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Abstract. The study presents a method for iterative parameter tuning of tree ensemble-
based models using Bayesian hyperparameter tuning for states prediction, using breast cancer
as an example. The proposed method utilizes three different datasets, including the Wisconsin
Diagnostic Breast Cancer (WDBC) dataset, the Surveillance, Epidemiology, and End Results
(SEER) breast cancer dataset, and the Breast Cancer Coimbra dataset (BCCD), and
implements tree ensemble-based models, specifically AdaBoost, Gentle-Boost, LogitBoost,
Bag, and RUSBoost, for breast cancer prediction. Bayesian optimization was used to tune the
hyperparameters of the models iteratively, and the performance of the models was evaluated
using several metrics, including accuracy, precision, recall, and f1-score. Our results show that
the proposed method significantly improves the performance of tree ensemble-based models,
resulting in higher accuracy, precision, recall, and fl-score. Compared to other state-of-the-art
models, the proposed method is more efficient. It achieved perfect scores of 100% for
Accuracy, Precision, Recall, and F1-Score on the WDBC dataset. On the SEER BC dataset,
the method achieved an accuracy of 95.9%, a precision of 97.6%, a recall of 94.2%, and an
F1-Score of 95.9%. For the BCCD dataset, the method achieved an accuracy of 94.7%, a
precision of 90%, a recall of 100%, and an F1-Score of 94.7%. The outcomes of this study
have important implications for medical professionals, as early detection of breast cancer can
significantly increase the chances of survival. Overall, this study provides a valuable
contribution to the field of breast cancer prediction using machine learning.

Keywords: iterative tuning, tree ensemble-based models, bayesian optimization, breast
cancer, machine learning.

1. Introduction. Machine learning (ML) has a crucial role in
predicting breast cancer (BC) and offers several benefits, including early
detection and diagnosis, improved accuracy, personalized risk assessment,
handling complex interactions, reducing false positives and negatives, and
enabling continuous learning and improvement. By analyzing a vast
amount of medical data, including mammograms, MRI scans, and patient
health records, ML algorithms can identify patterns that might indicate the
early stages of BC, leading to more effective treatment and improved
patient outcomes [1].

Traditional methods of BC prediction, such as the BC Risk
Assessment Tool (BCRAT) and Breast and Ovarian Analysis of Disease
Incidence and Carrier Estimation Algorithm (BOADICEA) models, have
limitations in their predictive accuracy [2, 3]. However, ML models can
achieve higher accuracy rates, which are significantly higher than those of
traditional models [4].
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Furthermore, ML models have the ability to consider a wide range
of risk factors, such as genetic data, lifestyle factors, and medical history,
providing personalized risk assessments for individuals. This can help
stratify prevention strategies and customize clinical management for each
patient. In addition, ML algorithms can identify complex interactions
among multiple heterogeneous risk factors, capturing nonlinear
relationships and interactions that traditional models may overlook. ML
models also have the potential to reduce false positives and negatives in BC
diagnoses, preventing unnecessary treatments for those wrongly diagnosed
and ensuring timely treatment for those with the disease. Finally, ML
models can continuously learn and improve over time as they are exposed
to more data, which can result in improved predictive accuracy as they
analyze more patient data and learn from previous predictions [5]. Tree
ensemble-based models, such as AdaBoost, Gentle-Boost, LogitBoost, Bag,
and RUSBoost, are powerful ML tools that can be used for a variety of
tasks, including predicting BC. These models work by creating decision
trees and making predictions based on iteratively improving the
predictions [6].

Traditionally, hyperparameters are tuned using methods like grid
search or random search, which involve trying out many different
combinations of hyperparameters and selecting the one that performs best
on a validation set. However, these methods can be computationally
expensive and do not guarantee finding the optimal set of
hyperparameters [7].

Bayesian hyperparameter tuning is a more sophisticated approach
that treats hyperparameter tuning as a Bayesian optimization problem. It
builds a probabilistic model of the objective function (i.e., the validation
error as a function of the hyperparameters) and uses this model to select the
most promising hyperparameters to try next. This approach can be more
efficient than grid search or random search because it uses information
from previous evaluations to make smarter decisions about what
hyperparameters to try next [8].

1.1. Authors Contributions. This study makes a significant
contribution to the field of BC prediction across different datasets. By
applying Bayesian hyperparameter tuning to tree ensemble-based models
through several iterations, the study aims to enhance the performance of the
models and generalization capabilities for BC prediction in diverse datasets.
The challenges of model adaptability and robustness are tackled in this
study through systematic evaluation and assessment of various datasets.
The findings of this study can provide valuable insights into the
effectiveness and transferability of the proposed approach across various
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BC datasets, contributing to the development of more reliable and versatile
prediction models.

In the following sections, we will review relevant literature, describe
the methodology employed in this study, present the experimental results,
discuss the implications of our findings, and A comparative analysis is
conducted to compare the results obtained from the proposed method to
those of state-of-the-art models and to the findings of a literature review.
By the end of this research, we will have provided valuable insights into the
iterative tuning of tree ensemble-based models using Bayesian
hyperparameter tuning for BC prediction.

2. Review of Literature. This literature review aims to investigate
prior research on using ML for BC prediction, with a particular emphasis
on tree-ensemble-based models. The review will also cover various tree
ensemble-based models such as AdaBoost, GentleBoost, LogitBoost, Bag,
and RUSBoost and their applications in BC prediction. Additionally,
current approaches to hyperparameter tuning, such as grid search and
Bayesian hyperparameter tuning, will be discussed. The objective of this
review is to identify the most efficient tree-ensemble-based models and
parameter tuning methods for BC prediction.

Table 1 serves as a comprehensive summary of the related works,
providing a clear and concise overview of the studies analyzed in this
research.

2.1. Previous studies on breast cancer prediction. The research
objectives of previous studies regarding BC prediction were diverse. Some
studies aimed to predict the presence or absence of BC, using the BCCD
dataset. Other studies focused on classifying breast tumors as benign or
malignant, utilizing the WDBC dataset. Additionally, some studies aimed
to predict patient survival or death, and the SEER dataset was used for this
purpose. In this section, we delve into the studies carried out for each of
these datasets.

2.1.1. Studies Utilizing the WDBC Dataset in Prior Research.
Numerous studies have utilized the WDBC dataset to assess various
machine learning (ML) algorithms and techniques for binary classification.
These studies have employed a diverse range of classification methods,
including Support Vector Machine (SVM), Random Forest (RF), Extreme
Learning Machine (ELM), and Naive Bayes. In some of these studies,
optimization techniques were utilized to enhance the performance of the
classification algorithms.

In one such study, [9] achieved the highest accuracy of 99.3% by
utilizing an optimized SVM with Bayesian hyperparameter optimization.
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This study exemplified the effectiveness of leveraging a well-established
optimization technique to boost the classification algorithm's performance.

Table 1. Summary of the related works

Ref. |Year | Dataset Methods / Techniques Ac::,}:; <
[10] [2019 | WDBC WQPSO with smooth SVM 98.42
[12] |2019 WDBC SVM with 10 selected features 96.72
[13] |2020 | wppc | Optimized FSTBSVM with Jaya 94.36
optimization techniques
[11] [2021 WDBC Cloud-based ELM 98.68
[14] [2021 WDBC SVM and RF 96.5
o] [2022 WDBC Optimized SVM w1th b'aye'51an 993
hyperparameter optimization
[15] |2019 | SEER BC Gradient Boostlgg with Genetic 7503
Algorithm
[16] |2020 | SEER BC Improved Random F orest - based 80.5
rule extraction
[17] [2020 | SEER BC J48 93
[18] [2022 | SEERBC RF 94.6
[19] |2020 BCCD GA and Gradl'ent Boosting 79
Classifier
[20] |2021 BCCD Adaboost Classifier 80
[91 |2022 DCCD polynomial SVM 76.9

Study [10] achieved an accuracy of 98.42% using Water Quality
Prediction using Particle Swarm Optimization (WQPSO) with smooth
SVM, indicating that the algorithms used in these studies are effective for
the WDBC dataset.

Study [11] achieved an accuracy of 98.68% using cloud-based ELM,
which is slightly higher than the accuracy achieved by [10]. ELM is a
relatively new algorithm that has been shown to be effective for
classification tasks, and this study demonstrated its usefulness for the
WDBC dataset.

Study [12] achieved an accuracy of 96.72% using SVM with 10
selected features, which is slightly lower than the other studies. However,
this study used feature selection techniques to identify the most relevant
features, which can reduce the computational complexity of the
classification models and improve their performance.

Study [13] achieved an accuracy of 94.36% using optimized
FSTBSVM with Jaya optimization techniques, which is lower than the
other studies. However, this study explored a relatively new technique for
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classification and demonstrated its effectiveness in achieving high
accuracy.

Study [14] examined the performances of six different classification
algorithms and achieved an accuracy of 96.5% using SVM and RF. While
this study did not achieve the highest accuracy, it provided a
comprehensive evaluation of different algorithms' performances on the
WDBC dataset.

The studies included in this comparison exhibited high accuracy in
classifying the WDBC dataset. The performance of the classification model
was considerably influenced by the selection of algorithm, technique, and
feature selection. While study [9] achieved the highest accuracy by utilizing
optimized SVM with Bayesian hyperparameter optimization, indicating its
efficacy in classifying the WDBC dataset, other studies also attained high
accuracy using different algorithms and techniques. These findings
demonstrate the significance of exploring various methods for classification
tasks.

2.1.2. Studies Utilizing the SEER BC Dataset in Prior Research.
Several other studies have concentrated on improving ML techniques to
develop models for predicting the survival of BC patients using the SEER
BC dataset. These studies employed different algorithms and techniques for
classification, such as Gradient Boosting, RF, and J48 decision tree.

Study by [18] achieved the highest accuracy of 94.64% using RF,
indicating the effectiveness of this algorithm for the SEER BC dataset. RF
is a well-established algorithm for classification tasks, and its success in
this study further emphasizes its utility for BC prediction tasks. Similarly,
study by [17] achieved an accuracy of 93.02% using the J48 decision tree
algorithm, demonstrating the effectiveness of Decision Tree (DT)
algorithms for the SEER BC dataset.

In contrast, study [15] achieved the lowest accuracy of 75.03%
using Gradient Boosting with Genetic Algorithm (GA). While this study
demonstrated the potential of using optimization techniques to improve the
performance of classification algorithms, it was not as effective as other
studies in achieving high accuracy for the SEER BC dataset.

Study [16] explored a novel approach for rule extraction and
classification, achieving an accuracy of 80.45%, which is lower than the
accuracies achieved by the other studies. However, this study's approach
has the potential to improve the accuracy of classification models,
demonstrating the importance of exploring novel techniques in the field of
BC prediction using ML.

In general, the studies presented in this revision achieved varying
levels of accuracy in classifying the SEER BC dataset. The choice of

Informatics and Automation. 2024. Vol. 23 No. 1. ISSN 2713-3192 (print) 133
ISSN 2713-3206 (online) www.ia.spcras.ru



WCKYCCTBEHHbBI MHTEJIJIEKT, UHXEHEPUS JJAHHBIX U 3HAHUI

algorithm significantly affected the performance of the classification model.
Studies [18] and [17] achieved high accuracy using well-known algorithms
such as RF and J48, while study [16] explored a novel approach for rule
extraction and classification.

2.1.3. Studies Utilizing the BCCD Dataset in Prior Research.
Similarly, several studies have explored the use of ML techniques in the
development of models for BC diagnosis using the BCCD dataset. These
studies have used different algorithms such as Adaboost, Gradient
Boosting, and SVM, among others. They have also employed feature
selection and optimization techniques to improve model performance.

Study [20] achieved the highest accuracy of 80% using the Adaboost
Classifier. This study demonstrated the effectiveness of using Adaboost for
the BCCD dataset, which is a well-known algorithm for classification tasks.

Study [19] achieved an accuracy of 79% using the Gradient
Boosting Classifier with the Genetic Algorithm for feature selection. This
study demonstrated the effectiveness of using feature selection techniques
to identify the most relevant features for classification, which can reduce
the computational complexity of the classification models and improve
their performance.

Study [9] achieved an accuracy of 76.9% using a polynomial SVM,
which is lower than the other studies. However, this study explored a
different algorithm than Adaboost and Gradient Boosting and demonstrated
the potential of using a polynomial SVM for the BCCD dataset.

Overall, the studies presented in this comparison achieved varying
levels of accuracy in classifying the BCCD dataset. The choice of algorithm
and technique significantly affected the performance of the classification
model. Studies [20] and [19] achieved high accuracy using Adaboost and
Gradient Boosting with GA for feature selection, respectively. Study [9]
explored a different algorithm and achieved lower accuracy but
demonstrated the potential of using a polynomial SVM for the BCCD
dataset.

2.2. Existing tree ensemble-based models. This section focuses on
reviewing the tree-ensemble-based models that exist, including AdaBoost,
GentleBoost, LogitBoost, Bag, and RUSBoost, and their applications in
breast cancer (BC) prediction. Each of these models possesses unique
characteristics that can be effective for different datasets and objectives. A
detailed description of each model and its algorithm will be presented.
Additionally, we will examine the applications of these models in BC
prediction, including their performance on different datasets and feature
selection. The objective of this section is to offer insights into the strengths
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and weaknesses of each model and identify the most effective models for
BC prediction.

2.2.1. Bagged Trees. It is an ML ensemble meta-algorithm designed
to improve the stability and accuracy of ML algorithms used in statistical
classification and regression. The algorithm was first introduced by
Breiman in 1996 and has since been widely used in various applications
such as text classification, image classification, and bioinformatics [21].

The basic idea behind bagging is to generate multiple versions of a
predictor and use these to get an aggregated predictor. The aggregation
averages usually over the predictions for regression problems and does a
majority vote for classification problems. The Bagged Trees algorithm has
several advantages. Firstly, it can reduce overfitting and improve the
generalization performance of the model. Secondly, it is robust to noise and
outliers in the data. Finally, it can handle high-dimensional feature spaces
and large datasets. However, Bagged Trees have some limitations. One of
the main limitations is that it can be computationally expensive, especially
when the number of trees in the ensemble is large. Additionally, the
interpretability of the model is reduced as the number of trees increases.
Finally, the quality of the predictions can be affected by the choice of
hyperparameters such as the number of trees, the depth of each tree, and the
size of the bootstrap samples [22, 23].

The process of Bagged Trees can be described as follows [22].

Algorithm 1. Bagging algorithm when applied to decision trees for a
classification problem

Initialize: Determine the number of bootstrap samples, B, to be created.
For b =1 to B, repeat steps 1-3:

Step 1. Bootstrap Sampling: Create a bootstrap sample by randomly
selecting N instances from the original dataset with replacement, where
N is the size of the dataset.

Step 2. Tree Building: Build a decision tree based on the bootstrap
sample. Grow the tree to maximum size and do not perform any
pruning.

Step 3. End of the loop: Return to step 2 and repeat the process until
B trees have been grown.

Prediction: For a new data point, make a prediction with each of the B trees.
The final prediction is the class that gets the most votes among the B trees.

Several studies have investigated the efficacy of the bagged trees
algorithm for BC classification. However, there are variations in the
datasets utilized and the accuracy achieved by these studies.
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One study [24] applied the SMOTE technique for oversampling the
data acquired from Shengjing Hospital of China Medical University. The
study used the Bagged Tree algorithm and achieved an accuracy of 70.3%.

Another study [25] investigated a supervised learning technique for
classifying BC using four different classifiers, namely Boosted Tree,
Bagged Tree, Logistic Regression (LR), and Artificial Neural Networks
(ANN). The ANN outperformed the other classifiers with an accuracy of
97.56%, while the bagged tree achieved the second-best accuracy. This
study highlights the effectiveness of the ANN and bagged tree in
classifying BC and demonstrates the importance of comparing multiple
classifiers to identify the best-performing one.

In a third study [26], the performance of the bagged trees algorithm
was evaluated on a dataset of 23 attributes containing 575 samples obtained
from the Mizoram State Cancer Institute of Aizawl, Mizoram, India. An
accuracy of 82.5% was achieved, which is higher than the first study but
lower than the second study. However, the study was limited by the small
size of the dataset, which may affect the generalization of the results.

2.2.2. Adaboost Trees. It is a variant of AdaBoost, which uses DT
as a weak classifier. In each iteration, a DT is trained on the weighted
samples, and the weights are updated based on the misclassification rate.
The final prediction is made by combining the predictions of all the DTs,
typically by taking the weighted average.

Studies have widely used the Adaboost algorithm for BC
classification. For example, in [27], the performance of DT and Adboost
was evaluated on an imbalanced dataset such as WDBC. Both models
achieved high accuracy, with DT achieving 88.8% and Adboost achieving
92.5%. The study highlights the importance of selecting appropriate models
for imbalanced datasets, such as Adboost, which is designed to handle such
datasets, and demonstrates its efficacy in classifying BC.

In another study [28], ten models, including Adboost, RF, Tree,
Gradient Boosting, KNN, ANN, Naive Bayes, SVM, LR, and SGD, were
compared for their performance in BC classification. Adboost achieved the
best performance with an accuracy of 98.3%, an fl-score of 98.3%, a
precision of 98.4%, a recall of 98.3%, and an AUC of 99.9%. The other
models achieved varying levels of accuracy, with RF achieving 88.7%,
Tree achieving 89.0%, Gradient Boosting achieving 86.3%, KNN achieving
77.3%, ANN achieving 74.7%, Naive Bayes achieving 71.7%, SVM
achieving 73.7%, LR achieving 73.0%, and SGD achieving 71.3%. The
study demonstrates the importance of comparing multiple models and
selecting the best-performing one for BC classification.
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The algorithm for AdaBoost classification is described as
follows [29].

Algorithm 2. Real AdaBoost
Initialize: Start with weights w;=1/N, i=1,2, ..., N.
For m=1,2, ..., M, repeat steps 1-3:

Step 1: Fit the classifier to obtain a class probability estimate p, (x) =
p," =1/x) € [0,1], using weights w; on the training data.

Step 2: Set f,,(x) < logp, (¥) / (1-p, (¥)) € R.

Step 3: Set wi«— exp [-y; fm(x))/,i= 1,2, ...., N, and renormalize so
that Y, w; = 1.

M

Output the classifier sign [Z fm (x) =1
1

m=

2.2.3. GentleBoost Trees. It is an ML method used to improve the
performance of DTs on binary classification problems. GentleBoost is
known for its robustness and simplicity, and it is particularly effective when
dealing with noisy data or outliers.

The GentleBoost algorithm works by iteratively adding weak
classifiers (in this case, decision trees) to the model in a way that minimizes
the overall error.

The algorithm for GentleBoost classification is described as
follows [29].

Algorithm 3. GentleBoost

Initialize: Start with weights w; = 1/N, i=1, 2, ..., N, F(x)= 0.
For m=1, 2, ..., M, repeat steps 1-3:
Step 1: Fit the regression function f,(x) by weighted least-squares of
y, to x; with weight w;.
Step 2: Update F(x) « F(x) =f(x).
Step 3: Update w; <= w; exp /-y, fi(x;)/ renormalize.

M

Output the classifier sign /F(x)] = sign [Z fm (x) ]
1

m=
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2.2.4. LogitBoost Trees. It is a boosting algorithm used for binary
classification problems. It was introduced by Jerome Friedman, Trevor
Hastie, and Robert Tibshirani in 1998 [29]. The algorithm is based on
additive logistic regression and uses decision trees as base learners. The
main idea behind LogitBoost is to iteratively fit a simple model (like a
decision stump) to the current residuals, then add this model to the
ensemble, and update the residuals. The process is repeated until a stopping
criterion is met.

The LogitBoost algorithm has several advantages. Firstly, it can
handle noisy and complex datasets and achieve high accuracy. Secondly, it
is robust to overfitting and can generalize well to new data. Finally, it is
computationally efficient and can handle large datasets. However,
LogitBoost also has some limitations. One of the main limitations is that it
can be sensitive to outliers in the data. Additionally, the quality of the
predictions can be affected by the choice of hyperparameters such as the
number of weak classifiers and the learning rate.

The LogitBoost algorithm was utilized for BC classification and
showed significant results compared to other methods; i.e., Study [30]
compared the performance of several ML models in classifying tumors as
metastatic or non-metastatic using two different datasets (Vijver dataset and
Wang dataset). The study evaluated the performance of Logitboost, LR,
SVM, Tree, Adaboost, and RF models. The results showed that the
performance of the models varied depending on the dataset used. With the
Vijver’s dataset, the models achieved moderate to good accuracy, with
Logitboost achieving the highest accuracy of 79% and an AUC of 0.810.
SVM attained commendable results in terms of accuracy and AUC values,
achieving an accuracy rate of 77.1% and an AUC of 0.806. Adaboost also
performed well, achieving an accuracy of 77.7% and an AUC of 0.782.
However, the accuracy and AUC values of the other models were relatively
lower. With the Wang dataset, the models achieved higher accuracy and
AUC values, with Logitboost achieving the highest accuracy of 8§9.7% and
an AUC of 0.923. RF achieved high accuracy and AUC values, with an
accuracy of 87.6% and an AUC of 0.915. Adaboost performed well,
achieving an accuracy of 86.3% and an AUC of 0.893. SVM and Tree also
achieved moderate to good accuracy and AUC values, while LR achieved
relatively lower accuracy and AUC values. The results suggest that
Logitboost, SVM, RF, and Adaboost are effective models for the Wang
dataset, while Logitboost, SVM, and Adaboost are effective models for the
Vijver dataset. However, it is important to consider the limitations of the
study, such as the relatively small sample sizes and limited number of
features used in the datasets.
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The algorithm for LogitBoost classification is described as
follows [29].

Algorithm 4. LogitBoost

Initialize: Start with weights w; = 1/N, i=1, 2, ..., N, F(x)= 0 and probability
estimates p(xi):%.
For m=1,2, ..., M, repeat steps 1-3:

Step 1: Compute the working response and weights
7 o LR
- PX)(I-PX))

Step 2: Fit the function f{x) by a weighted least-square regression of z;
to X; using weights w;.
Step 2: update F(x) « F(x) = 13 f-m (x) and P(x) « (e"®)/ @F® +
(eFX),

Output the classifier sign /F(x)] = sign [¥M, £, (x) ].

m=

2.2.5. RUSBoost Trees. It is a hybrid ML algorithm that combines
Random Under-Sampling (RUS) and AdaBoost to handle imbalanced data
classification problems. It was proposed is study [31] in 2010. The
algorithm is designed to improve the performance of AdaBoost on
imbalanced datasets by integrating a data sampling strategy. The RUSBoost
algorithm exhibits several strengths. Primarily, it is capable of managing
imbalanced datasets and achieving exceptional accuracy for the minority
class. Moreover, it is resilient to overfitting and can generalize effectively
to novel data. Lastly, it is computationally efficient and can handle sizable
datasets. Despite these advantages, RUSBoost has certain drawbacks.
Foremost among these is its susceptibility to noise and outliers in the data.
Additionally, the quality of its predictions can be affected by
hyperparameter selection, such as the number of weak classifiers and the
size of the randomly selected negative class samples.

RUSBoost and SMOTE are used by several studies to handle
imbalanced datasets; i.e., Study [32] aimed to examine the performance of
two methods, RUSBoost and SMOTE-Boosted C5.0, for handling the
problem of an imbalanced WDBC dataset for the classification of BC. The
results showed that RUSBoost outperformed SMOTE-booted C5.0 in terms
of accuracy, sensitivity, and specificity. With RUSBoost, the study
achieved an accuracy of 94.4%, a sensitivity of 93%, and a specificity of
95.4%. On the other hand, with SMOTE-Boosted C5.0, the study achieved
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an accuracy of 92.5%, a sensitivity of 93.9%, and a specificity of 91.15%.
These results suggest that RUSBoost is a more effective method for
handling the imbalanced dataset in this context.

The algorithm for RUSBoost classification is described as
follows [31].

Algorithm 5. RUSBoost

Given: Set S of examples (xy, Y,), ..., (Xm, y,,,) With minority class y'e Y, [Y| =
2

Weak learner, WeakLearn

Number of iterations, 7

The desired percentage of total instances to be represented by the minority class,
N

Initialize: D, (i)= — for all i

Do For t=1, 2, ..., T, repeat steps 1-7:
Step 1: Create a temporary training dataset S't with distribution D'I
using random undersampling.
Step 2: Call WeakLean, providing it with example S't and their
weights D',.
Step 3: Get back a hypothesis h: X x Y —/0.1].
Step 4: Calculate the pseudo-loss (for S and Dy):
e= ) D@ b v+ (%))
@y):yAy

Step 5: Calculate the weight update parameter:

_ St

I-¢/
Step 6: Update Dy:
D1+1 — Dt(l) a_t(lz (1+h‘(x,, yi)' ht(xis Yi. )’,#Y)
Step 7: Normalize Dy, : Let Z, =}, Dy (i)
Dy (i) = DUZ_ll(I)

T
Output the final hypothesis: H(x) = argmax, _ thl ht(xi, yi) log;—t .

2.3. Current methods of parameter tuning. Parameter tuning is a
crucial step in the process of building an ML model. It involves selecting
the optimal values for the parameters of a model to improve its
performance. The current methods of parameter tuning can be broadly
categorized into Grid search and Bayesian optimization.
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2.3.1. Grid Search. It is a traditional method for hyperparameter
tuning. It involves specifying a subset of the hyperparameter space as a
grid, and then systematically checking every point in the grid. For each
combination of parameters, the model is trained, and its performance is
measured. The main disadvantage of grid search is that it can be
computationally expensive, especially for models with a large number of
parameters. The following presents several studies that investigated the
use of grid search to improve the performance of various ML
models [33 —36].

In study by [33], the authors employed grid search to fine-tune the
hyperparameters of nine ML models, including Naive Bayes, LR, SVM,
LASSO, DT, KNN, RF, AdaBoost, and XGBoost. The objective of the
study was to identify which algorithms perform best for both balanced and
imbalanced datasets. The results indicated that RF and XGBoost
outperformed the other algorithms when the data was less balanced,
whereas SVM, LR, and LASSO performed better than the other algorithms
when the data was balanced. This finding highlights the importance of
selecting the appropriate ML algorithm based on the dataset's balance or
imbalance.

Another study [34] utilized grid search to optimize the
hyperparameters of the SVM algorithm for BC classification. The authors
compared the performance of SVM with and without grid search and found
that grid search significantly improved the recall and precision of the SVM
algorithm. The recall and precision were 83% and 61%, respectively,
without grid search, while they were 95% and 95%, respectively, with grid
search. This result suggests that hyperparameter tuning using grid search
can enhance the performance of SVM for BC classification.

Similarly, study [35] employed grid search to optimize the
hyperparameters of the RF algorithm for BC classification. The authors
compared the performance of RF with and without grid search and found
that grid search improved the recall, precision, and F1 score of the RF
algorithm. The recall, precision, and F1 scores were 96% without grid
search, while they were 97% with grid search. This result supports the
effectiveness of hyperparameter tuning using grid search in enhancing the
performance of ML algorithms in various applications.

Finally, study [36] used grid search to optimize the hyperparameters
of the KNN algorithm for BC classification. The authors compared the
performance of KNN with grid search and default tuning and found that
grid search significantly improved the accuracy of the KNN algorithm. The
accuracy was 94.35% with grid search, while it was 90.10% with default
tuning. This result emphasizes the importance of hyperparameter tuning
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using grid search in improving the performance of KNN for BC
classification.

These studies demonstrate the effectiveness of hyperparameter
tuning using grid search in enhancing the performance of ML algorithms
for BC classification. The results highlight the importance of selecting the
appropriate algorithm and tuning the hyperparameters for the specific
dataset.

2.3.2. Bayesian Optimization. It is a more advanced method for
hyperparameter tuning. It builds a probabilistic model of the function
mapping from hyperparameter values to the objective evaluated on a
validation set. By using this model, the algorithm can choose the most
promising hyperparameters to evaluate in the true objective function. This
method is more efficient than grid search and random search, especially for
high-dimensional hyperparameter spaces [7, 37, 38].

Several studies have investigated the use of Bayesian optimization to
enhance the performance of various ML models. In one study [7], a
comprehensive comparative analysis was conducted on different ML
models using various hyperparameter optimization methods, including
Bayesian, grid search, and random search optimization. The findings
revealed that the Bayesian hyperparameter optimization method was more
stable than grid search and random search methods. Additionally, the
XGBoost algorithm achieved a high accuracy of 94.74% and a sensitivity
of 93.69%. In another study [37], a hybrid feature selection approach was
implemented along with Bayesian hyperparameter tuning, resulting in the
Extra tree classifier algorithm achieving the best accuracy of 96.2%. In a
third study [38] a performance comparison was conducted on several ML
algorithms, including SVM, DT, Naive Bayes, KNN, and Ensemble
Classifiers, and the Bayesian optimization algorithm was applied to all
classifiers to maximize the prediction accuracy. The results showed that the
Bayesian optimization-based KNN algorithm outperformed the other ML
algorithms, achieving an accuracy of 95.833%. Overall, these studies
demonstrate the importance of selecting the appropriate optimization
method and tuning hyperparameters to improve the performance of ML
algorithms.

2.4. Research gap. The literature has shown that the performance of
machine learning models heavily relies on the selection of appropriate
hyperparameters. While several studies have investigated the use of various
optimization methods to tune these hyperparameters, there is a research gap
in exploring the potential benefits of Bayesian hyperparameter optimization
for iterative tuning of Tree-Ensemble-Based machine learning models.
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Tree-Ensemble-Based models, such as AdaBoost, Gentle-Boost,
LogitBoost, Bag, and RUSBoost, are commonly used in various
applications, including classification and regression tasks. However, the
optimal hyperparameters for these models are not always known and can be
challenging to determine given the large number of possible combinations.

Bayesian optimization is a promising approach for hyperparameter
tuning that has been shown to outperform other optimization techniques in
various applications. However, to the best of our knowledge, there is no
investigation in the literature that explores the use of Bayesian
hyperparameter optimization for iterative tuning of Tree-Ensemble-Based
machine learning models.

Therefore, the research gap in the literature is the lack of studies that
investigate the potential benefits and limitations of using Bayesian
hyperparameter optimization for iterative tuning of Tree-Ensemble-Based
machine learning models, such as AdaBoost, Gentle-Boost, LogitBoost,
Bag, and RUSBoost. This research gap highlights the need for further
exploration of this approach to improve the performance of these models in
various applications.

3. Methodology. The aim of this study is to develop an iterative
machine learning approach based on tree ensemble-based models with
Bayesian hyperparameter tuning. The methodology involves the following
steps.

3.1. Data collection and preparation. This study utilized three BC
datasets, namely the WDBC, BCCD and the SEER BC dataset. The
WDBC, BCCD, and SEER BC datasets are distinct from one another and
have been utilized for different classification purposes, rather than being
employed for the same classification task. Therefore, these datasets do not
intersect. In the case of the WDBC dataset, the target class is labeled as
"classification" and pertains to determining whether a tumor is malignant or
benign, as presented in Table 2. On the other hand, the BCCD dataset
assigns the target class as "Diagnosis," indicating the presence or absence
of breast cancer, as specified in Table 3. Lastly, the SEER breast cancer
dataset employs a target class called "STATUS," which indicates whether
the patient is alive or deceased, as described in Table 4.

WDBC dataset is a well-known dataset used for breast cancer
classification tasks. It contains 569 samples, each of which corresponds to
a breast mass detected in a patient. Each sample is described by 30
different features, which provide information about the characteristics of
the mass [39]. Table 2 shows a brief description of each feature in the
dataset.
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Table 2. WDBC dataset description

No. Feature Description
1 radius mean The mean radius of the mass
2 texture_mean The mean texture of the mass.
3 perimeter_mean The mean perimeter of the mass
4 area_mean The mean area of the mass
5 smoothness mean The mean smoothness of the mass
6 compactness_mean The mean compactness of the mass
7 concavity mean The mean concavity of the mass
8 concave points mean | The mean number of concave points on the mass
9 symmetry mean: The mean symmetry of the mass
10 | fractal dimension mean |The mean fractal dimension of the mass
11 radius_se The standard error of the radius of the mass
12 texture se The standard error of the texture of the mass
13 perimeter_se The standard error of the perimeter of the mass
14 area_se The standard error of the area of the mass
15 smoothness_se The standard error of the smoothness of the mass
The standard error of the compactness of the
16 compactness_se
— mass
17 concavity se The standard error of the concavity of the mass
. The standard error of the number of concave
18 concave points_se .
- points on the mass
The standard error of the symmetry of the
29 symmetry_se Y vy
mass
. . The standard error of the fractal dimension of the
20 fractal dimension se
- - mass
21 radius_worst The worst (largest) radius of the mass
22 texture worst The worst (most irregular) texture of the mass
23 perimeter worst The worst (largest) perimeter of the mass
24 area_worst The worst (largest) area of the mass
25 smoothness worst The worst (least smooth) smoothness of the mass
The worst (most compact) compactness of the
25 compactness_worst W ( pact) P
mass
26 concavity worst The worst (most severe) concavity of the mass
. The worst (most severe) number of concave
27 concave points_worst .
- points on the mass
Th t (least trical try of th
28 symmetry worst e worst (least symmetrical) symmetry of the
- mass
29 | fractal dimension worst The worst (most irregular) fractal dimension of
- - the mass
30 Classification Malignant (cancerous) or benign (non-cancerous)
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BCCD is a dataset used for BC classification tasks. It contains 116
(64 patients and 52 healthy controls) samples, each of which corresponds to
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a breast mass detected in a patient. Each sample is described by 10 different
features, which provide information about the characteristics of the
mas [40]. Table 3 shows a brief description of each feature in the dataset.

Table 3. BCCD dataset description

No. Feature Description
Age The age of the patient at the time of diagnosis

2 BMI The body mass index of the patient

3 Glucose The fastlng plasma glucose concentration of
the patient

4 Insulin The fasting serum insulin level of the patient

5 HOMA The home.ostams. model'asse.ssmex.n (HOMA)
index, which estimates insulin resistance

6 Leptin The concentration of leptin, a hormone

involved in regulating energy balance

The concentration of adiponectin, a hormone

7 Adiponectin involved in regulating glucose levels

The concentration of resistin, a hormone

8 Adiponectin . . . . s
diponec involved in regulating insulin sensitivity

The concentration of monocyte
chemoattractant protein-1, a cytokine

9 MCP-1 . .. . .
involved in inflammation and immune
response

10 | Diagnosis Presence or absence of breast cancer

The SEER BREAST CANCER dataset is a dataset used for survival
analysis tasks of breast cancer patients. It contains information on patients
diagnosed with breast cancer between 2006 and 2010 and includes 4024
instances, of which 3408 are alive and 616 are deceased. Each instance is
described by 15 different features, which provide information about the
characteristics of the patients and their cancer [41]. Table 4 shows a brief
description of each feature in the dataset:

To prepare the datasets for analysis, the study used several
preprocessing techniques. One of the preprocessing techniques used is the
Synthetic Minority Over-sampling Technique (SMOTE) to address the
imbalance problem that was obvious in the three datasets. SMOTE
generates synthetic samples for the minority class to balance the dataset and
improve the performance of the classification models.
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Table 4. SEER BC dataset description

No. Feature Type

1 AGE The age of the patient at the time of diagnosis

2 RACE The race of the patient

3 MARITAL STATUS | The marital status of the patient

4 T STAGE The size and extent of the primary tumor at
diagnosis

5 N STAGE The spre;ad of cancer to nearby lymph nodes at
diagnosis
The stage of the cancer at diagnosis, based on

6 6TH STAGE the TNM system
The grade of the tumor, indicating how

7 GRADE abnormal the cancer cells look under a
microscope

] A STAGE The stage of t.he cancer at diagnosis, based on a
different staging system

9 TUMOR SIZE The size of the tumor at diagnosis, in
millimeters

10 | ESTROGEN STATUS | The status of the estrogen receptor in the tumor

1 PROGESTERONE The status of the progesterone receptor in the

STATUS tumor
12 REGIONAL NODES | The number of lymph nodes examined during
EXAMINED surgery
13 REGIONAL NODES The number of lymph nodes with cancer cells
POSITIVE found during surgery

14| SURVIVAL MONTHS The number of months between diagnosis and

last follow-up or death
STATUS .
15 (classification) Alive or Dead

Additionally, the study removed outliers from the WDBC and SEER
BC datasets using the method of three standard deviations (3 SD) above
and below the mean. This method removes extreme data points that may
skew the analysis or modeling results. Figures 1, 2 display a comparative
analysis of three distinct outlier detection techniques. The first technique
employed in the analysis is the three standard deviations (3-SD) above and
below the mean, which are depicted in red. The second technique involves
1.5 times the interquartile range (IQR) above or below the third and first
quartiles and is represented by a blue color. The third technique is based on
three scaled median absolute deviations above and below the median and is

displayed in black.
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Fig. 1. Outlier detection techniques for the WDBC dataset
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Fig. 2. Outlier detection techniques for the SEER dataset

3.2. The proposed iterative process. The study used five tree
ensemble-based models: AdaBoost, GentleBoost, LogitBoost, Bag, and
RUSBoost. Each model was trained with the default hyperparameters and
with iterative tuning using Bayesian hyperparameters tuning. Figure 3
shows the workflow of the proposed iterative training process while the
iterative tuning process involved the following steps.

Algorithm 6. Steps of iterative tuning process
Let i be the number of the models i [1,2,3,4,5].
Let N be the number of iterations.

Step 1. Split the dataset into training and validation sets.

Step 2. Train the model; with the default hyperparameters on the training set
and evaluate its performance on the validation set.

Step 3. Use Bayesian hyperparameters tuning to select the best
hyperparameters for the model based on the performance on the validation
set.

Step 4. Train the model with the selected hyperparameters on the training set
and evaluate its performance on the validation set.

Step 5. Repeat the above steps until the performance on the validation set no
longer improves or a maximum number of iterations is reached.

Step 6. Repeat the above steps until the performance on the validation set no
longer improves or a maximum number of iterations is reached.

Step 7. If the performance of model; best than model, | then set the best
result = the performance of model;.

Step 8. Repeat steps 1-7 for all i.

Step 9. Repeat steps 1-7 for N iteration.

Output The final prediction result including the Method name, best performance
metrics, and the optimal hyperparameters.
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3.3. Evaluation. The performance evaluation of each ML model in
the study is conducted based on their effectiveness in predicting the target
class. To assess their performance, a range of metrics, including accuracy,
precision, recall, and Fl-score, are employed. These metrics provide a
comprehensive evaluation of the predictive capabilities and overall
performance of the ML models. The calculation details of these evaluation
metrics can be found in Table 5, which illustrates how each metric is
computed and provides further insights into the model performance.

Table 5. Evaluation Metrics Equations

Measure | Equation

Accuracy | (TP+TN)/(TP+TN+FN+FP)

Precision | TP/(TP+FP)

Recall TP/(TP+FN)

F1 score | (2xPrecisionxRecall)/(Precision + Recall)
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4. Result and Discussion. The experiments were conducted on three
different datasets: WDBC, SEER BC, and BCCD. In the case of the WDBC
dataset, the results showed that Gentle-Boost and AdaBoost achieved the
highest accuracy of 100% across multiple iterations. These algorithms
outperformed other models such as LogitBoost, which achieved an
accuracy of 99.1%, Bagged trees with 98.2% accuracy, and RUSBoost with
95.5% accuracy. The detailed results can be found in Table 6. Moving on to
the SEER BC dataset, Gentle-Boost demonstrated superior performance
compared to the other models in all experiments with varying iterations. It
consistently outperformed the rest and achieved the highest accuracy of
96% with 100 iterations. These findings are presented in Table 8. For the
BCCD dataset, the Bagged trees algorithm stood out by achieving the
highest performance. It attained an accuracy of 94.7% in the case of 60
iterations. The detailed results for this dataset can be found in Table 10.

4.1. Discussion of the results obtained by implementing the
proposed framework on the WDBC. Table 6 shows the best accuracy
achieved by the proposed iterative tuning of the tree ensemble-based model
using Bayesian hyperparameter tuning. The results displayed in Table 7
show the performance of several tree ensemble-based algorithms applied to
the WDBC dataset for different numbers of iterations. The results show that
the various tree ensemble-based algorithms achieve very high accuracy,
precision, recall, and Fl-score values, indicating that they are generally
effective in classifying the WDBC dataset. The Gentle-Boost algorithm
appears to be the most effective, achieving the highest performance in six
of the 12 cases, including the highest accuracy and F1-score values for 10,
30, 40, 60, 90, 110, and 100 iterations. AdaBoost also performed well,
achieving the highest performance for 20 and 80 iterations. LogitBoost
achieved the highest performance over 70 iterations, whereas RUSBoost
achieved the highest performance over 50 iterations. Finally, the Bagged
trees algorithm achieved the highest performance for 120 iterations. The
performance of the different algorithms varied depending on the number of
iterations. For example, AdaBoost achieved the highest performance for 20
and 80 iterations, but its performance was not as good for other numbers of
iterations. Similarly, RUSBoost achieved the highest performance for 50
iterations, but its performance dropped sharply for higher or lower numbers
of iterations. Overall, the results suggest that the Gentle-Boost algorithm is
robust and effective for classifying the WDBC dataset. However, the choice
of algorithm may depend on the specific application and the number of
iterations required.
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Table 6. The accuracy achieved in different numbers of iterations of the WDBC

dataset
No. Iteration | AdaBoost | GentleBoost | LogitBoost B:; gizd RUSBoost
10 Iteration - 100 - - -
20 Iteration 100 - - - -
30 Iteration - 99.1 - - -
40 Iteration - 99.1 - - _
50 Iteration - - - - 955
60 Iteration - 99.1 - - -
70 Iteration - - 99.1 - -
80 Iteration 99.1 - - - -
90 Iteration - 99.1 - - -
100 Iteration - 100 - - -
110 Iteration - 100 - - -
120 Iteration - - - 98.2 -

Table 7. Evaluation

of the performance of the proposed framework applied to the

WDBC dataset
No. Evaluation Metrix
Iteration Model Accuracy | Precision | Recall | F1-Score
10 Iteration GentleBoost 100 100 100 100
20 Iteration AdaBoost 100 100 100 100
30 Iteration GentleBoost 99.1 100 98.3 99.1
40 Iteration GentleBoost 99.1 100 98.3 99.1
50 Iteration RUSBoost 95.5 943 96.6 95.4
60 Iteration GentleBoost 99.1 100 98.3 99.1
70 Iteration LogitBoost 99.1 100 98.3 99.1
80 Iteration AdaBoost 99.1 100 98.3 99.1
90 Iteration GentleBoost 99.1 100 98.3 99.1
100 Iteration GentleBoost 100 100 100 100
110 Iteration | GentleBoost 100 100 100 100
120 Iteration | Bagged trees 98.2 100 96.6 98.3
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4.2. Discussion of the results obtained by implementing the
proposed framework on the SEER BC dataset. Table 8 shows the best
accuracy, whereas Table 9 displays the performance achieved by the
proposed methodology applied to the SEER BC dataset for different
numbers of iterations. The results show that the Gentle-Boost algorithm
achieves high accuracy, precision, recall, and Fl-score values, indicating
that it is effective for classifying the SEER BC dataset. It is interesting to
note that the performance of the Gentle-Boost algorithm is consistently
high across all different numbers of iterations. In particular, the algorithm
achieved the highest performance in all 12 cases, with an accuracy ranging
from 90.1% to 96%, a precision ranging from 96.4% to 98%, a recall
ranging from 93.8% to 94.2%, and an F1-score ranging from 95% to 96%.
Compared with the results obtained for the WDBC dataset, the performance
of the Gentle-Boost algorithm for the SEER BC dataset was generally
lower. This is likely due to the fact that the SEER BC dataset is more
complex and noisier than the WDBC dataset. In general, the results suggest
that the Gentle-Boost algorithm is effective for classifying the SEER BC
dataset, and that its performance is consistent across different numbers of
iterations.

Table 8. The accuracy achieved in different numbers of iterations of the SEER BC

dataset
No. Iteration | AdaBoost | GentleBoost | LogitBoost | Bagged trees | RUSBoost
10 Iteration - 90.1 - - -
20 Iteration 953 - - -
30 Iteration - 95.8 - - -
40 Iteration - 95.9 - - -
50 Iteration - 95.6 - -
60 Iteration - 95.7 - - -
70 Iteration - 95.7 - -
80 Iteration 95.8 - - -
90 Iteration - 95.8 - - -
100 Iteration - 96 - - -
110 Iteration - 96 - - -
120 Iteration - 95.6 - -
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Table 9. Evaluation of the performance of the proposed framework applied to the
SEER dataset

No. Iteration Model Evaluation Metrix
Accuracy | Precision | Recall | F1-Score
10 Iteration GentleBoost 90.1 96.4 93.8 95
20 Iteration GentleBoost 95.3 96.9 93.8 95.3
30 Iteration GentleBoost 95.8 97.4 94.2 95.8
40 Iteration GentleBoost 95.9 97.6 94.2 95.9
50 Iteration GentleBoost 95.6 97.4 93.8 95.6
60 Iteration GentleBoost 95.7 97.4 94 95.7
70 Iteration GentleBoost 95.7 97.4 94 95.7
80 Iteration GentleBoost 95.8 97.4 94.2 95.8
90 Iteration GentleBoost 95.8 97.4 94.2 95.8
100 Iteration GentleBoost 96 98 94 96
110 Iteration | GentleBoost 96 97.4 94.2 95.7
120 Iteration GentleBoost 95.6 973 94 95.6

4.3. Discussion of the results obtained by implementing the
proposed framework on the BCCD. Table 10 presents the accuracy
achieved in different numbers of iterations of the BCCD dataset. The
results in Table 11 show the performance of several tree ensemble-based
algorithms applied to the BCCD dataset for different numbers of iterations.
Among all the algorithms, the Bagged trees algorithm achieved the highest
performance in the case of 60 iterations, with an accuracy of 94.7%, a
precision of 90%, a recall of 100%, and an F1-score of 94.7%. The results
suggest that the Gentle-Boost algorithm is generally effective in classifying
the BCCD dataset, achieving the highest performance in six of the 12 cases.
However, the performance of the Gentle-Boost algorithm is not consistent
across different numbers of iterations. For example, the algorithm achieved
high performance in cases with 10, 20, 50, and 100 iterations, but its
performance decreased in cases with 70, 80, and 120 iterations. Other tree
ensemble-based algorithms, such as AdaBoost, LogitBoost, and RUSBoost,
also achieved high performance in some cases; however, their performance
was generally less consistent than that of Gentle-Boost. For example,
AdaBoost achieved the highest performance in the cases of 40 and 90
iterations, but its performance was not as good in other cases. Similarly,
LogitBoost and RUSBoost achieved the highest performance in the cases of
30 and 110 iterations, respectively; however, their performance dropped off
in other cases. Overall, the results suggest that the bag algorithm is
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effective for classifying the BCCD dataset. However, compared to the
results obtained for the SEER BC dataset and the WDBC dataset, the
performance of the tree ensemble-based algorithms for the BCCD dataset
was generally lower.

Table 10. The accuracy achieved in different numbers of iterations of the BCCD

dataset
No. Iteration | AdaBoost | GentleBoost | LogitBoost | Bag | RUSBoost
10 Iteration - 78.9 - - -
20 Iteration 78.9 - - -
30 Iteration - 84.2 - -
40 Iteration 89.5 - - -
50 Iteration - 68.4 - _
60 Iteration - - 94.7 -
70 Iteration - 84.2 - -
80 Iteration 84.2 - - -
90 Iteration 78.9 - - -
100 Iteration - 68.4 - - _
110 Iteration - - - 842
120 Iteration 84.2 - - -

Table 11. Evaluation of the performance of the proposed framework applied to

BCCD
No. Evaluation Metrix
Iteration Model Accuracy | Precision | Recall | F1-Score
10 Iteration GentleBoost 78.9 70 88.9 78.3
20 Iteration GentleBoost 78.9 70 88.9 78.3
30 Iteration LogitBoost 84.2 70 100 82.4
40 Iteration AdaBoost 89.5 90 88.9 89.4
50 Iteration GentleBoost 68.4 70 66.7 68.3
60 Iteration Bag 94.7 90 100 94.7
70 Iteration GentleBoost 84.2 90 77.8 83.5
80 Iteration GentleBoost 84.2 90 77.8 83.5
90 Iteration AdaBoost 78.9 70 88.9 78.3
100 Iteration | GentleBoost 68.4 70 66.7 68.3
110 Iteration RUSBoost 84.2 70 100 824
120 Iteration GentleBoost 84.2 90 77.8 83.5
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5. Comparison of the results. This section presents a comparative
analysis of the performance of multiple machine learning models for
predicting BC using publicly available datasets such as WDBC, BCCD, and
SEER BC. We evaluate the performance of both state-of-the-art models and
the proposed framework. The performance of each model is assessed based
on accuracy, precision, recall, and F1-score, and the best-performing model
for BC prediction is identified. Additionally, we compare the performance
of the proposed framework to the results reported in the literature for BC
prediction.

5.1. Comparative Analysis of the Performance of Various
Machine Learning Models in Predicting Breast Cancer. Table 12
showcases the results obtained from several machine learning models that
were applied to three distinct datasets: WDBC, SEER, and BCCD, with a
training and testing ratio of (80:20), (80:20), and (85:15), respectively. The
experimental setup for these datasets is identical to the one mentioned in
Section 3.1. The performance of the machine learning models was
evaluated using metrics such as accuracy, precision, recall, and F1-Score.
The metrics used to evaluate the performance of these models were
accuracy, precision, recall, and F1-Score.

The best-performing model across all datasets was the proposed
model, with perfect scores on the WDBC dataset and impressive results on
the SEER and BCCD datasets. The proposed model's F1-Score, a measure
that balances precision and recall, is particularly high, indicating strong
performance in both identifying positive cases and limiting false positives.

The Cubic SVM and the Narrow, Wide, and Bilayered Neural
Networks also achieved perfect scores on the WDBC dataset. However,
their performance on the SEER and BCCD datasets is not as strong as that
of the proposed model.

The Fine, Medium, and Coarse Trees, as well as the Linear SVM,
showed consistent performance across all datasets; however, their scores
were generally lower than those of the aforementioned models. The fine
trees performed slightly better than the Medium and Coarse Trees,
indicating that a more complex decision boundary might be beneficial for
these datasets.

The Gaussian SVMs and KNN models exhibited varied
performance. For instance, the Fine Gaussian SVM had high recall but
lower precision, indicating a higher rate of false positives. The Course
KNN, on the other hand, had high precision but low recall on the BCCD
dataset, indicating a higher rate of false negatives.

The Neural Networks showed strong performance, particularly the
Wide Neural Network and the Bilayered Neural Network. These models
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achieved perfect scores on the WDBC dataset, and performed well on the
SEER and BCCD datasets.

Table 12. The performance of various ML models

ML Model Name Dataset Accuracy | Precision | Recall | F1-Score
WDBC 94.6 92.5 96.6 94.5
Fine Tress SEER 91.9 94 89.8 91.9
BCCD 84.2 70 100 824
WDBC 94.6 92.5 96.6 94.5
Medium Tree SEER 88 90.3 85.8 88
BCCD 84.2 70 100 82.3
WDBC 92 86.8 96.6 914
Coarse Tree SEER 82.7 96.7 68.6 80.3
BCCD 87.9 70 88.9 78.3
WDBC 97.3 100 94.9 974
Linear SVM SEER 80.1 83.2 77 80
BCCD 84.2 100 66.7 80
WDBC 99.1 100 98.3 99.1
Quadratic SVM SEER 86 92.3 79.7 85.5
BCCD 78.9 80 77.8 78.9
WDBC 100 100 100 100
Cubic SVM SEER 89.2 92.5 85.9 89.1
BCCD 73.7 80 66.7 72.7
. . WDBC 92 83 100 90.7
F‘“esc;’;‘;‘/lss‘a“ SEER 90.9 86.3 954 90.6
BCCD 63.2 40 88.9 55.2
) ) WDBC 99.1 98 97.3 97.6
Med‘msnv(;zussm SEER 87.7 923 83 87.4
BCCD 84.2 80 88.9 84.2
) WDBC 97.3 100 94.9 974
C"arsg\?ﬁmlan SEER 79.7 827 76.6 79.5
BCCD 68.4 90 44 .4 59.5
WDBC 96.4 92.5 100 96.1
Fine KNN SEER 94 90.9 97.1 93.9
BCCD 78.9 80 77.8 78.9
WDBC 96.4 94.3 98.3 96.3
Medium KNN SEER 85.9 88 83.8 85.8
BCCD 78.9 90 66.7 76.6
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Continuation of Table 12

ML Model Name Dataset Accuracy | Precision | Recall | F1-Score

WDBC 95.5 96.2 94.9 95.5

Coarse KNN SEER 78.8 86.3 71.4 78.1

BCCD 57.9 100 11.1 19.9

WDBC 95.5 98.1 932 95.6

Cosine KNN SEER 84.3 87 81.6 84.2

BCCD 733 90 55.6 68.7

WDBC 97.3 96.2 98.3 97.2

Cubic KNN SEER 84.2 84.1 84.3 84.2

BCCD 84.2 90 77.8 83.5

WDBC 98.2 98.1 98.3 98.2

Weighted KNN SEER 91.9 89.1 94.7 91.8

BCCD 78.9 90 66.7 76.6

1 WDBC 100 100 100 100

Narrow Neura SEER 87.3 90.3 84.3 87.2
Network

BCCD 68.4 80 55.6 65.6

, WDBC 99.1 98.1 100 99.0

Medium Neural SEER 88.1 87.8 88.5 88.1
Network

BCCD 733 80 66.7 72.7

. WDBC 100 100 100 100

Wide Neral SEER 91.8 90.5 93.1 91.8
Network

BCCD 78.9 90 66.7 76.6

. WDBC 100 100 100 100

Bilayered Neural SEER 87.3 87 87.6 87.3
Network

BCCD 78.9 80 77.8 78.9

avered 1 WDBC 100 100 100 100

Trilayered Neura SEER 88.8 89.8 87.8 88.8
Network

BCCD 73.7 80 66.7 72.7

WDBC 100 100 100 100

The proposed SEER 95.9 97.6 94.2 95.9

BCCD 94.7 90 100 94.7

5.2. Comparison with previous studies. According to Table 13,
hyperparameter tuning plays a crucial role in improving the performance of
ML models. The proposed framework utilizes the power of Bayesian
optimization and Tree ensemble-based models in an iterative process to
achieve the best possible results. Table 13 indicates that the proposed
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framework outperforms the results reported in the literature for the three
commonly used datasets.

Table 13. Comparison with previous studies

Ref. Year | Dataset Methods/Techniques Accuracy
[10] 2019 | WDBC WQPSO with smooth SVM 98.42
2019 SEER Gradient Boosting with Genetic
[15] BC Algorithm 75.03
[13] | 2020 | wppc | Optimized FSTBSVM with 94.36
Jaya optimization techniques
SEER Improved Random Forest -
[16] 2020 BC based rule extraction 80.5
[19] 2020 | BCep GA and Gradl;nt Boosting 79
Classifier
SVM, LR, KNN, DT, Naive SVM and
[14] 2021 | WDBC Bayes, and RF RF =96.5
[9] 2022 | WDBC Optimized SVM w1th Bgyesan 993
hyperparameter optimization
[18] 2022 Sg]éR RF 94.6
[9] 2022 | DCCD Optimized SVM w1th Baygman 76.9
hyperparameter optimization
The WDBC Tree ensemble-based models 100
roposed 2023 SEER with iterative tuning of 95.9
prop BCCD Bayesian optimization 94.7

6. Conclusion. This paper presents a method for the iterative tuning
of tree-ensemble-based model parameters using Bayesian hyperparameter
tuning for BC prediction. The proposed method achieved perfect scores on
the WDBC dataset and impressive results on the SEER and BCCD datasets.
The results show that the proposed method can significantly improve the
performance of tree ensemble-based models for BC prediction. By utilizing
Bayesian hyperparameter tuning, we were able to identify the optimal
hyperparameter values for the models, resulting in a higher accuracy. The
optimized tree ensemble-based models' high F1-Score indicates their
effectiveness in identifying positive cases and limiting false positives,
making them a robust and reliable option for generalization. Compared with
various state-of-the-art models, the proposed method is more efficient. The
outcomes of this study have important implications for medical
professionals, as the early detection of BC can significantly increase the
chances of survival. By utilizing ML models, such as tree ensemble-based
models, and optimizing their hyperparameters using Bayesian
hyperparameter tuning, medical professionals can improve their ability to
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detect BC in its early stages, leading to better patient outcomes. Overall,
this study provides a valuable contribution to the field of BC prediction
using ML, and its proposed method can be extended to other domains
where tree ensemble-based models are used.
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A. AJICABPU, M. AJIbI'ABPU
HUTEPATUBHASI HACTPOMKA ITAPAMETPOB MOJIEJIE HA
OCHOBE JPEBOBHM/IHBIX AHCAMBJIEWM C
HCIOJb30BAHUEM BAMECOBCKOM ONITUMMU3ALIMA 1151
MPOTHO3UPOBAHMUSI PAKA MOJIOYHOM KEJIE3bI

Ancabpu A., Anveabpu M. UTepaTHBHAs HACTPOiika HmapaMeTpoB Mojejeil Ha OCHOBe
JIPeBOBUAHBIX aHcaMOuell ¢ HCHO/b30BaHHeM 0aliecOBCKO onNTUMM3AUMU LIS
NPOTrHO3UPOBAHMSI PAKa MOJIOYHOIA JKe1e3bl.

AHHoTanus. IlpencraBieH MeToJ WTEPATUBHOW HACTPOMKM IHapaMeTpoB Mojeied Ha
OCHOBE aHCaMOJIel IepPeBLEB C MCIIOIb30BAHMEM HACTPOIKH 0aifleCOBCKHX THIIEPIapaMeTpoB
JUIsL TIPOTHO3MPOBAaHMS COCTOSHMII Ha NpHMepe paka MOJIOYHOW xenesbl. IIpemaraemslit
METOJl HCIIONB3YeT TPU pPa3MYHBIX HAbOpa JaHHBIX, B TOM 4HCIe HA0Op JAaHHBIX II0
JIIarHOCTHYECKOMY DaKy Mono4HOH xene3sl Buckoncuna (WDBC), nabGop maHHEIX IO
HaJ30py, SIHUAEMUOIOTUH U KOHe4HbIM pesyibratam (SEER) mo paky MonovHOIt xenessl u
Habop JaHHBIX MO paKy Moio4HOM skeine3sl B Koumbpe (BCCD), a taxke peanusyer Habop
JIAaHHBIX Ha OCHOBE JIPEBOBUHBIX aHcamOuei. Monenu, B uactHoctu AdaBoost, Gentle-Boost,
LogitBoost, Bag 1 RUSBoost, st mporHo3upoBaHus paka MOJIOYHOIT xene3sl. baiiecoBckast
ONTHMHU3ALMs HCIOb30BaNach sl UTEPATHBHOW HACTPOMKU T'HMIEpHIapaMeTpoB MoJEie, a
[IPOM3BOUTENBHOCTh MOJIENCil OIL[CHHBANACh C MCIIOIb30BAHMEM HECKOJBKHX MOKa3aTeneH,
BKJII0YAsi TOYHOCTb, PELM3NOHHOCTD, TIOMHOTY M oleHKy fl. Hamm pe3ynbTaTel HOKa3kIBAIOT,
YTO NPEIOKEHHBII METO]] 3HAUUTEILHO MOBBIIACT IIPOM3BOANUTEILHOCTE MOZICNICH HAa OCHOBE
aHcamOJIeil JepeBbEB, YTO MPUBOAUT K GoJiee BEICOKOH TOYHOCTH, MPELM3HOHHOCTH, ITOJTHOTE
u oueske fl. ITo cpaBHEHHIO C APYTMMH COBPEMEHHBIMH MOJCISIMH IIpEJIaraeMblii METOX
oomee sddextnBen. On goctur 100% wpeanbHBIX pPE3yNbTAaTOB MO  TOYHOCTH,
MPELU3UOHHOCTH, MonHOTe U oneHke F1 B Habope nanupix WDBC. B Habope nanubix SEER
BC tounocth MeTOna cocraBuia 95,9%, npenusnoHHocTs 97,6%, momHota 94,2% u oreHka
F1 95,9%. Jnsa wabopa manueix BCCD merox moctur TouHocTH 94,7%, NPEM3MOHHOCTH
90%, nonHoTh! 100% 1 onienku F1 94,7%. Pe3ynbTaThl 3TOr0 UCCIEIOBAHUS UMEIOT BaXKHOE
3HAYCHHUE Ul MCIAMLMHCKUX PAaOOTHHUKOB, IOCKOJIbKY PaHHEE BBIABICHHE paKa MOJIOYHOI
JKeJIe3bl MOXKET 3HAYHUTENIHHO ITOBBICHTH IAHCHl HA BBDKHBaHUE. B menoM, 310 HccienoBaHne
BHOCHT [CHHBIH BKJaJ B 00JacTh HPOTHO3HPOBAHHS paka MOJOYHOH JKENe3sl ¢
HCHOJIb30BAHUEM MAIIMHHOTO 00y4CHUS.

KnioueBble cjoBa: UTepaTHBHAs HACTPOiKa, MOJENM Ha OCHOBE JAPEBOBHJIHBIX
aHcaMOJieii, GaliecOBCKash ONTUMHU3ALNS, PAK MOJIOYHOM JKeNe3bl, MAIIMHHOE 00YYCHHE.
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