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Abstract. This paper proposes a hybrid approach that combines intelligent algorithms
and modular design to solve a foraging problem within the context of swarm robotics. Deep
reinforcement learning (RL) and particle swarm optimization (PSO) are deployed in the proposed
modular architecture. They are utilized to search for many resources that vary in size and exhibit a
dynamic nature with unpredictable movements. Additionally, they transport the collected resources
to the nest. The swarm comprises 8 E-Puck mobile robots, each equipped with light sensors. The
proposed system is built on a 3D environment using the Webots simulator. Through a modular
approach, we address complex foraging challenges characterized by a non-static environment
and objectives. This architecture enhances manageability, reduces computational demands, and
facilitates debugging processes. Our simulations reveal that the RL-based model outperforms
PSO in terms of task completion time, efficiency in collecting resources, and adaptability to
dynamic environments, including moving targets. Notably, robots equipped with RL demonstrate
enhanced individual learning and decision-making abilities, enabling a level of autonomy that
fosters collective swarm intelligence. In PSO, the individual behavior of the robots is more heavily
influenced by the collective knowledge of the swarm. The findings highlight the effectiveness
of a modular design and deep RL for advancing autonomous robotic systems in complex and
unpredictable environments.

Keywords: swarm robotics, foraging task, modular design, reinforcement learning, particle
swarm optimization.

1. Introduction. Swarm robotics realizes the principle of decentralized
control among multiple robots, drawing inspiration from natural phenomena
where collective behaviors emerge from simple individual actions, such as in
ant colonies or bird flocks. This field leverages the scalability, robustness, and
flexibility inherent to swarms, which represent the main features of swarm
robots’ systems. They allow them to solve complex tasks more efficiently
than individuals do [1]. To achieve the goal required of robots in the swarm
concept, the robots should act with a high level of autonomy and have local
knowledge about their environment. Namely, a microscopic view. While
coordination and communication among robots reflect the concept of collective
behavior, which arises from the aggregation of simple rules followed by
individual robots, leading to emergent behaviors that require no centralized
oversight, this represents the macroscopic level [2]. For example, aggregation
behavior occurs when robots come together to form clusters or groups while
foraging behavior emerges during the coordinated effort of the robots to search,
identify, collect, and transport resources to a destination called the nest. Other
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examples include collective searching and exploration, pattern formation, and
others [3]. In general, collective behavior is obtained by various algorithms that
enable individual robots to make decisions based on local perception and the
cumulative contribution of all robots in achieving the desired outcomes. This
involves communication and collaboration among the robots as well. Most of
the methods used in swarm engineering can be divided into two basic categories:
Behavioral design methods like the probabilistic finite state machine (PFSM)
method, where the robots’ behaviors are broken down into a finite number
of states and transitions between these states. These transitions are triggered
by events or conditions [4]. On the other hand, automatic design methods
such as RL and PSO stand out. RL fosters the robot to learn the required
behavior at a microscopic level through interaction with the environment. By
deploying RL, the robots learn and adapt their actions through a continuous
process, gradually refining their policies. Conversely, PSO is a mathematical
model that reflects social behavioral patterns and guides individuals within the
swarm toward optimal solutions [5]. Each method has its own set of advantages.
RL is renowned for its adaptability to the environment’s changes, enhancing
autonomy and decision-making abilities, while PSO is lauded for its simplicity
and straightforward implementation. Nonetheless, RL’s computational cost and
PSO’s potential ineffectiveness in dynamic settings pose significant challenges.
Many RL algorithms can potentially be used for generating collective behavior,
like Deep-Q networks [6], SARSA, and other value-based methods [7]. In
addition to policy-based methods including DDPG [8], PPO, and others.
Proximal Policy Optimization (PPO) is particularly favored due to its efficient
balance between sample efficiency and implementation simplicity, making
it well-suited for the dynamic and uncertain scenarios often encountered in
swarm robotics [9].

The swarm architecture and design process, including the collective
behavior, depend on several factors, such as the nature of the task required by
a swarm, the environment, whether it’s dynamic or static, and others. This
process emphasizes the importance of understanding both the microscopic
(individual agents and interactions) and macroscopic (collective behavior
and task achievement) in creating effective swarm systems. For example,
one of the challenges in creating an effective foraging swarm is adapting
methods for searching and navigation in a continuous environment. Another
challenge is ensuring the scalability of learned behaviors for different swarm
sizes and configurations. Addressing the challenges requires sophisticated and
adaptive algorithms that can effectively deal with the dynamic nature of swarm
challenges.
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2. Related works. The integration of the RL approach in swarm
robotics offers significant benefits such as adaptability. This allows robots
to adjust their behavior to dynamic environments through trial and error. It
enhances autonomy by allowing robots to make self-decisions until they learn
the optimal strategies. Moreover, RL adapts with scalability and flexibility,
making the swarm applicable across various tasks [10, 11]. Particularly,
RL in the foraging task optimizes resource collection and exploration,
contributing to more efficient environmental mapping and more robust
mission execution. However, some challenges persist, including managing
the complexity of dynamic environments, ensuring the scalability of learned
behaviors, overcoming communication limitations, balancing exploration
with exploitation, and addressing energy and computational constraints [12].
Most recent studies have been conducted on strategies for deploying RL on
generating foraging collective behavior. These challenges are addressed in the
Table 1 with proposed solutions encompassing a spectrum of strategies.

Table 1. Challenges of deploying RL in foraging swarms.

Challenge Description

Complexity of Dynamic Environments Adapting to unpredictable changes, including
moving targets and obstacles.

Scalability of Learning Applying learned behaviors to swarms of
varying sizes and compositions.

Communication Limitations Coordinating actions without overwhelming
the network or centralized control.

Balancing Exploration and Exploitation Optimizing foraging efficiency by finding the
right balance.

Energy and Computational Constraints Managing energy consumption and
computational demands for efficient
operation.

Many researchers address the "complexity of dynamic environments"
challenge in swarm robotics through various approaches. One study developed
a macroscopic foraging behavior using deep RL, combined with microscopic
behaviors controlled by fuzzy logic for obstacle avoidance and low-level
navigation. This hybrid approach simplifies the RL search space, and achieves
robust and scalable foraging behavior in swarms, even in scenarios that are
not encountered during the training phase [13]. Another paper optimized
the foraging strategy for active particles using Multi-Agent Reinforcement
Learning (MARL). It addressed the problem by enabling the active particles
to locate and efficiently forage from randomly occurring food sources. The
paper demonstrated that individual optimization could lead to the emergence
of collective behaviors that are beneficial to the swarm’s overall foraging
efficiency [14]. Additionally, a distinct approach utilizes deep RL with

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 53
ISSN 2713-3206 (online) www.ia.spcras.ru



POBOTOTEXHUKA, ABTOMATU3ALIMA 1 CUCTEMBI YIIPABJIEHUA

curriculum learning to sequentially tackle navigation tasks, enhancing learning
efficiency and adaptability to the environment. These methods collectively
demonstrate the potential of advanced computational strategies to navigate and
adapt to the uncertainty of dynamic environments [15].

Studies have addressed the scalability challenge by proposing various
strategies. In [16], the authors focused on improving the system performance
without increasing the complexity of individual robots or the need for
heavy communication among them. They proposed leveraging simple,
decentralized interactions among robots to achieve complex tasks. Also, [17]
proposed a self-organizing task allocation model that enables swarm robots
to dynamically distribute complex foraging tasks. This approach utilizes a
response threshold model, which ensures efficient task allocation without
the need for centralized control or extensive communication. It guarantees
robust performance under varying conditions by effectively managing task
distribution through local interactions. This makes it a scalable solution
for complex swarm robotics applications. In addressing the challenges
of communication limitations within swarm robotics, researchers have
highlighted the development of innovative solutions to enhance the robustness
and efficiency of systems in constrained communication environments. These
strategies include the use of federated learning and deep RL to improve
generalization and performance [8], alongside the adoption of biologically
inspired communication mechanisms that enable decentralized operations [18].
These approaches significantly enhance the adaptability of swarm systems to
dynamic conditions without the need for complex individual robot capabilities.
For balancing exploration and exploitation, researchers have explored methods
like Mutual-Information Upper Confidence Bound (MI-UCB) [19] and virtual
pheromone mechanisms [20]. MI-UCB enhances drone coordination through
decentralized Monte Carlo Tree Search. It improves surveillance performance
by balancing information gain with reward maximization. Meanwhile, the
use of virtual pheromones allows minimalist agents to effectively switch
between exploring new resources and exploiting known ones. Finally, [21]
conducted a study on the challenge of energy and computational constraints. It
proposed a mobile edge computing solution integrated with a mobility-aware
deep RL model for computation considerations. This approach reduces the
computational cost of the robots, allowing for energy-efficient operation while
meeting computation latency requirements. Compared to approaches that
individually address challenges using deep RL with fuzzy logic, MARL,
MI-UCB, curriculum learning, and others, our research emphasizes the
advantages of a modular approach combined with the adaptability and
efficiency of the PPO in dynamic environments. It enhances manageability,
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adaptability, and efficiency in non-static environments. Specifically, it
overcomes the observed limitations by providing an adaptive system that
simplifies the debugging and computational demands, showcasing superior
performance in terms of task completion and resource collection. Our
approach aims to achieve individual learning and decision-making capabilities
within a collective swarm intelligence framework.

3. System Description

3.1. Environment setup and system structure. The swarm system
was implemented in a 3D robot simulator called Webots [22] where the
E-Puck mobile robot was selected to form the swarm. A foraging collective
behavior was produced to search for small and big boxes through the
environment and then transport them to the nest. This behavior was evaluated
through the environment as shown in Figure 1. The dimensions of the
workspace were defined as 3 x 3m?, forming a square area surrounded by
four walls. The parameters of E-Puck robots were set as follows: linear
velocity V. = [0,0.25]m/s, angular velocity W = [—3.14,3.14]rad /s, and
light sensors’ readings LSy, LS7 corresponded to the light intensity [0,4095].

Fig. 1. Foraging environment

3.2. Modular Design. The system’s modular design segregates the
foraging task into discrete, manageable components, as shown in Figure 2:

— Searching: robots use light sensors to locate boxes, which emit light
at varying intensities using PPO or PSO.

— Gripping: once a box is located, robots catch the box.

— Waiting: this state is for big boxes which require cooperative effort.

— Transporting: robots navigate back to the nest using PPO.

— Release: upon reaching the nest, robots release the box.

— Return: robots return to the searching phase, creating a continuous
operational loop.
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Fig. 2. Modular design for foraging swarm
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In Figure 2, at the beginning, the system initializes the positions of all
the entities involved: the robots, the foraging boxes (targets), and the nest. After
initialization, the robots start the search phase. This first phase uses a PPO
model or PSO algorithm specifically tuned for the search task. The algorithm
guides the robots towards the targets, based on inputs from light sensors. These
sensors assume that the boxes emit light, making them detectable. After finding
a box, a decision determines the next steps based on the size of the box. If the
box is small, a single robot can retrieve it. If the box is big, the robot waits
until another robot arrives to help, ensuring cooperative transportation. This
reflects a real-world situation where tasks may require different levels of effort
and collaboration. After catching the box, the robots use another PPO model
for navigation to return to the nest. This model processes the distance and
angle between the robot and the nest to optimize the path. After successful
delivery, the robot checks if any boxes are still uncollected. If so, it reverts to
the search phase, creating a cycle of the foraging process. Once all targets have
been retrieved, the simulation ends.

3.3. PPO architecture. It is used in the searching and transporting
phases, chosen for its stability and robust performance in environments with
high uncertainty. PPO operates via a policy gradient method that maximizes
an objective function by using a clipped surrogate objective to keep updates
stable. The main architecture of the PPO neural networks, consisting of an
actor and a critic with fully connected layers, are shown in Figure 3.

State Vector
For searching S=[LS0, LS1,..., LS7]
For transporting S=[D, 6]
Actions
Ls0 —> speed 1
L6 \ / Ls1 i - —>» Advantage
\ A —> speed?2
[ T2
Sx128x64x32x2 FC Sx128x64x32x2 FC

PPO Network

v

[ Update networks' weights by PPO ]

l Gussian process action I

Fig. 3. PPO architecture
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The problem is formulated as a MDP represented by the tuple (S, A, T,
R, 7). The state space S comprised of light sensor readings during searching
phase in addition to the distance between each robot and the nest D, and the
angle between the robot and the nest 6 in the transport phase. The action
space A included the two velocities of the left and right motors. The transition
function T describes the dynamics of the system, while the reward function R
provides feedback based on the achieved objectives.

3.3.1. PPO Searching. The PPO’s actor-critic networks receive input
from the light sensors and outputs wheel velocities, adjusting the robot’s
trajectory towards the light source. A shaping reward is provided based on
the change in light intensity, encouraging the robot to move towards brighter
areas, i.e., closer to the boxes. The reward function R(z) at time # is given as in
Equation 1, 2:

—1 —1
(LY — LYy 4 (LY — Lsi D)
2

R(I)Z +rb0x(t)7 (1)

1.1 if LS} > FindThresholdsearehing
Poox (t) = ¢ 1.1 if LSY) > FindThresholdearching - (2)
0 otherwise

where LS(()I> s LSSO — the normalized current readings of light sensors 0 and 7,
respectively, at time ¢,
LSgil), LSSFI) — the previous normalized readings of light sensors 0 and 7,
respectively, at time ¢ — 1,
FindThresholdsearching — the threshold value of the light sensor where the box
is found. The normalized readings sensors are more than 0.85 that means the
robot reaches the boundray of the box. It is defined experimentally,
Fpox (f) — the additional reward when the robot finds the box. The common
approach to choose values of rewards likel.1 are defined experimentally to fit
the environment.

3.3.2. PPO in Transporting. For transporting phase, the inputs of the
PPO network are the robot’s current distance and angle relative to the nest,
with outputs modifying the wheel velocities to navigate the nest effectively.
Rewards are sparse for successful delivery as in Equation 3, and the shaping
method for leveraging the experience each time step to speed up the learning

58 Wudopmaruka u aBromatuzams. 2025. Tom 24 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru



ROBOTICS, AUTOMATION AND CONTROL SYSTEMS

process by considering the angle and the distance to know if the robot is in the
direction of the nest or not as in Equation 4.

— Reward in case of collaboration is not required (one robot is
enough to transport a small box to the nest):

0.1 if deyrrent < FindThreshold
Inest = . ) (3)
0 otherwise
cos( o,
reward = (dprev — deurrent) + Tnest + $7 (4)

where ryest — the obtained reward when robot reaches the nest.
FindThreshold — the Threshold to consider that the robot inside the nest. When
the value of Threshold is less than 0.2. The nest circle has a radius 0.2 so when
the distance between the robot and the center of the nest less than 0.2, the robot
18 in the nest,

deurrent — the normalized distance between the robot and the nest at time t with
[0,3],

dprev — the normalized distance between the robot and the nest at time t-1 with
[0,3],

Otcurrent — the angle between the robot and the nest with [0,27].

This overall reward is designed to incentivize the robot to decrease its
distance to the target (higher reward for reduced distance) and to orient itself
towards the target (using the cosine of the angle).

— Reward in case of collaboration is required (two robots have to
transport a big box to the nest together: Distance reward (dis,eyqrq): When
another robot (a "friend") is present within a certain distance range, a positive
or negative reward is given based on the distance between the two robots
(drobors), as in Equation 5.

0.01 if 0.035 < dropots < 0.1
diSreward = § —0.001  if dygpors < 0.035 , (5)
- % otherwise

when the calculated Euclidian distance between two robots is between 0.035
and 0.1, the two robots are rewarded for learning to stay together. They are
punished if they get closer to less than 0.035 or go farther from each other. All
numerical values are chosen by the trial-error approach. Nest Reward (7,e5): @
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reward is given when the current distance to the nest (dgyyrens) 1S less than a
defined threshold (Threshold), as in Equation 6.

0.15  if deyrrent < Threshold and friend is present
Tnest = . (6)

0 otherwise

The overall reward includes the difference in distance to the nest between
the previous and current time step, the nest reward, the cosine of the current
angle to the nest, and the distance reward,as in Equation 7. Let d,., be the
previous distance to the nest, and d,y.n; be the current distance to the nest,
and Oyrren: be the current angle to the nest.

Ccos ( acurrent)

1000 +disreward- (7)

reward = (dprev - dcurrent) + Fnest +

3.4. PSO for comparative analysis. We implemented PSO to compare
the performance. PSO is a biologically inspired computational algorithm that
simulates the social behavior of organisms. Robots adjust their trajectory based
on the collective movement of the swarm, aiming to find the optimal path
by sharing information about individual successes. The PSO pseudo-code is
shown in Algorithm 1, where r1, 72 — random values generally used to maintain
diversity in the swarm’s search behavior:

Vrightmotor = V+W+V,, (8)

Vieftmotor = V+W+V, (9)

V, — Avoiding speed for right wheel.
V; — Avoiding speed for left wheel.
W — Turning velocity.

V — Linear velocity.
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Algorithm 1. PSO algorithm

Initialize the environment and robots with positions and velocities
Define fitness function < The average of the values of the sensors
[LSo,LS1,LSg,LS7].
repeat
for each robot do
Evaluate robot fitness using fitness function
if current robot fitness is better than previous best robot fitness then
Update robot best position to current position
end if
GET all robots fitness and positions
Update global best position according to best robot fitness
end for
for each robot do
Definew =0.7,c1=2,c2=2
Update robot velocity using equation:
v = w X v+ cl xrl x (robotbest — current position) + ¢2 x r2 x
(global best — current position)
Update robot position using equation:
position = position + velocity
Calculate the linear velocity V <— Distance to the new position
Calculate the turning velocity W <— Angle to the new position
Calculate the avoiding speed for each wheel VI, Vr
Apply left motor speed <~V +W 4+ VI
Apply right motor speed <~V +W +Vr
end for
until robot reaches the box

4. Results and discussion. The proposed modular design, as outlined
in the flowchart in Figure 2, leverages the application of PPO and PSO to
enhance decision-making during the searching and navigation. Simultaneously,
it maintains simplicity for less computation-intensive tasks, like gripping or
waiting. This approach not only increases computational efficiency but also
allows for specialized optimization when necessary. The modular approach
offers multiple advantages:

— Specialized Optimization: PPO is deployed in modules that
significantly influence task performance, such as search and transportation.
This approach ensures that PPO’s strengths are effectively utilized.

— Computational Efficiency: As a computationally intensive algorithm,
the selective implementation of PPO optimizes the computational load, which
is crucial for managing a large swarm of robots with limited processing power.
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— Simplicity in Less Complex Modules: Certain tasks that do not
require complex decision-making, such as gripping or releasing objects, benefit
from simpler control mechanisms, facilitating ease of programming and system
maintenance.

— Reduced Overfitting Risk: Limiting the usage of PPO to more
complex tasks mitigates the risk of overfitting, ensuring that the model remains
generalizable and applicable to diverse scenarios.

— Faster Training Time: By focusing on specific modules, PPO reduces
the overall training time, speeding up the system deployment and adaptation.

— Maintaining Predictability in Certain Behaviors: Some modules
prioritize predictability and reliability over adaptability, where rule-based
behaviors are more appropriate.

— Reward Design: The reward structure is carefully crafted to align
with the objectives of each module. Designing the reward function just for two
phases ensures that the main objective of the system will be achieved. It will
prevent the system from engaging in unintended behaviors.

— End-to-end System Autonomy: An end-to-end system that includes
one deep RL architecture to learn all behaviors like navigation, searching,
gripping, and others for all robots’ swarm. Relying solely on autonomous
decision-making may not yield optimal efficiency. Therefore, combining
autonomous and rule-based modules can create a more resilient system.

4.1. Foraging performance (RL vs PSO). The provided 3D
visualizations in Figure 4 demonstrate the foraging behavior’s characteristics
of the swarm driven by PSO-PPO and PPO-PPO in addition to neumircal
samples given in the Table 2.

Table 2. Foraging performance metrics

Retrieved items PPO-PPO PSO-PPO
Time Average Time Average
(sec) Path (m) (sec) Path (m)
1 13.024 0.726 7.552 0.377
2 13.696 0.774 25.024 1.173
3 27.712 1.767 36.928 1.719
4 33.92 2.243 78.08 3.513
5 36.512 2.434 98.112 4.451
6 59.488 4.129 125.92 5.725
7 61.408 4.268 163.776 7.436
8 69.92 4.942 181.6 8.256
9 72.192 5.126 272.64 12.051
10 88.096 6.305 320.096 14.211
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3D Visualization of Swarm Foraging Performance o

Number of Items Retrieved

a) PSO-PPO-driven swarm

3D Visualization of Swarm Foraging Performance
10

Mumber of Items Retrieved

b) PPO-PPO-driven swarm
Fig. 4. Foraging performance
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In both graphs 4-a and 4-b, number of retrieved items N in the proposed
problem is in the range [0, 10]. AT is the time required to collect all items and
transport them to the nest. Py is the average path length of the entire swarm
needed to retrieve all items. Efficiency E is conceptualized as the number of
items retrieved per unit of time and effort. To calculate efficiency, we can use
the change in time AT, the average path lenght Py, and the number of items
retrieved N, as in Equation 10.

N

E=—" . (10)
AT x Py

Based on Equation 10:
Eppo_ppo = 10/(88.096 x 6.31) = 18 x 1073,
Epso_ppo = 10/(320.096 x 14.21) = 2.19 x 1073,

The PPO-PPO-driven swarm has outperformed the PSO-PPO-driven
swarm in terms of efficiency. Based on the data, it seems that the PPO model
allows the swarm to retrieve items faster, as indicated by the steeper slope
of the number of items over time. Additionally, the average path lengths
taken are shorter for the PPO system. On the other hand, the PSO graph
demonstrates a less steep slope, indicating a slower completation time in the
foraging task. These results highlight the superiority of the PPO in rapidly
adapting and efficiently solving the foraging task. The PPO not only learns
faster but also appears to sustain its performance. This is due to PPO’s policy
gradient optimization, which allows fine-tuning adjustments to the robot’s
actions based on the received rewards, leading to a refined and more effective
strategy. PSO, on the other hand, tends to converge to local optima and lacks
the ability to fine-tune. Another reason is that PSO relies on collective swarm
dynamics, which can also be a limitation if individual robots do not effectively
follow the swarm’s behavior or share information.

4.2. Dynamic behavior and autonomy. Based on the two sets of
figures provided in Figure 5 and Figure 6, each shows the behavior of a swarm
in a dynamic foraging task to collect two moving boxes. In the proposed
dynamic situation with moving green boxes, the robots follow each box until
they grip it. The box turns its color to red as an indicator of gripping and
stopping its dynamic nature. Then, it is transported to the nest (yellow area).
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tl = 0 sec

t2 = 13.088sec t3 = 43.296sec

t4 = 281.248 sec t5 = 304.192 sec

Fig. 5. Dynamic Forgaing performance/ PSO-driven swarm

tl = 0 sec t2 = 5.28 sec t3 = 12.896 sec
t4 = 30.048 sec t5 = 39.52 sec

Fig. 6. Dynamic Forgaing performance/RL-driven swarm
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Behavior analysis for PSO:

— Initial response (t1-t2): The swarm starts in the nest as an initial
position and quickly follows one moving box, indicating a strong initial
collective drive and less autonomy.

— Mid-phase (t3): As the swarm finds the green box, it clusters around
it. Robots’ movements are heavily influenced by their surroundings.

— Gripping action (t4-t5): When the box is gripped (indicated by a
change in color to red), the robot that catches the box returns to the nest. The
robot releases the box and returns to PSO mode. This demonstrates that PSO
can localize and transport the target in dynamic scenarios.

Behavior analysis for RL:

— Initial Response (t1-t2): The RL swarm starts with a distributed,
exploratory pattern with no immediate convergence, suggesting an exploratory
approach. Which allows the swarm to follow both moving boxes at the same
time with a high level of autonomy.

— Mid-phase (t3): The swarm gradually adjusts to the moving target,
taking less time to locate the box compared to the PSO, which represents a
better response to changes in the target’s movement.

— Gripping action (t3-t4-t5): Once the box has been gripped, the robot
navigates to the nest with a gripped box. It releases it and returns to the PPO
searching box.

5. Conclusion. This study addresses a dynamic foraging task for a
swarm of mobile robots. The proposed solution combines a modular design
for handling processes like gripping, waiting for aid in carrying the big box,
and releasing the box in the nest, with an intelligence algorithm for driving the
searching and transportation processes, such as deep RL and PSO. This model
maintains simplicity to allow for specialized optimization when necessary,
like searching and transporting in a continuous environment while preventing
overfitting. It introduces a module for testing various algorithms. Therefore, a
comparative analysis was conducted on PPO and PSO. The results revealed
that PPO achieved a faster retrieval rate, as well as better efficiency due to
its high adaptability and autonomy. In contrast, PSO did not demonstrate the
same level of efficiency or autonomy. The findings of this research emphasize
the importance of selecting appropriate optimization algorithms depending
on the specific task requirements. For tasks that require rapid adaptation and
sustainable performance in dynamic environments, RL-PPO stands out as the
most effective technique. The study also emphasizes the benefits of a modular
approach to swarm robotics, offering a foundation for future developments in
this field that require both efficiency and flexibility.
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A. XamMmyi, A. UCKAHJIAP, b. KOBAY
JAHAMUNYECKOE ®YPAKUPOBAHUE B POEBOM
POBOTOTEXHHUKE: FI/IBPI/II[HI;IIZ HOJIX0/1 C MO)IYJIBHOﬁ
KOHCTPYKIII/IEFI N I'TYBOKHUM OBYYEHHEM C
HNOJAKPEIIVIEHUEM

Xammyo A., Hexanoap A., Kosau b. [InnaMnueckoe pypakupoBaHue B poeBoil pOOOTOTeXHHKeE:
rHOPHIHBII MOIX0/] ¢ MOAYJIbHOI KOHCTPYKIHEH U IIyOOKHM 00yUYeHHeM ¢ MOJAKPeIIeHueM.

AHHoTamusA. B 370ii cTathe npeiaraeTcsi THOPUAHBIA MOAXOM, KOTOPHIA 0O0bEAUHSIET
UHTEJUICKTyaJIbHble aJITOPUTMBl M MOIYJIbHYIO KOHCTPYKLMIO ULl pelIeHHs] IPOOJIeMbl
(pypaxkupoBaHus B KOHTEKCTE POEBOil poOOTOTEXHUKH. [TTy60KOe 00yUeHHe ¢ MOAKPEIICHUEM
(RL) n ontumusanus post yactull (PSO) ncnonp3yiotes B peiaraeMoii MOAYyJIbHON apXUTEKType.
OHH MCHONB3YIOTCS [Isl TOUCKAa MHOXECTBA PECYypPCOB, KOTOPBIE PA3JIMYaIOTCs MO pa3Mepy U
JEMOHCTPHPYIOT AUHAMUYECKYIO IPHPOLY C HelpeacKa3yeMbIMH IBrokeHHsMH. Kpowme Toro,
OHH TPaHCIOPTUPYIOT COOpaHHbIE pecypchl B THe310. Poii cocTont u3 8§ MOOHIBHEIX pOOOTOB
E-Puck, kaxaplil U3 KOTOPBIX OCHAIIIEH AaTYuKamu cBeta. [Ipeiaraemas cuctema nocTpoeHa
Ha TPeXMEpHOIl cpele C HCIOb30BaHMEM cumyssitopa Webots. C IOMOIIBIO MOIY/IBHOTO
HOIX0/1a MbI PEIIaeM CJIOKHBIE POOJIEMBI (DypaKMPOBAHUS, XapaKTEPH3YIOIIUECs] HECTATUYHO
cpezioii U messMH. DTa apXUTEKTypa MOBBIIIAET yHNpPaBIsAeMOCTb, CHIKAET BBIUHMCIIUTEILHbIE
Tpe6GOBaHK 1 YIPOIIaeT MpoLecchl oTaaky. Haille MosiempoBaHue okasblBaeT, YTO MOJIEIb
Ha ocHoBe RL mpeBocxomutr PSO mno BpemMeHM BhINONHEHHs 3ajad, 3()¢GeKTUBHOCTH cOopa
PECypCOB M aIalTUBHOCTH K JUHAMIYECKUM CpeJiaM, BKJIoYask IBIKYIIMecs Leu. B yacTHocTH,
poGOTHI, OcHareHHbIe RL, JeMOHCTPHPYIOT YiIydllleHHbIe CIIOCOOHOCTH K MHAMBHUAYaIbHOMY
00YYeHHIO U TIPUHSATHIO PEelIeHuid, oOeclieurBasi ypOBeHb AaBTOHOMHH, KOTOPBIil CIIOCOOCTBYET
KOJUIEKTUBHOMY HHTE/UIEKTy posi. B PSO koyulekTHBHbIE 3HaHHS pOsi B OOJbIIEH CTENeHH
BJIUSIIOT HA MHAWBUAYyaJIbHOE MOBefieHne poOoToB. IlomyuyeHHbIe pe3yabTaThl MOAYEPKUBAIOT
3(pPeKTUBHOCTD MOAY/IBHOM KOHCTPYKLIMHU U miyOokoro RL jist mpoBrkeHHs] aBTOHOMHBIX
POOOTU3UPOBAHHBIX CHCTEM B CJIOKHBIX M HETIPEJCKA3yeMbIX YCIOBHSX.

KiroueBble cioBa: poeBass pOOOTOTEXHHMKA, 3ajaya [IOMCKA IHIIM, MOAYJIBHOE
MPOEKTHPOBaHNe, 00y4YeHUe C MOAKPEIICHHeM, ONTUMU3ALMS POsI YaCTHILL.
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