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Abstract. The importance of an efficient network resource allocation strategy has grown
significantly with the rapid advancement of cellular network technology and the widespread
use of mobile devices. Efficient resource allocation is crucial for enhancing user services and
optimizing network performance. The primary objective is to optimize the power distribution
method to maximize the total aggregate rate for all customers within the network. In recent years,
graph-based deep learning approaches have shown great promise in addressing the challenge of
network resource allocation. Graph neural networks (GNNs) have particularly excelled in handling
graph-structured data, benefiting from the inherent topological characteristics of mobile networks.
However, many of these methodologies tend to focus predominantly on node characteristics during
the learning phase, occasionally overlooking or oversimplifying the importance of edge attributes,
which are equally vital as nodes in network modeling. To tackle this limitation, we introduce a
novel framework known as the Heterogeneous Edge Feature Enhanced Graph Attention Network
(HEGAT). This framework establishes a direct connection between the evolving network topology
and the optimal power distribution strategy throughout the learning process. Our proposed HEGAT
approach exhibits improved performance and demonstrates significant generalization capabilities,
as evidenced by extensive simulation results.
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1. Introduction. In recent years, significant advancements have been
witnessed in the technology employed for data transmission inside wireless
networks. The contemporary landscape exhibits a smooth amalgamation of
diverse mobile terminals within these networks, including cell phones and
wearable gadgets. Consequently, this integration has resulted in a substantial
surge in the number of simultaneous users. As a result, the cellular network’s
topography has witnessed a rise in the concentration of User Equipments (UEs)
in highly populated areas, accompanied by a simultaneous reduction in cell size.
The cellular environment is now experiencing a significant increase in wireless
transmissions due to this phenomenon. The interference problem has become
notably apparent as a direct result, manifesting inside individual cells and across
cell boundaries. Due to the intricate nature of the circumstances, implementing
strategies for interference management and rational power control has increased
significance. These strategies mitigate any interference among users and
enhance the network’s overall efficiency. The gravity of this subject has
engendered significant scholarly attention, leading to robust research endeavors
to discover more efficacious solutions.
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Considerable research endeavors have been devoted to formulating
power allocation algorithms for cellular networks, whereas conventional
methodologies frequently depend on numerical modeling methodologies.
Decentralized and centralized optimization approaches have been prominent
in power distribution in cellular networks, primarily due to the intrinsic
complexity of this task, which is categorized as an NP-hard problem [1].
Using numerical simulation techniques requires a sequence of repetitive
calculations using both implicit and explicit approaches. Noteworthy examples
include genetic algorithms (GA), weighted minimum mean square error
(WMMSE) [2], fractional programming (FP) [3], branch-and-bound techniques
[4], and heuristic algorithms [5]. However, in scenarios involving large-scale
networks, these iterative methods often come with extended computational time,
rendering them unsuitable for real-time resource allocation. This limitation
stems from the rapid fluctuations in the wireless channel’s state, which can
occur within a brief time span of milliseconds.

Several researchers have proposed the application of deep learning
(DL) techniques as an innovative approach to power distribution, including
supervised learning methods [6-8]. In contrast to traditional iterative methods,
Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs)
have emerged as prominent architectural choices for capturing the underlying
mapping functions in power control [9]. Once adequately trained, artificial
neural networks can efficiently deduce solutions for various scenarios through
feed-forward computations. However, it’s crucial to recognize that the use of
data-driven learning approaches necessitates the development of a benchmark
algorithm for training, which can impose constraints on the resulting model’s
effectiveness. Additionally, while CNN- and MLP-based approaches offer rapid
inference capabilities, they may not fully leverage the network’s topological
characteristics, which could require substantial training data and potentially
limit their efficacy.

There have been proposals for GNN-based methodologies aimed at
tackling the difficulties above. GNN can collect spatial information that
is concealed inside the network topology. Moreover, they can extend this
knowledge to other topologies, particularly in dynamic scenarios. The existing
body of research demonstrates the efficacy of GNN-based approaches in
addressing diverse challenges across various network contexts. The graph
convolutional network (GCN) architecture is used to get close to the UWMMSE
solution for the power allocation problem in the interference channel [10]. The
power allocation technique, developed using GCN, aims to determine the
best way to allocate resources in Federated Learning (FL) activities that take
place in wireless networks with interference restrictions [11]. Interference
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GCN (IGCNet) is introduced as a novel approach for addressing the power
control problem in K-user interference channels [12]. In contrast to the
conventional GCN, the model learning process is contingent upon incorporating
the structural information neighborhood matrix encompassing the entirety of
the graph. The Graph Attention Network (GAT) is a neural network model
incorporating the widely used attention mechanism to calculate the weights
between nodes in a graph [13]. This approach involves utilizing the feature
representation of nodes rather than depending just on the structural information
of the network, hence facilitating inductive learning for weight computation
between nodes.

While previous studies have successfully designed homogeneous or
heterogeneous GNNSs, these designs have primarily focused on the node
update mechanism, often overlooking the valuable information contained
within edge characteristics. In conventional research, each transceiver pair
in cellular networks has typically been represented as an individual node,
with the channel state information of the direct communication connection
serving as the corresponding node characteristic. The connections that disrupt
communication between various pairs of transceivers are depicted as edges
in the model, with the channel state information associated with each edge
considered as the relevant edge feature [1]. To address the limitations outlined
above, this study introduces the HEGAT framework as a potential solution for
multiplexing the downlink of cellular users in Long-Term Evolution (LTE)
systems. The primary contributions of this paper are as follows:

— We provide a comprehensive methodology for addressing power
control challenges in cellular networks using heterogeneous graph topologies.
In this theoretical framework, the communication links originating from the
base station and connecting to user equipment are represented as vertices.
In contrast, the interference links between different pairs of transceivers are
denoted as edges. It’s important to note that every node within the cellular
network exhibits isomorphism, ensuring fair treatment. However, edges are
categorized into two distinct types: intra-cell and inter-cell interference.

— We introduce an innovative method to enhance feature properties. It’s
crucial to highlight that the optimization of unknown variables primarily occurs
within nodes. Consequently, when updating node features, we intentionally
give due consideration to the attributes and classifications of the neighboring
edges. This approach allows us to extract information from these two sets of
adjacent edges using distinct methodologies. Building upon the edge feature
enhancement technique, we propose the introduction of a neural network
architecture named HEGAT. This architectural design exhibits a high degree
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of effectiveness in mapping graph characteristics to node variables, thereby
achieving the power allocation objective.

— The simulation results illustrate the effectiveness of the HEGAT
approach in addressing power allocation challenges within cellular networks,
particularly in the context of power distribution in interference channels.
Comparative trials further substantiate that the proposed HEGAT surpasses
existing state-of-the-art methods in terms of achieving higher sum rates.
Moreover, HEGAT consistently delivers strong performance across a wide
range of scenarios, encompassing varying numbers of BSs and UEs, diverse
network characteristics, and different transmit power budgets.

The remainder of the paper is organized as follows. Section 2 introduces
the related work. Section 3 presents the mathematical formulation of the power
allocation problem in wireless cellular networks. Section 4 offers an exhaustive
elucidation of the graph representation of the network, alongside a detailed
exposition of our novel HEGAT algorithm. Section 5 presents the analytical
simulation outcomes. Section 6 presents the discussion and conclusions.

2. Related Works

2.1. Edge Enhanced Graph. GNNs have demonstrated strong learning
capabilities in tackling challenges associated with graph structures. The need
to effectively handle edge information is prevalent in real-world scenarios.
Message-passing neural networks (MPNNs) encompass several distinct stages,
including message-passing and readout phases. Integral to this paradigm
is the incorporation of node attributes. In parallel, the utilization of edge
attributes for network characterization is also prevalent, and a technique has
been proposed for updating these attributes to predict node features. While
MPNNS s incorporate edge information during the message-passing phase, their
message-passing mechanism lacks the ability to capture knowledge about
the topological relationships between nodes and edges. Relational Graph
Convolution Networks (RGCN) employ forward-passing rules to enhance the
weight matrix with additional edge-related weights [14]. However, empirical
studies have shown that computing this simple aggregation doesn’t significantly
improve performance. Instead, the Edge Feature Graph Neural Network
(EGNN) employs an aggregation function to combine node information while
training separate attention weights for each feature dimension [15]. But this
method may result in the loss of peripheral information. The Convolution
with Edge-Node Switching Graph Neural Network (CensNet) utilizes a line
graph structure to create an auxiliary graph [16]. This approach involves
training the model on both the original graph and the line graph, allowing for
the updating of node and edge embeddings. However, using an approximate
spectrogram convolution during layer-by-layer propagation renders CensNet
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inept in managing extensive directed graphs. Consequently, it is unsuited for
wireless networks that are represented as directed graphs

2.2. Heterogenous Networks. Although homogeneous graphs have
shown to be highly effective in radio network power control problems
involving only one kind of node or edge, it is important to acknowledge
that most scenarios are characterized by a diverse range of node and edge
types [17]. Heterogeneous graphs have been found to be more advantageous
than homogeneous graphs in addressing intricate radio resource management
challenges. The Heterogeneous Interference Graph Neural Network (HIGNN)
is specifically developed to effectively address diverse network scenarios
characterized by heterogeneity [18]. The nodes in the communication
network of Device-to-Device (D2D) connections are categorized based on
the number of antennas present on the transmitters inside their respective
links. The allocation of power is employed in D2D downlink systems. The
introduction of the Heterogeneous Ultra-Dense Network (HUDN) aims to
address the challenge of resource allocation in communication situations that
involve a combination of D2D networks and cellular networks [19]. The
communication linkages are considered as nodes, which are classified based
on the sorts of devices they establish connections with. The introduction of
Heterogeneous Graph Neural Network (HetGNN) aims to explore the Power
Allocation strategy in Multi-Cell-Multi-User Systems [20]. The nodes in the
network diagram represent the entities BS and UE, while the edges reflect the
communication links between them.

One common characteristic seen in the aforementioned publications is
their primary emphasis on the weights of edges, while neglecting the differences
that arise from different types of edges. However, the focus of these studies
is on the incorporation of different node types inside the framework of GNN.
In contrast, the present study adopts a divergent methodology. The cellular
network is represented as a directed graph, with a distinction made between
two types of interfering links: intra-cell and inter-cell. In order to examine the
various sorts of edges, we employ the HEGAT architecture. This architectural
design is very suitable for effectively capturing and acquiring the intrinsic
characteristics of edges, comprising both their properties and classifications.

2.3. Material and Methods. In this subsection we introduce the basic
concepts related to resource allocation. MISO (Multiple-Input Single-Output):
The MISO cellular network is a wireless communication technology that is
employed in cellular networks and several other wireless applications. In
a MISO system, the base station or access point is equipped with multiple
transmit antennas (inputs), while the user’s device, commonly referred to as the
UE, is equipped with a single receive antenna (output). One notable attribute
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of a MISO system is its capability to enable the base station to concurrently
broadcast numerous data streams to a single user equipment, effectively using
the spatial diversity offered by the multiple transmit antennas. The presence of
spatial diversity has the potential to enhance the dependability and efficiency
of wireless communication links, particularly in settings characterized by
interference or signal fading. The utilization of MISO technology is prevalent
in diverse wireless communication protocols, such as 4G LTE (Long-Term
Evolution) and 5G, with the objective of augmenting the capacity and quality
of wireless connections.

The Graph Neural Network (GNN): It is an innovative neural network
structure capable of inferring the interdependencies between nodes in a
graph utilizing propagating messages among the nodes. Hence, GNN have
demonstrated their efficacy in tackling the learning task by employing a
graphical structure, whereby each vertex incorporates feature information
from neighboring vertices to derive a hidden state embedding based on graph
perception. In practice, the hidden state embedding of each node is repeatedly
updated by aggregating state information from its neighboring nodes. This
study employs GNN to model the subnetwork system as a dynamic graph. Next,
a two-stage attention method is employed to streamline the graph and identify
the probable interference link across subnetworks across different dimensions.

3. System Model And Graph Representation

3.1. System Model. We consider a classical scenario of downlink
multicell communication, a massive MISO network with M-antennas BSs
and single-antenna UEs. The PA problem in the cellular network is with the
setting of interfering multiple-access channels (IMAC) [21]. All BSs within the
network coverage area simultaneously serve all UEs. However, since different
cells use the same frequency, the UEs are still subject to inter-cell and intra-cell
interference. Index the BSs as .4#" = {1,...,N} and UEs as ¥ = {1,...,K}.
Denote D, as the set of k-th UE’s neighbour UEs in the n-th cell, denote C,
as the set of n-th cell’s neighbour cells. Assume thatn € A, k € #, k' € Dy,
n’ € C,, then the received signal of the k-th UE from n-th BS in n-th cell can
be formulated by:

H H
Ynk =8&nnkWnk/ PrkSnk + Z 8n.nkWnk' \/ Pnk Suk/
N—— k/#k
desired signal

intra—cell interference

+ Y X 8w P Swne + 2k (1)

n'#n kK

inter—cell interference
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where g, ,x denote the the channel response from n-th BS to k-th UE in n-
th cell, p, denotes the corresponding transmit power. sy ~ % (0,1) is
the transmit signal. z ~ .4 (0,6?) is the additive white Gaussian noise
(AWGN). The coordinated beamforming (CB) vector from n-th BS to k-th
UE is denoted as w,y. The literature on Coordinated Multi-Point (CoMP) CB
has explored multiple schemes. In this study, we have opted to utilize the
zero-forcing beamforming scheme [22] to simplify the problem. Then the
signal-to-interference-plus-noise ratio (SINR) of k-th UE can be calculated as:

8nk,nk Pnk
Zk’;&k 8nk,nk! Pnk’ + Zn/fn Zk Enk.n'k! P’k + 62 ’

Yk = 2

where g ik = denote independent channel gain of the desired

H
gn’nkwnk

2
denote channel gain of intra-cell interference from

: _ | H
Slgnal- 8nk,nk! = gmnkwnk’

2
neighbour UEs in n-th cell. g v = ‘ gﬁﬁkwn/kr‘ denote channel gain of

inter-cell interference from neighbour UEs in n-th cell’s adjacent cells.
The downlink rate of communication link nk can be expressed in terms
of normalized bandwidth as:

Cu = 10g2 (1 + Ynk) . 3

The primary aim of this study is to identify the ideal power level that
optimizes the overall network sum rate, while adhering to the limitation of
a maximum power limit for each transmitter. The provided problem may be
expressed as:

Pnk> Wnk

N K
max 3 Y loss (147
K <

st.0<p Pmax, Vn € N ke X . “)

The objective function presents a challenging obstacle in the form of
a nonconvex nonlinear optimization problem, which is further complicated
by the presence of constraints. As a result, finding the global optimal
solution becomes a complex endeavor [23]. Heuristic algorithms have the
capability to approximate solutions that are globally optimum, but at the
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cost of substantial computing resources. In order to cater to the demand
for real-time applications that require low-complexity solutions, we suggest
using deep learning techniques to parameterize these solutions. Although
attaining theoretical optimality for learnt solutions may pose challenges, actual
evidence continually shows that deep learning methods often produce extremely
satisfying performance results.

3.2. Graph Representation. We model the multicell cellular network
(Figure 1) as the fully connected weighted directed graph (Figure 2) which can
be expressed as G = (V,E). Each BS-to-UE communication link is considered
as a node, denoting V as a set of nodes, V = {vnk} ,nE N ke . Incontrast,
each interfering link is considered as an edge, denoting E as a set of edges,
E = {ewm},n,m € N k1 €A nk+ml The attributes such as distance,
channel information, and weight associated with the communication link
are node characteristics. The assigned power is used as the predicted node
label. Attributes such as distance and channel information associated with the
interfering links are considered edge features. The notations ¢ — C% and
v — CY represent the mapping of nodes and edges to their respective features,
where dy and df represent the dimension of feature space for node and edge,
respectively.

D UE.3
P

VE.2 ] 7/ BS.2
CELL. 2
()
((é)) — %
BS.1 UE. 1 0
CELL. 1 / UE. 4
((;)))
____________ + Inter-cell interference. BS.3
CELL. 3

Intra-cell interference.

——— Data transmission.

Fig. 1. Example of cellular
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To train the GAT model, the graph in Figure 2 is used as input, and the
iterations of the neural network are used to learn the vector representation of
each network.

(O  Communication link
<«— Interference link

Fig. 2. Graph representation

4. Heterogenous Edge feature Enhanced Graph Attention
Network

4.1. Feature Concate. Prior to integrating neighbor information into
the heterogeneous graph, it is crucial to recognize that the connections between
neighbors and each node, whether through nodes or edges, may possess distinct
functionalities and varying degrees of importance in the task of generating
node embeddings for resource allocation [24].

In the context of this work, we propose the utilization of node feature
attention in conjunction with the augmentation of edge features. The proposed
strategic combination is formulated as an effective a pproach to carefully
evaluate the importance of both node-based and edge-based neighbors. By
integrating the attention mechanism, it becomes possible to generate node
and edge embeddings, effectively c apturing t he r epresentations o f these
significant neighboring entities. This methodology enables us to reveal their
unique functions and contributions inside the complex framework of resource
allocation procedures [25].

The presence of diverse edges within a network introduces a spectrum
of variations in their characteristics. As a result, different types of edges may
manifest distinctive properties. These features encompass both attributes and
types, where attributes are expressed by continuous and intricate variables,
while types are denoted as discrete variables. The attribute of the edge

enk,m denoted by the vector e%f;nl, and the type of the edge e, ,; is denoted

by the vector "¢ . The features of the edge e, can be represented as
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type

attr enk‘ml] , which is obtained by concatenating its transformed

Cnk,ml = {enk,ml
node attributes and type information.

4.2. Edge Feature Enhanced Node Attention Layer.In the
heterogeneous graph, the definition of node-based neighbors N, refers
to the nodes directly connecting to a particular node v,;. It is essential to
acknowledge that the neighbors of a certain node encompass the node itself.
Similarly, the edge-based neighbors E,; ,,,; refers to the set of edge e, that
directly connect to a certain node v, [26].

As shown in Figure 3, circles represent nodes, and squares represent
edges. Take vy for example, the node-based neighbors of node vy are vy, vy2,
v23, and v34. Note that the node-based neighbors of node vy contain itself;
The edge-based neighbors of node vi1 are ej1 12, €11,23, and eq1 34.

Input feature Output feature

zzzzzz

o e D =

More
Attention
“““ Layer

=000 042 M se]

L th attention layer.

Node-based neighbors Edge-based neighbors

concatenate

Fig. 3. Architecture of HEGAT. The model consists of multiple HEGAT layers. Each
iteration incorporates the features of the first-order neighbors (nodes and edges) to
generate new node features

It is necessary to map these vectors to a high-dimensional space using
the GAT layer to enhance the network topology information contained in the
original low-dimensional features ny = [Wuk, Puk, nk,nk| Obtained from the
network. The input to the GAT network contains a set of node features denoted
asn = (njq,., N, ..,0NK ) , Dy € R%, where each n,; is the feature of existing
BS-to-UE pair vy.
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Theoretically, GAT can use all nodes other than the central node to
calculate the similarity with that central node. The dimensions of the node
and edge feature spaces may vary. To enhance the expression of the node
features, the layer of parameter-sharing neural networks is added to linearly
transform the features (whether for nodes or edges), and the network is denoted
by Attyoge and Att,qq,. Define W, € RV xdy and W, € R *4E as the learnable
weight matrix transforming input features linearly into high-level features, the
dimension for the feature vector of the node is made to change from dy to dj,,
the dimension for the feature vector of the edge is made to change from df to
df. The self-attention mechanism is used to calculate the similarity between
the central node and the neighbor nodes, where the similarity is calculated
by a layer of the neural network the parameters are denoted by B7, and the
two transformed feature vectors are fed into this network after stitching. The
importance coeflicient of node v,,;; to node v, is expressed as:

Cnk,ml = Attyode (Wnnnk7 Wnnml) . (5)
The importance coeflicient of edge ey, to node v, is expressed as:
Crk,(nk,ml) = Attegge (Wnnnka Weeml) . (6)

In this context, we apply the edge feature enhanced attention mechanism
to calculate the attention weights associated with the neighbors of each one-
degree node and edge. This calculation considers not only the features of the
neighboring nodes, but also incorporates the features of the adjacent edges.
Throughout this process, the features are jointly combined, with their respective
parameters governed by the attention vector B7 and the activation function
LeakyReLU . The resulting weight which is normalized using the softmax
function for node v,,; is expressed as:

exp (o (BF Wanu [[Wanuu))
Zme!/j exp (0 (B [Wanux [[Wanys]))

» (1)

Olpkemi = SO ftmaxy, (an,ml> =

where B € R4 denotes the attention vector for node-based neighbors. The
attention mechanism is implemented as a single-layer feedforward neural
network, which is characterized by the parameters W and . This neural
network utilizes the LeakyReLU nonlinearity with a negative slope of 0.2.
The variable o, refers to the attention score that is used to quantify the
significance of a neighboring node v,,; concerning node v,.
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Similarly, the resulting weights which are normalized using the softmax
function foredge e, s is expressed as:

ank,(nk,ml) = Softmax(nk,ml) (an,(nk,ml))

_ exp (0 (B [Wanuk [|Weenim |)) )
Z(rs,tu)eﬁ,- exp (o (al [Wan[[Weeys.u])) )

where B € R4 +4: denotes the attention vector for edge-based neighbors.
The variable 04 (k1) refers to the attention score that used to quantify the
significance of a neighboring edge e, ,,; concerning node v,.

Hence, the node-based neighbors’ embedding of node v, is computed
by aggregating the features of its first-order neighbors and weighted by the
attention score:

Ny [Nk = © (Zmle%k ank,mannml) ) ©)

where o is the activation function, nﬁ,;“ is the new feature of each vertex v,

aggregated with neighborhood information.
Similarly, the edge-based neighbors’ embedding of node v, is expressed
as:

Dk [é’@ﬂk] =0 (Z(nk,ml)eéi,k ank,(nk.,nll)WCe(nk,ml)) : (10)

To make the learning process of the self-attention mechanism more
robust, we use a multi-headed attention mechanism, which can be viewed
as multiple single-headed attentions executed independently in parallel and
averaged as the output. Then n5" [#] and n’!! [£,] can be calculated as:

12
M [l = 0 | 5 2 Yore g Fa Wit | (1)
g=1
1 & g g
Ny [Enk] = © Q;Z(nk,mz)egnk ke (ke ymt) We S(akl) | » (12)
-

where the variable Q denotes the number of attention heads, while W4 signifies
the weight matrix shared by the g th attention head. The aggregation function
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can be classified as either tandem or average. Specifically, when conducting
multiple tasks at the final stage, the method of averaging is employed.

At last, by integrating the edge-based neighbors’ embedding n, [€]
and node-based neighbors’ embedding n, [.4;], the embedding of node v,
in the (L + 1)-th layer is expressed as:

nk = concar (nf [l |Inf (6] ) , (13)

where concat denotes the operation of concatenation.

Upon the integration of the previously discussed components, the
resulting node representation becomes accessible, thus facilitating its
application in a range of subsequent tasks. HEGAT is trained through a
supervised learning methodology that considers task-specific attributes of
nodes. The model’s weights are effectively refined using back-propagation and
gradient descent techniques. The objective of this process is to minimize cross-
entropy, ultimately yielding meaningful node embeddings for heterogeneous
networks.

4.3. Training Samples Generation. The current research study makes
a suggestion for a semi-supervised training strategy that may be used for the
HEGAT-based architecture. This method requires a significant quantity of
labeled training data. According to a study that compared many stochastic
search-based algorithms to discover the estimated optimum power allocation,
the Particle Swarm Optimization (PSO) approach outperformed all others in
a range of application circumstances. This was determined by comparing
the algorithms® performance. A collection of candidate solutions for the
optimization issue that is being considered in this work is first generated
at random. These candidate solutions are then moved throughout the search
space according to rules that have been defined, and the search is guided by
optimal positions that are already known to exist. The goal of this process
is to identify the best option for allocating resources. When new prospective
solutions are found, their locations are mapped out and used to influence the
movement of those that are close by. After a number of iterations, the PSO
approach produces outcomes that are very close to being optimum. These
replies may be used as labels for the expected graph locations, and we record
the properties of the sample graph, including information about the graph’s
structure and channels, at the positions corresponding to those labels.

The graph neural network we use learns resource allocation strategies
through semi-supervised learning. We run the simulated environment and
record a graph representation of the network realization, including the graph
topology and channel states. The graph representation of each time point
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is regarded as an independent sample, regardless of the dependence of the
user’s state on the front and back time, and the users in the network are
randomly distributed. Among them, the power allocation and beamforming
vector as optimization variables are used as features of each vertex and are
also variables predicted by the graph neural network. The loss function L is
the negative expectation of utility function over different channel realizations:
£ (0) = —Ey [LimBlog(1+ )], which updates the model parameters 6
of HEGAT by backpropagation of the neural network. This is an optimization
process of a static graph. The graph neural network learns the mapping
relationship between the topology of the graph and the channel state to the
optimal resource allocation strategy. Essentially graph neural networks are
data-driven optimization methods, and whether or not the sample contains as
comprehensive a network realization as possible determines the upper bound
of the model.

5. Ilustrative Results

5.1. Simulation Environment Setting. Through the use of numerical
simulations, this part evaluates the effectiveness of the proposed GAT
framework for solving the challenge of maximizing the total rate. We evaluate
the suggested methodology in comparison to a variety of standards derived
from past research. The computer that was utilized to do the simulation studies
for this research has a Central Processing Unit (CPU) with a speed of 3.19 GHz
and 32 Gigabytes of Random Access Memory (RAM). In the recommended
method, Python 3.6 is utilized as the platform for the simulation, while Pytorch
is the tool of choice for the development of the neural network. Table 1
presents both the cellular network and the neural network’s corresponding
parameters for your perusal.

Table 1. Simulation parameters

Number of BS 9
Average users per cell 4

The Doppler frequency 10 HZ
Minimum allocated power 5 dBm
Maximum allocated power 38 dBm
Inner space distance 0.01 km
Half cell-to-cell distance 1 km
Noise power spectral density | — 114 dBm/Hz
Learning rate 0.0001
Number of layers 3
Optimizer ADAM
Batch size 32
Epoch count 300

272  Wudopmaruka u asromatuszanus. 2024. Tom 23 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru



DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

5.2. Performance Comparison. In order to evaluate the efficacy of the
proposed HEGAT, a thorough comparison study is conducted, encompassing
many cutting-edge baseline approaches. The present analysis incorporates
many strategies, such as network embedding approaches and techniques based
on graph neural networks.

— GAT: GAT incorporates an attention mechanism that operates on
homogeneous graphs. In this study, we conduct an evaluation of several meta-
paths and provide the findings on the optimal performance achieved.

— GCN: The GCN architecture proposed in [11] captures the deep
features of topology in the network. The topology and channel information
are concatenated as input features, and then the model is trained offline in a
semi-supervised manner.

— Multi-Layer Perception (MLP): A fully connected neural network
is designed to build a mapping from channel information to power allocation
through the data of the Euclidean structure. This approach has been studied
in [27].

The performance evaluation of HEGAT is conducted as the network
scale expands, in comparison to benchmarks. As illustrated in Figure 4, the
average sum rate per UE achieved by HEGAT exhibits notable enhancements
0f 9.14%, 9.68%, and 10.2% respectively, as opposed to the leading benchmark
GAT, with the increase in the number of cell pairs from 4 to 16.

Average sum rate per UE (bps/Hz)

9 16
Number of UEs

Fig. 4. Average sum rate per UE versus cellular network scale
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Notably, HEGAT demonstrates robust generalization capabilities while
simultaneously achieving optimal performance. The effectiveness of the
proposed edge feature enhanced mechanism can be attributed to its ability
to proficiently extract features from the channel state of the edge attributes,
resulting in a further augmentation of the effectiveness of the initial node
update approach.

The performance of each algorithm for various cellular network
densities is shown in Figure 5. The simulation takes into consideration the
inherent fluctuations in user density, reflecting the real-world intricacies of
time and spatial factors. The user density is subject to variations contingent
upon the number of UEs present within a specific cell, and this value ranges
from 1 to 6. As the user density escalates, a concomitant decline in the
average total rate becomes evident. This consistent trend is observed across
all algorithms, implying a shared behavior among them. To assess the
performance of the proposed technique in high-density networks, we change
the number of UEs in the cell while maintaining the other parameters constant
(N=16). The average sum rate per UE drops when network density rises as a
result of the rise in interference. It is important to note that the GAT algorithm
continues to perform better than other algorithms at boosting the overall
network rate.

35 —e— MLP  —&— GAT
' GCN  —— HEGAT

Average sum rate per UE (bps/Hz)

Number of UE per cell

Fig. 5. Average sum rate per UE versus network density
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Figure 6 illustrates the performance of the algorithms with respect to
different cellular network radii. In this section, we explore the variability of
the range between half a BS degree and a full BS degree, which is represented
as Ryqx. In general, it is observed that a decrease in cell range has a tendency
to amplify both intra-cell and inter-cell interference, resulting in a decrease
in the average total rate. The aforementioned tendency is notably apparent
in the overall rate performance, as the random and maximal power tactics
demonstrate the least effectiveness. The mean rate per UE increases as the
radius increases within the range of 0.2 km to 0.4 km for the half-cell length.
The mean rate per UE does not significantly increase beyond a distance of 0.4
km, which corresponds to half the length of a cell. The data clearly indicates
that the influence of cell radius on the overall rate enhancement has significantly
lessened. The performance of the HEGAT algorithm across different network
settings illustrates its effectiveness and reliability.

1.8 1
M
I
2
§174
w
D
8 1.6
g
[
£
3 1.5
9]
()]
©
g
z 141
—e— MLP  —A— GAT
1.3 GCN  —— HEGAT
0.2 0.4 0.6 0.8 1.0

Half BS-to-BS distance (km)

Fig. 6. Average sum rate per UE versus cell length

As shown in Figure 7, the HEGAT demonstrates a runtime that is similar
to that of previous benchmark algorithms. The comparable runtime of these
approaches may be ascribed to the utilization of the same network architecture
and input characteristics. However, the strategy that has been suggested exhibits
a higher level of time consumption in comparison to alternative benchmark
techniques. The reason for this is the increased amount of time needed to
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get and combine the embedding information of both nodes and edges. Every
node iteratively enhances its own embedding characteristics together with the
embedding features of its neighboring nodes and edges. When the quantity
of BS reaches 16, HEGAT exhibits a computational duration of 0.01 seconds,
which is notably below the required timeframe for decision-making in wireless
systems, namely 0.02 seconds. This solution satisfactorily addresses the need
of making real-time judgments. Therefore, the proposed methodology exhibits
effectiveness in enabling immediate implementation into wireless networks.

107!

mm MLP
I GCN
mm GAT
BN HEGAT

Running time (sec)

8 16 32
Number of UEs

Fig. 7. Computation time comparison

As shown in Figure 8, the doppler frequency, denoted as fy, is a crucial
quantity that is closely associated with the phenomena of small-scale fading.
The incorporation of real-time data into our suggested data-driven methodology
for instantaneous power distribution may encounter obstacles arising from the
swift variations in signal intensity. The observed oscillations have the potential
to result in a decrease in overall performance. The Doppler frequency is seen to
occur within a frequency range that extends from 4 Hz to 18 Hz. The simulation
results presented in Figure 8 reveal a steady decrease in the average sum rate
associated with the data-driven algorithm as the values of f; span throughout
this frequency range. This fascinating discovery suggests that the data-driven
model has the ability to withstand the changes offered by f;.

276  Wudopmaruka u asromatuszanus. 2024. Tom 23 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru



DIGITAL INFORMATION TELECOMMUNICATION TECHNOLOGIES

= = =
o ~ o
L L L

Average sum rate per UE (bps/Hz)

=
5
|

/\.\—.— MLP —A— GAT
GCN  —— HEGAT
1.4 , , . . .
4 8 12 16 20
Doppler frequency (Hz)

Fig. 8. Average sum rate per UE versus doppler frequency

6. Discussion and Conclusion

6.1. Discussion. From the perspective of the convolution operator, the
graph neural network can be divided into two categories, spectral methods and
spatial methods.

Spectral methods: e.g., GCN, depend on Laplacian eigenbasis of the
graph, which is hard to calculate for a large graph. Its main drawbacks: 1) the
edge weights are fixed when fusing, not flexible enough; 2) poor generalizability
because it is a full graph convolutional fusion, the whole graph does gradient
update, and when the graph is larger, such an approach is too slow and
inappropriate.

Spatial methods: e.g., GAT, perform information aggregation only on
the local neighborhood, avoiding heavy calculation of Laplacian eigenbasis.
The HEGAT algorithm proposed in this paper is based on the attention
aggregation mechanism of GAT, and the performance degradation is weaker
and more stable than that of the spectral graph-based neural network when the
graph structure is changed.

Different graph tasks may have different preferences for node and edge
features. There are some graphs where node features have a greater impact on
the graph and some graph edges where edge features have a greater impact on
the graph. Whereas, in the graph representation of cellular networks, direct
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links from BS-to-UE are considered as nodes and channel gain of the desired
signal is considered as node features. The interference links between different
BS-to-UEs are regarded as edges, and channel gain of interference is regarded
as node features. While the latter is computed from the former and the topology
of the graph, the edge characteristics are strongly correlated with the node
characteristics. So essentially the graph representation in cellular networks is
still a node-sensitive task. Edge features are used as a complement to enhance
the performance of the graph neural network.

6.2. Conclusion. This study introduces a framework called HEGAT,
which has been developed to tackle the issue of power regulation in
cellular networks. The cellular network is represented as a heterogeneous
directed graph, and the network parameters of HEGAT are trained using a
semi-supervised learning technique. The HEGAT framework successfully
incorporates node and edge properties, resulting in a notable improvement
in node and edge embeddings across various neural network layers. This
technique effectively captures the significance of adjacent nodes and edges
inside the network. The experimental findings derived from thorough
studies conducted on huge datasets of mobile traffic provide evidence of
the almost ideal performance of our proposed strategy. Moreover, the
system demonstrates robust generalization abilities across many network
conditions. In anticipation of future endeavors, our research agenda includes
the investigation of complex heterogeneous network settings, enhancement of
current approaches, and the incorporation of multi-source datasets to attain
higher levels of prediction accuracy. In future work, we will continue research
in this area to verify the versatility of HEGAT in different network scenarios.
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C. o, X. fgH, O.JI. TIETPOCIH
PACITPEJIEJIEHUE MOIITHOCTHU B BECITPOBO/ITHOU COTOBOU
CUCTEME C IPUMEHEHUEM I'PA®OBO1 CETH BHUMAHU S

Liowu C., An X., [lempocsn O.J1. PacnipeiesieHe MOIHOCTH B GeCIIPOBOIHON COTOBOI
cHcTeMe ¢ IpHMeHeHneM rpacoBoii ceTH BHUMAaHMS.

AnHoranusi. C OBICTPBIM Pa3BUTUEM TEXHOJIOTMH COTOBBIX CeTeil M pacIpocTpaHeHUEM
MOOWIbHBIX YCTPOICTB 3(h(heKTUBHAS MOJUTHKA Paclpe/IeIcHUs CETEBbIX PECYpPCOB CTAHOBUTCS
Bce Oosiee BaXXHOH [UIsl y/TyUIIEeHUs MOJIb30BATENLCKUX YCIYT U MPOM3BOJUTEILHOCTH CETH.
Hama nesnp — MakCHMMM3MpOBaTh CyMMAapHYI0 MOILIHOCTb BCEX IOJIb30BaTesleil ceTH IyTem
HAaXOXJEHHs ONTHUMAJIbHOH CXeMbl pacHpefeleHHss MOLIHOCTU. B mocnemHue roasl MeToab!
[IIy00KOro 00yueHus Ha OCHOBE IpachoB IPOEMOHCTPUPOBAIIH GOMBIION MOTEHIUAN VIS PEeIleHAS
po0JIeMBbl pacrpe/ie/IeHHs CETEBBIX pecypcoB. M3-3a TONoIOrn4eckoii Mprpo/ibl MOOMIIBHBIX ceTeil
rpacosele HeiiponHsle cetdt (GNN) MoryT siydine paboTaTh ¢ JaHHBIMH, CTPYKTYPHUPOBAHHBIMU
B BuJe rpao. OfHaKo GOJIBIIMHCTBO U3 STHX METOJ0B (DOKYCHUPYIOTCS TOJIBKO Ha Y3JIOBBIX
yHKIMAX B mpoLiecce 0Oy4YeHHs U 9aCTO UTHOPHPYIOT MM YIPOIIAOT IPaHIYIHbIe (DyHKIUH,
KOTOpBIE UIPAIOT HE MEHee BaXXHYIO POJIb, YeM y3JIbl. UTOOBI pEIIUTh 3Ty HPOOJIEMY, MBI IpE/iIaraeM
ou3aiiH cetu ¢ pacimpeHHbiM rpaduyeckum BHuMaHueM (HEGAT), koTopblii Hampsimyio
CBSI3BIBAET M3MEHSIIOLLYIOCS TOTIOJIOTHIO CETH Y HAMJTYUIIMii CIIOCO0 pacrpeesieHusI MOLTHOCTH
BO BpeMsi 00ydeHust. OGIIMPHBIE Pe3y/IbTaThl MOAEIMPOBAHUS HOATBEPKIAIOT IPEBOCXOIHYIO
MIPOM3BOJIUTEIBHOCTD U HaJIe)KHbIe BOBMOXKHOCTU 00O00IIEHHs], IeMOHCTPUpPYeMbIe Ipe IaraeMoi
merogoorueii HEGAT.

Kurouessle ciaoa: MUCO, coToBast ceTb, OrpaHuuHast (byHKIUs, CeTh Ipahuueckoro
BHUMAaHHsl, paclipe/ieJieHue MOIIHOCTH.
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