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Abstract. Cloud Computing (CC) is a prominent technology that permits users as well as
organizations to access services based on their requirements. This computing method presents
storage, deployment platforms, as well as suitable access to web services over the internet.
Load balancing is a crucial factor for optimizing computing and storage. It aims to dispense
workload across every virtual machine in a reasonable manner. Several load balancing
techniques have been conventionally developed and are available in the literature. However,
achieving efficient load balancing with minimal makespan and improved throughput remains a
challenging issue. To enhance load balancing efficiency, a novel technique called Ruzicka
Indexive Throttle Load Balanced Deep Neural Learning (RITLBDNL) is designed. The
primary objective of RITLBDNL is to enhance throughput and minimize the makespan in the
cloud. In the RITLBDNL technique, a deep neural learning model contains one input layer,
two hidden layers, as well as one output layer to enhance load balancing performance. In the
input layer, the number of cloud user tasks is collected and sent to hidden layer 1. In that layer,
the load balancer in the cloud server analyzes the virtual machine resource status depending on
energy, bandwidth, memory, and CPU using the Ruzicka Similarity Index. Then, it is classified
VMs as overloaded, less loaded, or balanced. The analysis results are then transmitted to
hidden layer 2, where Throttled Load Balancing is performed to dispense the workload of
weighty loaded virtual machines to minimum loaded ones. The cloud server efficiently
balances the workload between the virtual machines in higher throughput and lower response
time and makespan for handling a huge number of incoming tasks. To evaluate experiments,
the proposed technique is compared with other existing load balancing methods. The result
shows that the proposed RITLBDNL provides better performance of higher load balancing
efficiency of 7%, throughput of 46% lesser makespan of 41%, and response time of 28% than
compared to conventional methods.

Keywords: cloud computing, load balancing, deep learning, Ruzicka similarity index,
throttled load balancing.

1. Introduction. CC is a paradigm that includes distributing services
and resources more than the internet. Load balancing (LB) in CC is
a significant aspect that is a pivotal task in optimizing resource utilization,
enhancing performance, and ensuring high availability of applications and
services. As cloud environments consist of multiple servers and resources,
distributing incoming user requests efficiently among virtual machines
becomes essential to prevent the overloading of any single machine in the
cloud server. This distribution of workload helps in achieving optimal
resource consumption, enhancing the efficiency of applications.

Task Scheduling- DT (TS-DT) method was developed [1] to
distribute and execute tasks within an application. The algorithm
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successfully enhances load balancing and reduces makespan but it failed in
achieving energy-aware load balancing with minimal response time.
A P2BED-C was developed in [2] to minimize energy consumption.
However, the efficiency of the method was not improved.

A Reinforcement Learning (RL) model was developed in [3]
to optimize cloud resource utilization for providing the best Quality of
Service (QoS). However, the makespan was not efficiently reduced. A
Dynamic and Resource-Aware Load Balancing technique was introduced
[4] to enhance throughput and reduce makespan. However, a resource-
aware scheduling approach was not employed for the distribution of tasks
on virtual machines (VMs).

The Predictive Priority-based Modified Heterogeneous algorithm
was designed in [5] to achieve efficient and dynamic resource provisioning
for end user's requirements. However, it did not implement a more effective
resource provisioning scheme for end-users. The Bio-Inspired Improved
Lion Optimization method was designed in [6], to address load balancing
issues through enhancing throughput as well as reducing migration time.
However, the performance of efficiency remained unaddressed.

A content-aware machine learning technique was introduced in [7]
for enhancing load balancing, leading to improved throughput and
minimized response time. However, failed to reduce migration time.
Dynamic load balancing method was developed in [8] by Q-learning for
resource allocation, resource accessibility, and consideration of user
preferences with the aim of minimizing response time and resource
consumption. However, it did not achieve higher efficiency in
a multitasking environment.

In [9], a multi-objective task scheduling technique was designed
with the aim of optimizing scheduling, increasing throughput, as well as
reducing both makespan and resource utilization. However, it did not
address the minimization of response time. A dynamic virtual machine
consolidation method was introduced in [10] for LB to mitigate tradeoffs
among energy utilization as well as time complexity.

1.1. Contributions in this article are as follows. The main
contributions of the paper as given below.

To enhance load balancing efficiency, the RITLBDNL technique has
been developed by Deep Neural Learning and Throttled Load Balancing.

The RITLBDNL technique utilizes the Ruzicka Similarity Index to
analyze incoming user tasks and determine the resource status of VMs.

The Throttled Load Balancing process is applied to deep neural
learning for task migration from heavily loaded virtual machines to less
loaded virtual machines with higher efficiency.
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Finally, comprehensive and comparative experiments have been
conducted to perform quantitative analysis using various performance
metrics.

1.2. Paper organization. The remainder of this article is organized
into dissimilar sections: Section 2 explains the literature survey. Section 3
presents the RITLBDNL method. Section 4 details the experimental
analysis and describes the dataset. Section 5 gives a performance
assessment of the proposed algorithm in comparison to conventional
techniques. At last, section 6 gives conclusions of the paper.

2. Literature survey. Load Balancing Protocol was developed
in [11] for CC with the aim of minimizing Makespan as well as throughput
of VM utilization. Long Short-Term Memory Networks (LSTM) Machine
Learning (ML) algorithm was designed in [12] for enhancing load
balancing through optimized resource allocation. However, it did not
succeed in enhancing the system performance of LB. An integrated
optimization algorithm was developed in [13] to make an effective load
balancing system that guarantees resource utilization and minimizes task
response time.

Component-based throttled load balancing method was introduced
n[14], but it failed to consider additional parameters for ensuring the
optimal performance of load balancing algorithms. The Receiver-Initiated
Deadline-Aware LB approach was developed in [15], and aimed to facilitate
migration of incoming tasks to suitable virtual machines. However, this
approach was not employed for scientific workflow applications for diverse
QoS parameters.

An Action-Based Load Balancing scheme was designed [16] with
the aim of reducing makespan and optimizing resource utilization.
However, it failed to address resource allocation and management concepts
within a cloud data center. A new resource optimization framework was
introduced in [17] specifically designed for achieving load balancing with
minimal resource utilization. An optimal load balancing method was
developed [18], which effectively balances the load on cloud servers.

A re-modified throttled algorithm was developed in [19] to minimize
the risk of load imbalance by considering the availability of VMs. However,
it failed to address the issues related to increasing the efficiency of the
algorithm. A load balancing approach based on renewable energy was
developed in [20] to optimize interactive task allocation, aiming to reduce
energy costs.

Modified honeybee behavior load balancing (HBB-LB) was
introduced in [21] to secure the cloud system. However, the system
performance was not enhanced. The Sine Cosine-based Elephant Herding
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Optimization (SCEHO) algorithm was combined in [22] by Improved
Particle Swarm Optimization (IPSO). Task scheduling behavior was
improved but, throughput was not increased.

The two-stage genetic mechanism was utilized in [23] to monitor
and manage VMH. But, it failed to minimize the time. A deep load balancer
was introduced in [24] to allocate resources with less delay. Nevertheless, it
failed to enhance throughput. Improved Lion Optimization (ILO) with Min-
Max Algorithm was developed in [25] to identify the optimum solution.
However, the load balancing efficiency was not sufficient.

3. Proposal methodology. In cloud computing, dynamically
provisioning the resources for applications is a key and challenging task.
However, cloud providers face resource management concerns due to
inconsistent workloads in heterogeneous environments. The cloud service
provider focuses on resource consumption, while the cloud user aims to
achieve a shorter makespan time. Therefore, achieving load balancing is a
significant parameter for effective task execution to obtain optimal
consumption of cloud resources. A new RITLBDNL method is developed
for efficient load balancing in a cloud computing environment. Figure 1
depicts a diagram of the RITLBDNL method for efficient LB in the cloud.

E Cloud tasks list
@ Number of tasks
. Cloud server

Users

Deep leaming technique

Ruzicka Throttled Load "
Similarity Index Balancing Taskmigration —
]
U Efficient load balancing among virtual machine

Fig. 1. Architecture diagram of the proposed RITLBDNL technique
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Figure I demonstrates the RITLBDNL technique uses the deep
learning concept for efficient load balancing in the cloud. The four
components as cloud user (U), cloud server (CS), load balancer (LB), and
virtual machines (V},,) included in the above figure. The working mechanism
of the RITLBDNL model uses deep neural learning with several layers. The
technique collects the number of cloud user requests or tasks. Ruzicka
Similarity Index is utilized in hidden layer 1 to examine the virtual machine
resource status. In hidden layer 2, the workload from heavily loaded virtual
machines to less loaded ones is distributed to perform task migration by
Throttled Load Balancing. In this way, throughput is improved and
response time and makespan are minimized.

3.1. System model. It involves four key entities namely cloud
user (U), cloud server (CS), load balancer (LB), and virtual machines (1,).
Initially, the cloud wuser ‘U’ submits numerous tasks, denoted as
T ={T,,T,, ..., T,}, to the cloud server (CS). CS receives these tasks as of
U. Subsequently, the load balancer within the cloud server analyzes and
determines the status of virtual machines, categorizing them as minimum
loaded, overloaded, as well as balanced load capacity. Once VM statuses
are identified, the load balancer executes task migration using throttled load
balancing with higher efficiency.

__ Request i
| =

Server
Response

Fig. 2. Overview model of the client-server system

h 4

Client

In above Figure 2, the client-server model includes the Server or
Client. The client-server model explains the communication among two
computing entities over a network. A client is a program that creates
requests to a server. A server is a program that responds to those requests.

3.2. Ruzicka Indexive Throttle Load Balanced Deep Neural
Learning. Deep Learning (DL) is a type of ML, which focuses on the
development, and training of Artificial Neural Network (ANN) to perform
some process. The term "deep" refers to the use of Deep Neural Networks
(DNNSs), which contain numerous hidden layers among input as well as
output layers. These networks are referred to as DNNs or DL models.
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Fig. 3. Structures of the deep neural networks

Figure 3 depicts the structure of DNNs. The DNN is a fully
connected feed-forward artificial neural network and it generates a set of
outputs from a set of inputs. A DNN is constructed with three main layers
such as input, hidden (i.e. middle), and output layers. The input and output
layers are always single layers, whereas the middle layer includes two
sublayers for analyzing the given input. Each layer is typically composed of
small individual units called artificial neurons or nodes. The artificial
neuron has the ability to process the given weighted inputs and applies an
activation function and forward output to other nodes in the network. An
input to an artificial neuron is a number of virtual machines (Vm;). The
neuron in one layer is fully connected to the neuron in another layer.

Each connection between neurons has an associated weight, which
determines the strength of the connection. It also has an associated bias. The
equation for a single neuron is expressed mathematically as follows:

Y = F[S], (1
S=Yic,s (Vm; =w) + Q, ()

where Y indicates an output of the neuron, w;; denotes the weight of the
connection between the i*" neuron in the previous layer and the j** neuron
in the current layer, Vm; * w;; denotes a product of the weight (w;;)
associated with the connection between the i*" neuron in the previous layer
and  j®neuron in the current layer, and the input
(Vm; i. e virtual machine) from the i" neuron in the previous layer. From
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(2), ‘Q° indicates a bias term that stores the numeric value as one, F denotes
a sigmoid activation function used to determine whether a neuron is
activated or not, it suggests that the neuron output is binary, typically
representing a binary classification decision (activated or not activated).

1
FISI = o 3)

where F [S]neuron's output with sigmoid activation is passed to the next
layer of neurons

The input is transferred to a hidden layer where the resource
availability of a virtual machine is determined to facilitate efficient load
balancing.

RA (le) = {MemCﬁBaWCi EC! CPUUt'}7 (4)

where RA (Vm;) denotes a resource's availability of the virtual machine that
includes a memory capacity ‘Mem,’, bandwidth capacity ‘BaW;’, energy
capacity ‘E.’ and CPU utilization ‘CPUy;’.

Initially, the memory capacity is determined by calculating the
variance among total available memory as well as utilized memory.

Mem, = Tomeme — CONpyemes Q)

where Mem indicates the memory capacity of the VM and
Topyemc indicates the total memory capacity, Conyeme represents the
utilized memory capacity. Variation between the total memory capacity and
the utilized memory capacity measurement is employed to assess the
present memory status of the VM.

The bandwidth of a virtual machine denotes its capability to handle
the maximum amount of data, typically measured in Mbps (megabits per
second). The current status of bandwidth is determined through
mathematical calculations.

BaW; = BaVM(total) — Bayy (con)> (6)

where BaW, denotes the bandwidth capacity, Bay (total) indicates the total

bandwidth, and Bayy (con) represents the utilized bandwidth. Depending on
the above-said metrics, the current status of the bandwidth capacity is
determined.
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The total energy consumption is calculated depending on the energy
usage of the VM. Energy utilization is measured in kWh. Thus, the energy
capacity of the virtual machine is determined as follows:

Ec = [Totg] — [Cong], @)

where E. represents the energy capacity, Totg indicates the total
energy, Cony denotes the consumed energy.

The CPU utilization time of the VM is computed mathematically by
calculating the variance between the total time and the time spent
processing specific tasks. This calculation helps to assess the efficiency and
resource consumption of the virtual machine during the execution of its
assigned workload.

CPUy, = [Tcpu] - [Ccpu]a (®)

where CPUy; denotes the CPU time, Ty, indicates the total time and
CcpySymbolizes the consumed time of VM.

The proposed RITLBDNL technique finds the resource availability
of a virtual machine based on the energy, bandwidth, memory, and CPU
through the similarity measure. Ruzicka Similarity Index is employed for
discovering the similarity between two sets. It provides a range from 0 to 1.
Ruzicka Similarity Index is used to analyze the VM resource status as well
as categorize VM as OL, minimum loaded and BL. The mathematical
formula for calculating the similarity between the nodes is shown below

B [RA (Vm)) n T)]
g T YRA(VM) +XT—[RA(Vm) nT)]

©)

where ‘B’ denotes a Ruzicka similarity coefficient, RA (V'm;) denotes the
resource availability of the virtual machine and T indicates the threshold
(ie., 0.5),RA(Vm;) N T denotes a mutual dependence between the
resource availability and threshold. The coefficient () provides the output
ranges between 0 and 1. Likewise, similarities of all the VMs are computed
based on the energy, bandwidth, and memory, and CPU using the statistic
similarity coefficient

< 0.5, UL
=0.5, BL, (10)
> 0.5, 0L

B
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where S denotes the output of coefficient. Depend on coefficient outcome,
LB determines over loaded (OL) , under loaded (UL) and balanced load
(BL).

Throttled Load Balancing refers to a type of load balancing
mechanism that includes throttling. Load balancing is the process of
dispensing network traffic or calculating workload across numerous
resources to guarantee no one, virtual node is overloaded. Throttling, in this
context, involves controlling the rate at which certain requests are processed
to manage the load on the system.

Migration of task
Cloud Server
| Sends V,, ID
Sends request
l ¥
Vina
Load balancer Vo
Scan index tahls m
Vi Availability “0° Vs
Vi, Unavailability “1°
vmn

Index table
Fig. 4. Flow Process of throttled load balancing

Figure 4 depicts the flow process of throttled load balancing that
contains cloud server, LB and several V, Viu1, Vinz, Ving, -« - Vipn. Initially, a
number of tasks are sent to CS. Then the server sends requests to the load
balancer to identify the accessibility of the VM.

CS = LB, (11)
where req denotes the request. After receiving the request, the load

balancer maintains a complete list of virtual machines using an index table
and responds with the availability status.
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1; V,,'sunavailable
0; V,,'savailable °

LB —>{ (12)

where the status of 1},,'s is identified through ‘1° and ‘0’.After that, the LB
starts to scan index tables and send the less-loaded and heavily loaded VM
IDs’ to the cloud server. The server performs tasks migration from a heavily
loaded to a less loaded virtual machine. In this way, resource-efficient load
balancing is obtained at the output layer. The algorithm of Ruzicka indexive
Throttle Load Balanced Deep neural learning is given below.

JAleorithm 1: Enzieka indaxiva Throttlz Load Balanesd Dizap neural lzamming

Input: Numbzr of cloud user r2guasts 7). T Tq0 000 Ty, virwal machinss Fmy, Vg, v Fim),
cloud szrvar (C5), loads balanezr (LE),

Output: Incrzasa thaload balaneing sfficizney

Begin
1. Sznd mmber of raquasts ortasks 7, 75, T30 0. T, to C5
1. LE find tharasowrs capeitr of virwal machinz ‘Vm”  -—hidden layer 1

3. Foreach virtusl machins ‘Fm’°

4, Computz the mmltipls rasouress *84 (Fre )" using (3] (8] (71 (8]
s, Wlzasurz the Ruzicka similaritv eozfficiat © §°

6. if (& = 0.5) then

T virtual machinz is classifizd as a ovarload=d

B. elzeif (§ = 0.5) then

8. virtnal machinzis elassifizd as a balancad loadsd

10, elseif (§ < 0.5) then

11. virtual machinz is classifizd as alzss loadad

12, Endif

13, C5 szndr=quastte LB -—hidden layer

14, LE zands virtual machinz availability status to server
15, LE scan thz indax tahlz
18, LE sznds thalzss loadzd and overloadsd virtnal machina IDV s to sarvar
17. C5 parform task migration from ovarloadad to l2ss load=d virtnal machina
18.  Obtain final load balancing at the ontput layer
19, Ecod for

End
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Algorithm 1 described above outlines the process of load balancing
by the Ruzicka Indexive Throttle Load-Balanced Deep Neural Learning
approach. For each incoming task from the user, the load balancer in the
cloud server estimates the resource availability of the VM by Ruzicka Index
function. This function is utilized to calculate the load status of each VM in
the first hidden layer, classifying them as less loaded, overloaded, and
balanced loaded. Subsequently, LB transmits the IDs of the minimum
loaded and overloaded VMs to the cloud server. The server then makes a
decision regarding the immigration of tasks from the overloaded VM to the
less loaded one, focusing on the second hidden layer of deep learning
techniques. As a result, the cloud server efficiently balances the workload
between VMs with minimal time. This approach proves beneficial in
managing a huge number of incoming tasks, leading to minimization of
makespan and an increase in throughput.

4. Experimental setup. Experimental evaluation of RITLBDNL and
conventional methods, such as TS-DT [1], P2BED-C [2], and RL
Approach [3] are implemented using the Java language. To conduct the
experiment, we utilize the Personal Cloud Dataset obtained from
http://cloudspaces.eu/results/datasets. Major intend of the dataset is to
facilitate load balancing. It contains 17 attributes, and 66,245 instances. 17
attributes are row id, account id, file size (task size), operation_time_start,
and so on. Two columns, namely time zone and capped, are excluded from
the analysis. The aforementioned columns are selected for the purpose of
achieving effective load balancing between numerous VMs by big-data CC

5. Performance Analysis. To estimate the performance of
RITLBDNL, a comparative analysis was performed between TS-DT [1],
P2BED-C [2], and RL Approach [3] in load balancing efficiency,
throughput, makespan, response time and memory consumption in Table 1.

Load balancing efficiency: It refers to the ratio of a number of user
requests, which are accurately balanced across all VMs. It is computed as
given below:

correctlybalanceduserrequestes
LBE = 4 n 4 « 100, (13)

where LBE indicates a load balancing efficiency, ‘n’ denotes the total
number of user requests.It is measured in percentage (%).
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Fig. 5. Analysis of load balancing efficiency

Figure 5 provides a graphical illustration of load balancing efficiency
across distinct numbers of user requests ranging from 5,000 to 50,000,
taken from the dataset. Figure 4 compares the results of four different
algorithms, namely RITLBDNL, TS-DT [1], P2BED-C [2], and RL
Approach [3]. It is evident that the RITLBDNL technique yields higher load
balancing efficiency. This observation is validated through statistical
assessment. In an experiment involving 5000 user requests, the RITLBDNL
technique achieved a load balancing efficiency of 99.24%. In contrast, the
efficiency of [1], [2], [3] was observed as 93.7%, 94.24%, and 95.2%,
respectively. Likewise, different results were attained for every method.
Comparing performance outcomes of the proposed method against
conventional techniques, overall comparison outcomes show that the
RITLBDNL technique increases load balancing efficiency by 8% ,7% and
5% than the [1], [2], [3]. The application of the deep learning technique in
RITLBDNL identifies the workload capacity of virtual machines based on
resource availability using the Ruzicka Similarity Index function. By
utilizing the throttle load-balancing algorithm efficiently, balances
workload between VMs, resulting in improved efficiency.

Throughput: it is defined as the ratio of the number of user requests
implemented per unit of time in Table 2. It is computed as follows:

Numberofrequestsexecuted

b= t (seconds) ’ (14)

where ‘TP’ represents throughput, t indicates time in seconds. It is
calculated as requests per second (requests/sec).
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Fig. 6. Analysis of throughput

Figure 6, presented above, illustrates a comparative analysis of
throughput. The analysis highlights that the proposed RITLBDNL
technique achieved enhanced performance. To ensure the robustness of the
RITLBDNL method, ten separate comparisons were conducted for each
method. The average of these ten comparisons reveals that the throughput
performance using the RITLBDNL technique improved by 54%, 46%, 39%
than the [1], [2], [3]. This improvement is achieved through the migration of
tasks from the overloaded VMs to the minimum loaded VMs.
Consequently, these selected resource-efficient, less loaded virtual
machines demonstrate the capability to consistently execute numerous user
requests within a specific time.

Makespan: The metric is determined by the duration a virtual
machine takes to handle a series of user requests in Table 3. It is calculated
as the mathematical dissimilarity among starting as well as completion
times of user-requested tasks.

M, = (tcomplete) - (tstarting)s (15)

where, M represents the makespan, tcompiere indicates request completion
time tspqreingde notes a request for finishing time. It is measured in
milliseconds (ms).
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Fig. 7. Analysis of Makespan

Figure 7 depicts a graphical representation of the makespan for
load balancing using four methods namely RITLBDNL, TS-DT [1],
P2BED-C [2], and RL Approach [3]. The figure illustrates that makespan
increases as the number of user requests increases. This occurs as a huge
number of user requests during the experiment consumes more time,
consequently increasing the makespan. However, in experiments with 5000
user requests, the time taken to complete user requests was only '17ms'
using the RITLBDNL technique. The overall makespan was observed to
be 42ms, 38ms, and 35ms for [1], [2], and [3], respectively. Following the
experiments, various results were examined for every method.
Comprehensive comparison denotes that makespan performance using
RITLBDNL is reduced by 45%, 41%, and 36% compared to the existing
methods. The RITLBDNL technique employs the Ruzicka similarity index
function to analyze the resource status of a VM based on energy,
bandwidth, memory, and CPU. Once a minimum loaded VM is identified,
LB migrates user requests from an overloaded to a less loaded VM. The less
loaded machine requires minimal time to complete the user requests.

Response time: It is defined as the duration it takes to respond user
requested tasks in Table 4.

RT = n* T (transmission + waiting + processing), (16)
where RT indicates a response time, nindicates the number of user

requests, T represents time for broadcasting, waiting, and processing the
user requests. It is measured in milliseconds (ms).
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Fig. 8. Analysis of response time

Figure 8 illustrates experimental outcomes of response time with the
number of user requests, ranging from 5000 to 50000. As the number of
requests enhances, the response time for every method in addition increases.
However, the proposed RITLBDNL technique achieves a lower response
time compared to existing methods. For instance, with 5000 user requests,
the response time for RITLBDNL was observed to be 41.5ms, while
[1],[2], and [3] exhibited response times of 72 ms, 70 ms, and 66 ms,
respectively. The overall performance results of RITLBDNL are then
compared to existing methods, revealing that RITLBDNL minimizes
response time consumption by 31%, 28%, and 26% when compared to [1],
[2], and [3], respectively. This improvement is achieved using throttled load
balancing in the RITLBDNL technique, which effectively performs task
migration from overloaded to less loaded virtual machines. Consequently,
RITLBDNL minimizes both waiting and processing times for user requests.

5. Discussion. This study compares the proposed RITLBDNL and
existing TS-DT [1], P2BED-C [2], and RL Approach [3] based on various
parameters, such as load balancing efficiency, throughput, makespan, and
response time. The main drawbacks of existing methods such as failure to
obtain energy-aware load balancing with a tiny makespan and higher
throughput and the failure to employ a resource-aware scheduling approach
to assign tasks on VMs. Contrary to existing, Deep Neural Learning and
Throttled Load Balancing are utilized in RITLBDNL. By applying this
algorithm, the resource status of a virtual machine is examined to find a less
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loaded virtual machine. By observing the above table, the results of load
balancing efficiency using the proposed RITLBDNL is highly increased
than the other existing methods. Also, the response time and makespan of

RITLBDNL are greatly reduced than the other works.

Table 1. Comparison table of proposed and existing methods

consumption

RITLBDNL
METHOD Technique TS-DT [1] P2BED-C [2] | RL Approach [3]
To improve load .
balancing P2BED-C was To optimize cloud
I To allocate tasks - resource
Contribution performance . utilized for data s .
h using TS-DT utilization using
using deep neural centers
. RL Approach
learning
fmproved Decreased
. throughput and Minimized the ¢ Diminished
Merits energy .
reduced the makespan . response time
consumption
makespan
ralzzlzjﬁziprfelrtrll‘(l)i Energy-aware load | Efficiency of Makespan was
Demerits M balancing was not | the method was | not efficiently

(ms)

. obtained not enhanced reduced
were considered
Load balancing
efficiency (%) 98.55 91.5 92.38 93.57
Throughput 1619.6 1057.9 1113.5 11762
(requests/sec)
Makespan (ms) 46 81 76 70
Response time 117 165.85 160.7 155.80

Table 1 illustrates a comparison of the proposed RITLBDNL

technique and existing TS-DT [1], P2BED-C [2], and RL Approach [3] by
using different metrics. Among the three methods, the proposed PCR-
AMESCSRO technique provides better performance. The load balancing
efficiency was improved by 98.55% using RITLBDNL upon comparison
with the three other existing methods. Also, the response time and
makespan of the proposed RITLBDNL are obtained as 46 ms and 117 ms
which is smaller than the other methods.

6. Conclusion. Balancing the workload is the most important
problem in the cloud owing to its dynamic nature. This study introduces a
RITLBDNL technique which has been developed to tackle the issue of
minimizing makespan and enhancing optimal resource effective load
balancing in the cloud. By utilizing the Ruzicka Similarity Index, the
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cloud's LB determines the virtual machine resource status for detecting
overloaded, less loaded as well as balanced loads. LB performs to dispense
workload from heavily loaded virtual machines to minimum loaded ones
with higher efficiency. The experimental results also prove that the
proposed model has reduced makespan, as well as response time, improved
throughput, and efficiency. Compared with various state-of-the-art models,
the proposed technique is more efficient. The outcomes of this study have
important implications for business applications (i.e., Amazon cloud) to
find and classify the resource-efficient VM to allocate the tasks. The less
loaded machine needs minimum time and makespan to complete the user
requests. Overall, this study provides a valuable contribution to the field of
load balancing using DL, and its proposed technique can be extended to
other domains where novel DL and optimization are used.
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YK 004 DOI 10.15622/ia.23.6.9

M. B1Akkus, T. PABU, C. [TAHHUP APOKUAPAK
HUHJEKCHOE PEI'YJIMPYEMOE I'N'TYBOKOE HEMPOHHOE
OBYUYEHHE PYKHUUYKHU 1JI5I PECYPCOI®DPEKTUBHOMN
BAJJAHCUPOBKH HAT'PY3KH B OBJIAYHOM CPEJIE

Onnaxxuss M., Pasu T., Iannup Apoxuapaosxc C. WHaeKkcHoe peryjiupyemoe riydoxoe
HelipoHHoe o0ydenue Py:kuuku 1js pecypcodpdexkTuBHOH 0a1aHCHPOBKH HATPY3KH B
00.1a4HOIi cpene.

AnHoTtauusi. O6naunbie Borancienus (CC) ABISIOTCS M3BECTHOI TEXHOIOTHEH, KOTOpast
MO3BOJISIET MOJIB30BATEISAM U OPTaHH3aIMAM IIOIydaTh JOCTYI K CEPBUCAM B COOTBETCTBHUU C
uX TpeOOBaHMSMH. OTOT METOA BBIUHCICHUH IpeAnaracT XpaHWIUIe, IUaTGOpMBI
pa3BepThIBaHUA M IOAXONAIIMI IOCTyn K BeO-cepBucaM uepe3 MHTEpHeT. banmaHcupoBka
HArpy3KH SIBIISETCS BAaXKHBIM (DAaKTOPOM ONTHMH3AIHMU BEMHUCIHUTENBHBIX DPECypcoB U
xpaHenus. OHa HampaBlIeHa HAa pa3yMHOE paclpeleneHue padouel Harpy3Ku MeXTy KaxIoi
BUPTYaIbHOI ~MamMHOW. bbUlO  pa3spaboTaHO HECKOJIBKO TPAJMIMOHHBIX  METOIOB
0aMaHCHPOBKM HArpy3Kd, KOTOpble JOCTyHHBI B juTeparype. OmHAKO JOCTIDKEHHE
3¢ QeKkTUBHONW 0aTaHCHPOBKM HArpy3KH C MHHHUMAaJIbHBIM BpPEMEHEM 3aBEpLICHUS U
YIYYIICHHOH IPONMYCKHON CIIOCOOHOCTBIO OCTAaeTCsl CIOKHOW 3amadeil. J{is MOBBIMICHUS
3¢ PeKTUBHOCTH OalaHCUPOBKM HArpy3kd ObUT pa3paboTaH HOBBI METOJ, M3BECTHBIH Kak
MHJCKCHPOBAHHBIA PEryIUpyeMblii MeToj Pykudku OamaHCHpOBKH HAarpy3ku ITyOOKOTrO
Hetiponnoro ooydenus (RITLBDNL). OcuoBnas uens RITLBDNL coctouT B TOM, YTOOBI
MOBBICUTH HPOITyCKHYIO CIIOCOOHOCTh M MHHHMH3UPOBATh BpEMs BBIIONHECHHS DPaOOTHl B
obnake. B merone RITLBDNL mozenb riayO0oKoro HEHpOHHOrO aHalu3a BKIIIOYAET BXOIHOU
CIIOM, B4 CKPBITBIX CJOS M BBIXOAHOM CIOH IUIsl YIY4YIICHUS INPOU3BOAUTEIBHOCTH
OalaHCHPOBKU Harpy3ku. Ha BXOIHOM ciioe coOMparoTcs 3a/auu IOJb30BaTeleid obsiaka u
OTHPABIISIOTCSA Ha CKPBITHIA cinodd 1. Ha aToM cioe 0anaHCHpOBIIMK HAarpy3kd B OOJaYyHOM
cepBepe AHAIM3HPYET COCTOSHHE PECypcoB BHPTYaJIbHOH MAIIMHBI B 3aBHCHMOCTH OT
9HEPruM, NPOMYCKHOH cnocoOHocTH, oObeMa mamsatu u LIIY ¢ ucnonb3oBaHueM HHIEKCA
cxozncTBa Pyxuuku. 3ateM BUPTyallbHbIE MAIIUHBI KIACCU(DUIUPYIOTCS KaK IeperpykKeHHbIe,
ci1abo 3arpyKeHHbIe WIN cOalaHCHpOBaHHBIE. Pe3yIbTaThl aHANIN3a NEPEeNaroTCs Ha CKPBITHI
cIof 2, TJe BBIIONHACTCA perynupyeMas OalaHCHPOBKAa HArpy3KH I paclpeeneHust
HArpy3KH C CHJBHO 3arpy)KEHHBIX BHPTYaJbHBIX MAIIMH HAa MHHHMAJbHO 3arpy’KeHHBIE.
Oomaunblii cepBep dG(EeKTUBHO pacmpenessier padodylo Harpy3Ky MEKAy BHPTYaIbHBIMHU
MalIuHaMU ¢ 00j1ee BBICOKOH MPOIYCKHOU COCOOHOCTBIO U MEHBIIUM BPEeMEHEM OTKIIMKA IS
00pabOTKM OTPOMHOTO KOJNMYECTBA BXOAAIMX 3amad. Jlnsd OLEHKH pe3ynbTaToB
9KCIIEPUMEHTOB TIPEUTOKEHHBIH METOJ{ CPAaBHUBACTCSI C NPYTHMH CYIIECTBYIOIIMI METOIaMHI
OalaHCUPOBKU Harpy3ku. PesynbraT mokaspiBaer, 4yto npemioxeHHblid merox RITLBDNL
obecneunBacT 3(PeKTHBHOCTh OATAHCHPOBKM HArpy3KH C YBEIHYCHHEM Ha 7%, HPOIYCKHON
CIOCOOHOCTHIO Ha 46%, yMEHbIIEHHEM BpEeMEeHH 3aBepIlcHus Ha 41% 1 BpeMeHH OTKINKA Ha
28% 110 CpaBHEHHUIO C TPAJULMOHHBIMU METOJAMH.

KiioueBble ciaoBa: oOnauHble BBIYUCICHUS, OaJaHCHPOBKA HATPY3KH, ITyOOKOe
o0ydeHne, HHIEKC CXOACTBA Pyxiuxu, perynupyemas 0alaHCHPOBKa HAIPY3KH.
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