 63.2 40 88.9 55.2 

Medium Gaussian 
SVM 

WDBC 99.1 98 97.3 97.6 
SEER 87.7 92.3 83 87.4 
BCCD 84.2 80 88.9 84.2 

Coarse Gaussian 
SVM 

WDBC 97.3 100 94.9 97.4 
SEER 79.7 82.7 76.6 79.5 
BCCD 68.4 90 44.4 59.5 

Fine KNN 
WDBC 96.4 92.5 100 96.1 
SEER 94 90.9 97.1 93.9 
BCCD 78.9 80 77.8 78.9 

Medium KNN 
WDBC 96.4 94.3 98.3 96.3 
SEER 85.9 88 83.8 85.8 
BCCD 78.9 90 66.7 76.6 
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Continuation of Table 12 
ML Model Name Dataset Accuracy Precision Recall F1-Score 

Coarse KNN 
WDBC 95.5 96.2 94.9 95.5 
SEER 78.8 86.3 71.4 78.1 
BCCD 57.9 100 11.1 19.9 

Cosine KNN 
WDBC 95.5 98.1 93.2 95.6 
SEER 84.3 87 81.6 84.2 
BCCD 73.3 90 55.6 68.7 

Cubic KNN 
WDBC 97.3 96.2 98.3 97.2 
SEER 84.2 84.1 84.3 84.2 
BCCD 84.2 90 77.8 83.5 

Weighted KNN 
WDBC 98.2 98.1 98.3 98.2 
SEER 91.9 89.1 94.7 91.8 
BCCD 78.9 90 66.7 76.6 

Narrow Neural 
Network 

WDBC 100 100 100 100 
SEER 87.3 90.3 84.3 87.2 
BCCD 68.4 80 55.6 65.6 

Medium Neural 
Network 

WDBC 99.1 98.1 100 99.0 
SEER 88.1 87.8 88.5 88.1 
BCCD 73.3 80 66.7 72.7 

Wide Neural 
Network 

WDBC 100 100 100 100 
SEER 91.8 90.5 93.1 91.8 
BCCD 78.9 90 66.7 76.6 

Bilayered Neural 
Network 

WDBC 100 100 100 100 
SEER 87.3 87 87.6 87.3 
BCCD 78.9 80 77.8 78.9 

Trilayered Neural 
Network 

WDBC 100 100 100 100 
SEER 88.8 89.8 87.8 88.8 
BCCD 73.7 80 66.7 72.7 

The proposed 
WDBC 100 100 100 100 
SEER 95.9 97.6 94.2 95.9 
BCCD 94.7 90 100 94.7 

 
5.2. Comparison with previous studies. According to Table 13, 

hyperparameter tuning plays a crucial role in improving the performance of 
ML models. The proposed framework utilizes the power of Bayesian 
optimization and Tree ensemble-based models in an iterative process to 
achieve the best possible results. Table 13 indicates that the proposed 
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framework outperforms the results reported in the literature for the three 
commonly used datasets. 
 

Table 13. Comparison with previous studies 
Ref. Year Dataset Methods/Techniques Accuracy 
[10] 2019 WDBC WQPSO with smooth SVM 98.42 

[15] 2019 SEER 
BC 

Gradient Boosting with Genetic 
Algorithm 75.03 

[13] 2020 WDBC Optimized FSTBSVM with 
Jaya optimization techniques 94.36 

[16] 2020 SEER 
BC 

Improved Random Forest -
based rule extraction 80.5 

[19] 2020 BCCD GA and Gradient Boosting 
Classifier 79 

[14] 2021 WDBC SVM, LR, KNN, DT, Naive 
Bayes, and RF 

SVM and 
RF = 96.5 

[9] 2022 WDBC Optimized SVM with Bayesian 
hyperparameter optimization 99.3 

[18] 2022 SEER 
BC RF 94.6 

[9] 2022 DCCD Optimized SVM with Bayesian 
hyperparameter optimization 76.9 

The 
proposed 2023 

WDBC Tree ensemble-based models 
with iterative tuning of 
Bayesian optimization 

100 
SEER 95.9 
BCCD 94.7 

 
6. Conclusion. This paper presents a method for the iterative tuning 

of tree-ensemble-based model parameters using Bayesian hyperparameter 
tuning for BC prediction. The proposed method achieved perfect scores on 
the WDBC dataset and impressive results on the SEER and BCCD datasets. 
The results show that the proposed method can significantly improve the 
performance of tree ensemble-based models for BC prediction. By utilizing 
Bayesian hyperparameter tuning, we were able to identify the optimal 
hyperparameter values for the models, resulting in a higher accuracy. The 
optimized tree ensemble-based models' high F1-Score indicates their 
effectiveness in identifying positive cases and limiting false positives, 
making them a robust and reliable option for generalization. Compared with 
various state-of-the-art models, the proposed method is more efficient. The 
outcomes of this study have important implications for medical 
professionals, as the early detection of BC can significantly increase the 
chances of survival. By utilizing ML models, such as tree ensemble-based 
models, and optimizing their hyperparameters using Bayesian 
hyperparameter tuning, medical professionals can improve their ability to 
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detect BC in its early stages, leading to better patient outcomes. Overall, 
this study provides a valuable contribution to the field of BC prediction 
using ML, and its proposed method can be extended to other domains 
where tree ensemble-based models are used. 
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А. АЛСАБРИ, М. АЛЬГАБРИ 
ИТЕРАТИВНАЯ НАСТРОЙКА ПАРАМЕТРОВ МОДЕЛЕЙ НА 

ОСНОВЕ ДРЕВОВИДНЫХ АНСАМБЛЕЙ С 
ИСПОЛЬЗОВАНИЕМ БАЙЕСОВСКОЙ ОПТИМИЗАЦИИ ДЛЯ 

ПРОГНОЗИРОВАНИЯ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ 
 

Алсабри А., Альгабри М. Итеративная настройка параметров моделей на основе 
древовидных ансамблей с использованием байесовской оптимизации для 
прогнозирования рака молочной железы. 

Аннотация. Представлен метод итеративной настройки параметров моделей на 
основе ансамблей деревьев с использованием настройки байесовских гиперпараметров 
для прогнозирования состояний на примере рака молочной железы. Предлагаемый 
метод использует три различных набора данных, в том числе набор данных по 
диагностическому раку молочной железы Висконсина (WDBC), набор данных по 
надзору, эпидемиологии и конечным результатам (SEER) по раку молочной железы и 
набор данных по раку молочной железы в Коимбре (BCCD), а также реализует набор 
данных на основе древовидных ансамблей. Модели, в частности AdaBoost, Gentle-Boost, 
LogitBoost, Bag и RUSBoost, для прогнозирования рака молочной железы. Байесовская 
оптимизация использовалась для итеративной настройки гиперпараметров моделей, а 
производительность моделей оценивалась с использованием нескольких показателей, 
включая точность, прецизионность, полноту и оценку f1. Наши результаты показывают, 
что предложенный метод значительно повышает производительность моделей на основе 
ансамблей деревьев, что приводит к более высокой точности, прецизионности, полноте 
и оценке f1. По сравнению с другими современными моделями предлагаемый метод 
более эффективен. Он достиг 100% идеальных результатов по точности, 
прецизионности,  полноте и оценке F1 в наборе данных WDBC. В наборе данных SEER 
BC точность метода составила 95,9%, прецизионность 97,6%, полнота 94,2% и оценка 
F1 95,9%. Для набора данных BCCD метод достиг точности 94,7%, прецизионности 
90%, полноты 100% и оценки F1 94,7%. Результаты этого исследования имеют важное 
значение для медицинских работников, поскольку раннее выявление рака молочной 
железы может значительно повысить шансы на выживание. В целом, это исследование 
вносит ценный вклад в область прогнозирования рака молочной железы с 
использованием машинного обучения.  

Ключевые слова: итеративная настройка, модели на основе древовидных 
ансамблей, байесовская оптимизация, рак молочной железы, машинное обучение. 
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