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Abstract. In the rapidly evolving digital age, human-machine interface technologies are
continuously being improved. Traditional methods of computer interaction, such as a mouse
and a keyboard, are being supplemented and even replaced by more intuitive methods, including
eye-tracking technologies. Conventional eye-tracking methods utilize cameras to monitor the
direction of gaze but have their limitations. An alternative and promising approach for eye-tracking
involves the use of electroencephalography, a technique for measuring brain activity. Historically,
EEG was primarily limited to laboratory conditions. However, mobile and accessible EEG devices
are entering the market, offering a more versatile and effective means of recording bioelectric
potentials. This paper introduces a gaze localization method using EEG obtained from a mobile
EEG recorder in the form of a wearable headband (provided by BrainBit). The study aims to
decode neural patterns associated with different gaze directions using advanced machine learning
methods, particularly neural networks. Pattern recognition is performed using both ground truth
data collected from wearable camera-based eye-tracking glasses and unlabeled data. The results
obtained in this research demonstrate a relationship between eye movement and EEG, which can be
described and recognized through a predictive model. This integration of mobile EEG technology
with eye-tracking methods offers a portable and convenient solution that can be applied in various
fields, including medical research and the development of more intuitive computer interfaces.
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1. Introduction. In an ever-evolving world humans predominantly rely
on vision as the primary conduit for gathering information and making decisions.
This centrality of vision is mirrored in modern computing interfaces, which
are predominantly graphical and designed for interaction through screens. As
technology advances, new methods of control — ranging from body movements
to eye movements, speech, and even brain activity — are being developed to
foster more natural and intuitive human-computer interactions.

Eye-tracking technologies have witnessed significant advancements
in terms of accessibility and ease of use. These technologies record eye
movements to pinpoint an individual’s focal point and are increasingly being
employed in both academic research and commercial applications. Traditional
eye-tracking methods often utilize video cameras to capture the shape of the
pupil or other markers. While effective, these methods come with limitations,
such as sensitivity to light levels and the necessity for open eyes [1].

An alternative and promising approach to eye tracking is the use
of electroencephalography, a technique for measuring brain activity. Eye
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movements affect EEG recordings by adding muscle and eye dipole potentials
to signals recorded by EEG electrodes [2]. This effect can be used to extract eye
movements from recording. Like traditional eye-tracking methods, EEG does
come with its own set of challenges. It is highly constrained by environmental
factors, such as electromagnetic interference, but it doesn’t require specific
lighting conditions or opened eyes, making it versatile in different scenarios.
Historically, EEG was predominantly limited to laboratory settings and required
specialized equipment and trained personnel. However, mobile and affordable
EEG devices are revolutionizing this domain, offering a more versatile yet
effective means of capturing biopotentials [3].

This study aims to investigate the correlation between EEG collected by
BrainBit — wearable headband [4], and eye movements recorded by eye tracker.
We hypothesize that there exists a correlation between eye gaze direction
based on a change of coordinates for 0.1 second and electrical activity from
01, 02, T3, and T4 leads recorded by wearable EEG. We aim to decode the
neural signatures associated with different gaze directions using advanced
machine learning techniques, particularly neural networks. Our approach
combines the strengths of both EEG and eye-tracking technologies, offering a
comprehensive perspective on gaze localization. The use of a wearable EEG
headband facilitates data collection in more naturalistic settings, enhancing
the ecological validity of our findings.

Objectives of the study:

1. Collect and find recordings of eye activity recorded by camera-based
devices and EEG recorded by wearable devices;

2. Preprocess and normalize the data;

3. Develop predictive models using supervised and unsupervised
machine learning methods.

The scientific novelty of the paper includes employing a wearable EEG
headband for collecting a unique dataset with an uncommonly low number of
EEG channels and a correlational research of this data with eye movements to
localize gaze.

The rest of the paper is structured as follows: Section II provides a
comprehensive review of existing literature on eye movements, EEG data,
and the challenges posed by artifacts in EEG data. It also discusses the
integration of EEG and eye-tracking, the challenges and solutions associated
with mobile EEG systems, and the combination of EEG and eye-tracking in
mobile scenarios. Section III explains the methodology of the study. It begins
with a general description of the study’s objectives and approach. The dataset
subsection provides details about the participants, experimental setup, and
methodology for the two used in the study datasets. The first dataset is collected
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during this study using the BrainBit EEG headband and PupilLabs eye tracker.
The second one is the open NeuMa dataset [5]. The preprocessing subsection
discusses the challenges and solutions for handling eye movements in EEG
data. The neural network architecture subsection describes the supervised and
unsupervised machine learning models used in the study. Supervised learning
is presented by feedforward and recurrent neural networks. They use previously
discussed datasets to build predictive models based on known ground truth.
Unsupervised learning is presented by clustering datasets with time-specific
distance calculation. Section IV presents the results of the study. It provides
a detailed analysis of the performance of different machine-learning models.
The results from both supervised and unsupervised learning approaches are
discussed. Section V summarizes the main findings of the study, discusses its
implications, and suggests directions for future research.

2. Related work. The integration of EEG and eye-tracking technologies
has garnered significant attention in the realm of cognitive and neuroscientific
research over the past years. Numerous studies have sought to harness the
complementary strengths of these two methodologies.

In study [6] the authors provide a comprehensive discussion on the
challenges posed by eye movements in EEG data. They emphasize the
importance of identifying and effectively correcting them to ensure the accurate
interpretation of underlying neural signals.

The use of Independent Component Analysis (ICA) combined with a
high temporal resolution eye tracking has been highlighted as a promising
approach for identifying and correcting ocular artifacts in laboratory EEG
data [7]. In study [8] the authors introduced the VME-DWT algorithm, which
efficiently detects and eliminates eye blinks from short segments of single
EEG channels using Variational Mode Extraction (VME) and the automatic
Discrete Wavelet Transform (DWT) algorithm. In [9] the authors developed the
"Optimized Fingerprint Method" that utilizes spatial, temporal, spectral, and
statistical features to automatically classify artifactual independent components
in EEG, achieving over 90% accuracy in identifying artifacts of physiological
origin. In study [10] the authors proposed a framework combining unsupervised
machine learning with singular spectrum analysis (SSA) to remove eye blink
artifacts without altering the uncontaminated EEG regions.

The integration of EEG and eye tracking provides a comprehensive
understanding of cognitive processes during visual tasks. In paper [7] the
authors developed a system that captures EEG signals during eye movement
and employs a random forests classification algorithm to categorize them into
6 classes — eyes open, close, left, right, up, down.
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In [11] the authors introduced the BeMoBIL Pipeline, a MATLAB-
based solution that supports the synchronized handling of multimodal data,
including EEG and eye tracking. It presents a new robust method for region-
of-interest-based group-level clustering of independent EEG components.

In paper [12] the authors explored a multimodal approach for identifying
Autism Spectrum Disorders of children by fusing EEG and eye-tracking data,
demonstrating the potential of such integrative methods in clinical applications.
The approach consists of extracting EEG and eye-tracking features from data
and using two separate deep learning models for feature processing accordingly
at the first step and one deep learning model for processing the outputs of the
first step.

In study [13] the authors used an eye tracker to improve the detection of
evoked responses to complex visual stimuli during EEG by excluding moments
when the gaze was disoriented. This approach increased the accuracy of
detection by 15%.

In paper [14] the authors employed a wearable EEG headset with
stationary eye tracker for prediction of decisions made during the product
design selection. They concluded that the fusion of eye movements and EEG
characteristics can significantly improve the efficiency of decision-making
in projects compared to using a single data processing method. In their
experiment, the accuracy improvement was more than 10%.

Mobile EEG systems, while offering the advantage of capturing brain
activity in naturalistic settings, come with inherent challenges.

One of the challenges associated with mobile EEG is the reduced
number of channels compared to traditional stationary EEG systems. This
limitation can potentially impact the quality and interpretability of the recorded
data.

In [15] the authors conducted a study where participants performed
an auditory oddball task while concurrently completing various motor tasks
outdoors. The study utilized a 30-channel mobile EEG montage and observed
that increased movement complexity imposed a higher workload on the
cognitive system, effectively reducing the availability of cognitive resources
for the cognitive task.

In paper [16] the authors explored a human EEG-based emergency stop
interface designed to activate when the human operator detects or foresees
a potential emergency. The study employed a mobile EEG recorder with 14
channels and utilized a decision tree for classifying the operator’s state. While
the use of mobile EEG introduced complexities to the classification task, the
findings indicated consistent EEG signal patterns across various potential
emergencies.

524  Wndopmaruxa u apromatusauus. 2024. Tom 23 Ne 2. ISSN 2713-3192 (meu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru



ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

In study [17] the authors specifically addressed the challenges of
Independent Component Analysis (ICA) decomposition in both mobile and
stationary EEG experiments. They found that while commonly used settings
(like stationary experiments with 64 channels and a 0.5 Hz filter) yield
acceptable ICA results, mobile experiments with fewer channels require higher
high-pass filter cutoff frequencies for optimal decomposition.

In study [18] the authors researched the existence of cardiogenic artifacts
in EEG recorded by single-channel mobile EEG and proposed an algorithm
for automated artifact detection and removal.

These studies underscore the importance of considering the limitations
and specific requirements of mobile EEG systems, especially when working
with a reduced number of channels. While mobile EEG offers unique
opportunities for research in real-world settings, careful preprocessing and
data analysis are crucial to account for the challenges posed by the limited
channel count.

The combination of EEG and eye tracking in mobile scenarios offers
valuable insights into cognitive processes during visual tasks.

In [19] the authors explored this domain by investigating the automatic
detection of visual attention using pre-trained computer vision models in
conjunction with human gaze in mobile eye-tracking scenarios.

In [20] the authors investigated the impact of swiping direction on the
interaction performance using mobile EEG and eye-tracking technology.

Table 1 provides a summary of these works. Many researchers are
affected by eye activity in their data and remove it as well as use of additional
devices to collect such activity. There is no one-size-fits-all solution. The
choice of method often depends on the specific application, the nature of the
artifacts, and the constraints of the mobile device. Continuous research and
development in the area of mobile EEG and eye tracking are essential to further
enhance the reliability and utility in real-world scenarios for improving and
extending existing ways of working with human activity.

3. Method. The primary objective of this study is to investigate the
intricate relationship between eye movements and neural activity as captured
by EEG recordings. The method of this study includes dataset collection and
selection, preprocessing of this data and applying two different deep learning
techniques — supervised and unsupervised learning of predictive models.
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Table 1. Summary of the related work
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3.1. General Description. The study involves the collection and
analysis of EEG and eye-tracking data from participants engaged in predefined
tasks. The data is then subjected to a series of preprocessing steps to extract
meaningful patterns and eliminate potential noise or artifacts. Subsequent to
preprocessing, the data is fed into neural network models, both supervised and
unsupervised, to discern patterns and relationships.

Figure 1 provides a visual overview of the entire process, showing the
flow from data collection to analysis. The subsequent sections explain the
specifics of the dataset, the experimental setup, and the models employed. The
first section describes data collection in terms of devices, tasks and information
that we collected. The second section gives an overview of datasets with the
recordings of information. The third section lists the models and classes that
were used to do predictions.

Eye-tracker ]
Computer Mobile EEG
(Eye movements, gaze direction, [—m [— N
scene video QOperator (4 channels of potentials)
Predefined movements T T
application Natural reading
(eye movements, gaze direction)
¥ k4
Predefined movements Matural reading NeuMa
7 participants 2 participants 42 participants
1 recording per participant 7 recordings per participant 1 recording per participant
~15 minutes per recording ~15 minutes per recording ~5 minutes per recording
Supervised models Unsupervized models
Saccade Detection Direction Detection Clustering
Model Model with DTW distance

Fig. 1. A general description of the proposed method (from data collection with the
signal collecting sources to deep learning models that use it)

3.2. Dataset. The dataset used in a study plays a pivotal role in shaping
the outcomes and conclusions drawn from the research. In this section, we
provide a comprehensive overview of two datasets employed in this study and
preprocessing of these data. The first dataset is collected for this study using
wearable devices. The second an one is open NeuMa dataset that can be used
in the same way as the first one. The preprocessing part includes specifics of
work and extracting valuable information from EEG and eye-tracking data.

3.2.1. Our Dataset. A new dataset was recorded for the purpose
of this study. Data were collected during two tasks: predefined movements
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and natural reading. The recording involved the use of a wearable
EEG recorder in the form of a headband and a wearable eye tracker in
the form of glasses.

Seven (6 males; 1 female; age 21 + 3 years) healthy volunteers with no
neurological or vision deficits participated in this study. All seven participants
were recorded in an experiment with predefined movements for ~ 15 minutes,
in total 90 minutes of recording. Two participants were recorded in 6 sessions
of natural reading experiments 15 minutes each, in total of 180 minutes of
recording.

EEG was recorded using a 4-channel mobile band (BrainBit, 100Hz
sampling rate). Dry electrodes were placed at O1, O2, T3, and T4 points
according to the 10/20 system. Eye gaze data was collected using glasses with
video cameras that point to the pupils (Pupil Invisible [21], 60Hz sampling
rate). The computer showing tasks with a Full HD resolution 23-inch display
was positioned at a distance of 1 meter in front of the person with a refresh
rate of 60Hz.

The structure of the experiments remained consistent regardless of
the specific task assigned to the participants. The typical procedure for each
experiment is as follows:

1. The participant sits in a comfortable position in front of a computer
screen, at a distance of 1 meter. Relaxation and minimization of body
movements are emphasized.

2. Connection and calibration of the glasses are performed.

3. Connection and verification of electrode contact with the mobile
recorder are conducted.

4. Instructions specific to the current experiment are provided.

5. The participant performs the assigned task.

6. Devices are disconnected and the experiment concludes.

For the predefined movement experiment, a graphical application
was developed. This application displayed fixation points alternately to the
participant. These fixation points were located centrally and at 16 surrounding
points as shown in Figure 2. The participants would fixate on each point in a
randomized sequence, and then return to the central point. The points alternate
each other in the interval from 2.5 to 3.5 seconds.

528  Undopmaruka u asromaruszanus. 2024. Tom 23 Ne 2. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru



ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

® | Dataset recording = [} X
Settings

Connect Experiment 1 Experiment 2 Experiment 3

Super Up-Left SuperUp Super Up-Right

Little Up Left LittileUp Littile Up Right
Super Left Little Left Center Little Right Super Right
Experiment 3
Little Down Left LittdeDown Littile Down Right
Super Down-Left SuperDown Super Down-Right

Fig. 2. The interface of an application for predefined movement experiments showing
the position of points before the start

3.2.2. NeuMa Dataset. In addition to our dataset, an open dataset with
the recorded EEG and eye tracker data named NeuMa was also utilized [5].

The NeuMa dataset stores raw experimental data for 42 subjects
(23 males and 19 females, aged 31.5 & 8.84).

Structure of dataset:

1. EEG Data: Continuous mode brain activity recording. This includes
a time series of the 128 channels of EEG activity and corresponding timestamps
recorded at 600 Hz.

2. Eye Tracker Data: Gaze data metrics for both left and right eyes
recorded in 200Hz.

3. Mouse Clicks: Sequence of mouse clicks.

4. Mouse Positions: 2D screen coordinates corresponding to each
mouse click.

5. Markers: Information regarding alterations among brochure pages,
initiation, and completion of the experiment.

During the NeuMa dataset experimental procedure the participants
were seated comfortably in an armchair positioned 50 cm away from a 28-inch
LCD monitor. Although the participants had the freedom to move their heads

Informatics and Automation. 2024. Vol. 23 No. 2. ISSN 2713-3192 (print) 529
ISSN 2713-3206 (online) www.ia.spcras.ru



WCKYCCTBEHHbBII MHTEJJIEKT, MTHXKEHEPUS JIAHHBIX U 3HAHUI

during the procedure, they were advised to restrict their movements, including
those of the head, to reduce potential artifacts in the EEG signals. However,
they were also encouraged to ensure their comfort to prevent any negative
impact on their overall experience. Before the presentation of the products, a
resting state EEG was recorded for a duration of two minutes. Following the
resting state recording, the participants were presented with brochures. They
were allowed to navigate freely through these brochures using the left and right
arrow keys on the keyboard to move forward and backward.

3.2.3. Dataset comparison. A wearable EEG recorder and a camera-
based eye tracker were used to record both of these datasets according to our
objectives. Despite this, it had different additional channels of information and
different amounts of the recorded EEG channels. A comparison is presented
in Table 2.

For the purpose of this article, only 4 channels (O1, 02, T3, T4) from
the NeuMa dataset were selected and used. This decision was based on the
fact that our dataset only contained these channels, ensuring consistency and
comparability.

Table 2. The comparison of our and NeuMa datasets

Name Eye Wearable |EEG EEG rate |Mouse |Electrodes
tracking |EEG channels data placement
system
Our + + 4 100 Hz - 10/20
NeuMa + + 128 600 Hz + 10720

3.2.4. Preprocessing. In the recordings obtained with eye-tracking
glasses, two key moments are distinguished: fixations and saccades.

Fixations refer to the concentration of a person’s attention on a specific
point in the visual field, indicated by reduced eye movement amplitudes.
During fixations, the brain processes the visual information from the point
of focus, making it a crucial moment for understanding cognitive processes
and attention. Saccades, on the other hand, are rapid eye movements that shift
the gaze from one fixation point to another. These movements are essential
for redirecting the line of sight to new areas of interest. The amplitudes of
movements during saccades and fixations differ by an order of magnitude. In
data processing, the period between saccades is considered as fixations because
the brain is actively processing visual information during these periods, while
saccades themselves are represented by significant changes in gaze coordinates,
indicating shifts in attention. The detected saccades along with EEG data are
presented in Figure 3 as vertical lines denoting the start of the saccade on the
eye gaze coordinates graph.
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Fig. 3. Saccades on the graph of eye gaze coordinates along with EEG data

Eye movements, particularly saccades, induce large electrical potentials
due to the movement of the eye’s retinal dipole. The retina has a natural
electrical polarity, with the front of the eye being positively charged and
the back being negatively charged. When the eyes move, this retinal dipole
also shifts its orientation. This movement generates electrical fields that can
propagate through the tissues of the head and influence the electrical recordings
on the scalp, including those of EEG. Because the eyes are anatomically close
to the frontal EEG electrodes, these electrical fields generated by the retinal
dipole can have a significant impact on EEG recordings. The influence of the
retinal dipole’s movement is so substantial that it can sometimes be mistaken
for brain activity if not properly accounted for.

The EEG data is divided into series with a duration of 300 ms — the
average duration of a saccade. EEG is highly dependent on the physiological
state of the participant. The values of the potentials are not constant even within
a single individual throughout the day due to factors like fatigue, caffeine intake,
or even time of day. Therefore, each series is normalized to the average change
in the potential to account for these variations and ensure that the data are
comparable across different time points and p articipants. Normalization helps

in emphasizing the relative changes in EEG signals, which are more informative
X —median(X)

than the absolute values. It can be shown as X ormalized = ,
mean(X —median(X))

where X is a series of one EEG channel signal in the form of voltage value.
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Additionally, EEG is influenced by physical parameters of the
surrounding environment, such as electromagnetic oscillations, high-frequency
signals, and other phenomena. Such noise can be eliminated using frequency
filters. The relevant brain activity signals are typically found within the range of
1 to 40 Hz; it is common to remove other frequencies. However, it is necessary
to retain low frequencies from 0 to 2 Hz. These are EEG oscillations of
sufficient duration that are associated with eye movement and provide valuable
insights into the correlation between eye movements and brain activity.

3.3. Model Architecture. Collected and preprocessed datasets are
used to build predictive models of eye movements. This can be done in two
ways: with the use of ground truth (known eye movements) or without it.
These approaches are called supervised and unsupervised learning, respectively.
Supervised learning includes the use of two types of neural networks to classify
data into different classes based on direction and amplitude. Unsupervised
learning consists of clustering data using the k-means algorithm with time-
specific distance calculations.

3.3.1. Supervised learning. Supervised learning models require a
structured data for training and testing. The dataset was split into the train,
validation and test parts as 64%, 16% and 20% accordingly. Classes in every
part have a balanced amount of entries. So, the saccade classification task has
a dataset with 50% of saccades and 50% of fixations, direction classification
has 12.5% of each direction.

Feedforward neural networks and recurrent neural networks are
commonly used to determine eye activity due to their architecture and
effectiveness in pattern recognition. The most effective configuration of
a feedforward neural network consisted of a network with an input of 120 our
dataset or 800 NeuMa dataset EEG points — they represent 300 ms of 4-channel
EEG recording from the dataset, 1 hidden layer with 8 neurons, and output with
8 neurons for direction classification and 2 for saccade classification. ReLu is
used as an activiation function. Optimization is done by the Adam algorithm.

Unlike the previous approach, a recurrent neural network can feed its
output back as input in addition to the new signal. This allows for processing
sequences of variable lengths, rather than strictly fixed networks. There are
several types of neural networks that implement this principle, such as RNN,
LSTM, and GRU. The key difference among them is their ability to remember
and forget data from previous iterations. The best results were obtained using
a GRU network with 2 hidden layers of 16 neurons each, where 4 potential
values from different electrodes were sequentially provided as an input.

Support Vector Machine offers a distinct approach to the classification
of EEG data, complementing the feedforward and recurrent neural networks
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discussed earlier. Its core principle involves finding the optimal hyperplane
that distinctly classifies the data points into different categories. The model
would treat each EEG series as a feature vector in a high-dimensional space.
The SVM would then find the hyperplane that best separates saccades from
fixations or classifies the direction of eye movement.

The obtained results are presented in Table 3.

Table 3. Comparison of the results of supervised learning models

Model | Dataset | Classes | Accuracy | Recall | Precision | F1
Our 2 73% 72% 66% 69%
FF 8 66% 67% 56% 62%
NeuMa 2 73% 74% 73% 71%
8 62% 62% 62% 62%
Our 2 76% 75% 65% 70%
RNN 8 61% 69% 55% 62%
NeuMa 2 73% 64% 81% 66%
8 68% 68% 68% 67%
Our 2 54% 66% 51% 58%
SVM 8 62% 59% 56% 57%
NeuMa 2 81% 81% 81% 81%
8 55% 40% 39% 35%

3.4. Unsupervised Learning

3.4.1. Unsupervised learning. Data clustering is a pivotal technique
in the realm of data analytics and machine learning. It involves grouping data
points into distinct clusters or sets based on intrinsic patterns or similarities.
Unlike supervised learning paradigms where data is labeled, and models
are trained to recognize these labels, clustering operates in the unsupervised
domain. In unsupervised data clustering, the algorithm sifts through datasets
without the guidance of ground truth labels. Instead, it relies solely on the
intrinsic differences and similarities between the data points or series.

Among the many clustering techniques available, the k-means clustering
algorithm has garnered widespread acceptance and utilization. The crux of
the k-means algorithm lies in partitioning the dataset into k distinct clusters.
These clusters are formed by minimizing the distance between data points
within the cluster and maximizing the distance to data points in other clusters.

While the k-means algorithm predominantly utilizes the Euclidean
distance to ascertain the difference between series, our dataset mandated a
slightly nuanced approach. Given the temporal nature of our data, traditional
distance measures might fail to capture the underlying intricacies. For instance,
physiological factors such as reaction time, event duration, and amplitude
can variably affect the series, leading to potential discrepancies in clustering
outcomes.
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To mitigate these potential inconsistencies, we employed the Dynamic
Time Warping (DTW) algorithm. At its core, DTW is a time-scale
transformation technique. Unlike traditional distance computation methods
that compare data points in a point-to-point fashion, DTW aligns the two
series in a way that the alignment minimizes the overall distance. Essentially,
DTW can stretch or compress the series along the temporal axis to achieve an
optimal alignment. This transformation accounts for time-dependent variances
like elongated reactions or variations in amplitude, ensuring a more robust
clustering outcome.

4. Results

4.1. Supervised Learning. The performance of different machine
learning models on both the Our and NeuMa datasets is summarized in Table 3.
The metrics used for evaluation include Accuracy, Recall, Precision, and F1
Score. These metrics provide a comprehensive view of the model performance,
taking into account both the true positive rate and the false positive rate.

Among the three models, RNN showed the most balanced performance
across different metrics, making it a strong candidate for further optimization
and real-world testing. However, the SVM’s strong performance on the NeuMa
dataset suggests that with sufficient data, simpler models can also achieve high
accuracy.

In the segmentation of the dataset, we discerned nine distinct clusters.

The unsupervised learning approach, specifically clustering using the
k-means algorithm combined with Dynamic Time Warping (DTW) for distance
computation, resulted in distinct clusters representing different gaze trajectories.

The number of clusters was determined using a widely accepted method
for finding the optimal number, known as the *elbow method.” In the context of
k-means, the elbow method involves plotting the total within-cluster variation
against the number of clusters. As the number of clusters increases, this
variation decreases. However, there is a point, resembling the bend in an elbow,
where the rate of decline sharply changes, indicating the optimal number of
clusters for the dataset. The critical points for the dataset are illustrated in
Figure 5. There are multiple points on the graph and interpretations of each
clusterization result remain ambiguous. Upon scrutinizing video segments
associated with each cluster, following the segmentation to every k amount
of clusters shown in Figure 5, we observed congruent behaviors among the
participants. Notably a consistent shift in gaze in a uniform direction when
k equals 9. This observation is substantiated by an evaluation of the mean
displacement along both the vertical and horizontal axes.

As depicted in Figure 4, the x and y axes represent these respective
displacements. Each cluster has a distinction from all others at a minimum
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of 0.1 distance along one or two axes. This distance represents 10% human
visual field. The visualization distinctly demarcates eight saccade trajectories
and a central fixation, which collectively characterize the identified clusters.
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Fig. 5. Graph delineating the relationship between the number of clusters and the
corresponding total within-cluster variation

Informatics and Automation. 2024. Vol. 23 No. 2. ISSN 2713-3192 (print) 535
ISSN 2713-3206 (online) www.ia.spcras.ru



WCKYCCTBEHHbBII MHTEJJIEKT, MTHXKEHEPUS JIAHHBIX U 3HAHUI

The unsupervised learning approach, specifically the clustering using
the k-means algorithm combined with Dynamic Time Warping (DTW) for
distance computation, yielded distinct clusters that represent different gaze
trajectories.

5. Conclusion. This study represents an endeavor in the realm of
eye-tracking technologies, specifically focusing on the integration of wearable
EEG headbands and machine-learning techniques. The results affirm that there
is a discernible correlation between eye movements and EEG signals. This
opens new directions for non-intrusive eye-tracking methods that can operate
in various environmental conditions. The use of BrainBit as a mobile EEG
recorder has proven to be effective for tracking eye activity. This is a significant
step towards making eye-tracking technology more accessible and versatile.
The study also introduces a methodology for the automatic labeling of EEG
datasets, which can significantly expedite the data analysis process. Both
supervised and unsupervised machine-learning techniques were employed to
analyze the EEG data, demonstrating promising results in terms of accuracy,
precision, and F1 scores.

This research has multiple implications. In the medical field, such
technology could be used for diagnosing and monitoring neurological
conditions. In human-computer interaction, it could lead to the development
of more intuitive and responsive interfaces. Moreover, the technology has the
potential to be used in safety-critical applications, such as fatigue detection in
drivers.

While this study lays the groundwork for mobile EEG-based eye
tracking, there are several avenues for future research:

— Optimizing Machine Learning Models: Further tuning of the neural
network architectures could lead to even more accurate results.

— Real-world Applications: Testing the technology in real-world
scenarios, such as driving or operating machinery, would provide valuable
data on its effectiveness and limitations.

— Multi-modal Approaches: Combining EEG with other biometric
data could offer a more comprehensive understanding of human behavior and
cognitive states.

In conclusion, this study marks a significant step forward in the
integration of EEG technology and eye-tracking, offering a potentially
transformative approach to understanding human cognition and behavior.
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B.P. POMAHIOK, A.M. KAIIIEBHUK
METO/] NHTEJUIEKTYAJIBHOI JIOKAJIN3AIINU B3IVIAJIA HA
OCHOBE AHAJIN3A 93T C UCIIOJIb30BAHUEM HOCUMOMN
I'OJIOBHOM ITOBA3KHU

Pomaniok B.P.,, Kawesnux A.M. MeTo/] HHTeJUIEKTYaJIbHOM JIOKAJN3AIMH B3IJIs1/1a HA OCHOBE
anaan3a 3T ¢ HenoJab30BaHNEM HOCHMOIT IOJOBHOI MOBSI3KHL.

AnHoTamus. B ctpemutensHO pa3BHBaoLieiicst U poBoil noxe HHTePQEHCH YeT0BEKO-
MAIIIMHHOTO B3aUMOJEWCTBUSI HENPEPHIBHO COBEPIIEHCTBYETCs.  TpaauliMOHHBIE METOb
B3aNMOJIEICTBUSI C KOMIIBIOTEPOM, TaKHe KaK MBI U KJIaBHATypa, JONOJHSIOTCS U Jaxke
3aMeHsIIOTCsI 00JIee HHTYUTUBHBIMHA CIIOCOOAMH, KOTOPbIE BKJTIOYAIOT TEXHOJIOTHH OTCIICKUBAHUS
raa3. OObIYHBIE METO/BI OTCJICKUBAHUSA I71a3 MCIONB3YIOT KaMephbl, KOTOPbIE OTCJICKUBAIOT
HarpasJieHHe B3IVIS/1a, HO UMEIOT CBOM OIPAaHUYEHHUsl. AJIbTEPHATUBHBIM U MHOTOOOEIIAIOIUM
MOAXOAOM K OTCJICKMBAHHUIO IJIa3 SIBJISETCS HCIOJNB30BaHME 3JeKTpo3dHLedatorpaduu,
TEeXHUKH M3MEpPEeHUs1 aKkTUBHOCTH Mo3ra. Vcropuuecku DI Obuta orpaHudeHa B OCHOBHOM
1abopaTopHbIMU  ycJOBUAMUA.  OpHAaKO MOOWIbHBIE M JOCTYIHbIe ycTpoucTBa g D3I
MOSIBJISIIOTCS] Ha PBIHKe, Ipejyuiarasi Oojlee yHUBEpCaJbHOe M 3((PEKTUBHOE CPEICTBO IS
peructpanyy OMONOTEHIMAIOB. B 1aHHOI cTaThe NMpecTaB/IeH MeTOI JIOKAIN3ally B3IJIsiAa C
UCIIOIb30BaHKUEM JIEKTpodHIedaorpaduy, MoIyYeHHO! ¢ HOMOIIBI0 MOOWIIBHOTO PeriucTpaTopa
33T B BUJIe HOCUMOIi TOJI0BHO# NOBA3KM (KoMmranuu BrainBit). 3To uccienoBaHue HarpaBieHo
Ha JEKOJMPOBaHKE HEMPOHAJIBHBIX MATTEPHOB, CB3aHHBIX C PA3HBIMU HAIIPABJICHUSIMH B3IJIS/1a,
C KCTIONB30BAHMEM HPOJBHHYTHIX METOJOB MAIIMHHOTO OOYYeHHs, B YaCTHOCTH, HEMPOHHBIX
ceteil. [TOMCK MaTTEPHOB BBINOJHAETCS KAK C MCIOJIb30BAHUEM JIAHHBIX, TIOJTyYEHHBIX C TIOMOIIBIO
HOCHMBIX OYKOB C KaMEpOM JIJIs OTCJICKUBAHUS IV1a3, TaK U C UCIIOJIb30BAHMEM HEPa3MEUEHHbIX
naHHbIX. [loydeHHBIE B MCCIIEIOBAHUU PE3Y/IbTaThl JEMOHCTPUPYIOT HAINYUE 3aBUCHUMOCTH
Mexay apukeHneM ras u D3I, koTopas MoxeT ObITh ONMCAaHA M PacHO3HAHA C MOMOIIBIO
npecKa3aresibHOi Moaesu. [laHHasi MHTerpanus MoOWIbHON TexHomorun DI ¢ MeTompamu
OTCJICKMBAHUs IJ1a3 IpejjlaraeT MOPTATHMBHOE W yAOOHOE pellieHHe, KOTOPOe MOXKET OBITh
MPUMEHEHO B PA3JIMYHBIX 00JACTSIX, BKIIOYAIOIINX MEUIIMHCKUE HCCICIOBAHUS U pa3paboTKy
00Jiee MHTYUTHBHBIX KOMITBIOTEPHBIX MHTEP(EHCOB.

KuroueBsbie ciioBa: oTciexuBanue a3, 31, HelipoHHbIe ceTH, HocuMblid D3I, 00yueHne
¢ yuurtenem, o0ydeHue Oe3 yuuTens.
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