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Abstract. Malware analysis is a critical aspect of cybersecurity, aiming to identify
and differentiate malicious software from benign programmes to protect computer systems
from security threats. Despite advancements in cybersecurity measures, malware continues
to pose significant risks in cyberspace, necessitating accurate and rapid analysis methods.
This paper introduces an innovative approach to malware classification using image analysis,
involving three key phases: converting operation codes into RGB image data, employing a
Generative Adversarial Network (GAN) for synthetic oversampling, and utilising a simplified
Vision Transformer (ViT)-based classifier for image analysis. The method enhances feature
richness and explainability through visual imagery data and addresses imbalanced classification
using GAN-based oversampling techniques. The proposed framework combines the strengths
of convolutional autoencoders, hybrid classifiers, and adapted ViT models to achieve a balance
between accuracy and computational efficiency. As shown in the experiments, our convolutional-
free approach possesses excellent accuracy and precision compared with convolutional models
and outperforms CNN models on two datasets, thanks to the multi-head attention mechanism.
On the Big2015 dataset, our model outperforms other CNN models with an accuracy of 0.8369
and an AUC of 0.9791. Specifically, our model reaches an accuracy of 0.9697 and an F1 score of
0.9702 on MALIMG, which is extraordinary.

Keywords: malware classification, cybersecurity, deep learning, transformer.

1. Introduction. Malware analysis is essential for identifying
malicious software on a host system and distinguishing it from benign
programs. Despite significant advancements in cybersecurity measures,
malware remains a potent hazard in cyberspace. Given the challenges posed
by malware, accurate classification techniques with efficient computation are
vital for safeguarding computers against infection or effectively removing
malware. The field of malware analysis faces two primary challenges: the swift
development and distribution of malware and the use of sophisticated evasion
techniques. The internet has accelerated the development and dissemination of
new malware, creating a vulnerability that can infect numerous systems despite
antivirus defences [1]. To meet the ever-evolving threats of cyberattacks,
recent advancements in research focus on real-time ransomware detection and
combining machine learning techniques in autonomous protection to combat
malware development and distribution and counter sophisticated evasion
techniques.

Understanding malware attacks and their methodologies is crucial for
developing robust defences against such threats, and this logic is utilised in
much of the existing research. Malware files can be analysed using static and
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dynamic approaches. Static analysis involves examining the code without
executing the file, enabling quick diagnosis [2, 3], while dynamic analysis
scrutinises the system and network behaviour of malicious files in a controlled
environment for a more thorough analysis [2, 4]. A newer method, in-memory
analysis, involves analysing memory snapshots of active processes to detect
unusual process activation consistently [4, 5]. In the domain of malware
analysis, numerous techniques have been deployed; traditional methods like
signature-based detection, string analysis, and malware binaries hashing still
retain a certain level of effectiveness. However, the sophisticated nature
of malware necessitates advanced detection strategies, as traditional ML
methods often struggle with high-dimensional data and extracting intricate
patterns. A recent survey [6] highlights that DL often outperforms traditional
ML techniques in malware detection and analysis tasks, attributed to its
automatic feature extraction, capacity to learn non-linear relationships, and
prowess in image analysis. DL has long been employed in network intrusion
detection [7, 8] and emerged as a viable option for extracting insights in malware
analysis, with convolutional neural networks (CNN) gaining popularity due
to their strong capability in feature representation learning and working with
imagery inputs [2, 4, 9]. The progress in contemporary malware analysis
research is indeed valuable; however, the development of malware classification
techniques with better accuracy, fast computation, and generalisability is worth
researching. Overall, effective malware classification should provide highly
accurate performance and scalability to protect against network-wide attacks in
various system environments, as well as demonstrate adaptability to evolving
threat landscapes.

This paper introduces an innovative malware classification method
through image analysis, comprising three phases: translating operation codes
into RGB image data, deploying a Generative Adversarial Network (GAN) for
adaptive synthetic oversampling, and implementing a self-attention block-
based classifier for image analysis. Initially, the binary files of analysed
programmes are transformed into RGB image data for imagery analysis. The
adoption of the 3-channel RGB format is justified due to its widespread
prevalence as the standard colour model in DL frameworks. Pre-trained
CNN s are typically trained on large-scale datasets like ImageNet, and this
standard enables seamless integration of pre-existing models without extensive
modifications, as demonstrated by the practicality of the transfer learning
approach in this context, which simplifies implementation and fine-tuning
processes. To tackle the challenge of imbalanced software sample classification,
we utilise GAN-based oversampling techniques to create synthetic samples
for minority classes. Within this framework, the generator is designed as a
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convolutional autoencoder (AE) with denoising capabilities, pre-trained on
the comprehensive dataset; conversely, the discriminator functions as a hybrid
classifier to discern the “fake” samples produced by the generator; this strategy
mitigates the effects of imbalanced data on model performance. Finally, we
adapt the self-attention blocks for image classification. Instead of employing
the original ViT model with 16 transformer blocks, we adjust its structure and
depth to achieve an equilibrium between accuracy and computational efficiency.
The experiments demonstrate that the light transformer model outperforms all
CNN models in malware classification challenges, with an accuracy of 0.80
on Big2015 and 0.966 on MALIMG, respectively.

The novelty of the proposed methodology lies in its multifaceted
approach to enhancing malware classification via advanced image analysis
techniques. First, the integration of GAN for adaptive synthetic oversampling
is particularly noteworthy; it not only alleviates the prevalent issue of class
imbalance in malware training datasets but does so by generating high-quality,
diverse synthetic samples that improve the robustness of the classifier. The
use of AE as the generator with denoising capabilities refines this process by
ensuring that the synthetic malware images contribute positively to model
training without introducing noise. Secondly, the strategic modification
of the self-attention block-based classifier by optimising the ViT model
structure showcases an advanced approach with both accuracy and efficiency.
This tailored adaptation offers a scalable, efficient solution to contemporary
cybersecurity challenges.

The paper is structured as follows: Section 2 provides a review of
the existing literature on malware analysis, mainly image-based techniques.
Section 3 outlines the proposed workflow and techniques. Section 4 details
the experimental setup, results, and discussions. Finally, Section 5 offers
conclusions and discusses potential future research directions.

2. Related Work. Recent advancements in data mining, machine
learning, and deep learning algorithms have significantly enhanced the
effectiveness of malware analysis. While various deep learning (DL) models
can be utilised for security domains, there is a growing trend towards the
application of AE. In study [10] the authors employed an AE model for
network-based anomaly intrusion detection and malware classification, aiming
to improve performance across different evaluation metrics. Paper [11]
conducted an analysis of Android malware using image classification,
employing AE with three distinct structures: a feed forward network, CNN,
and VGG19, for representation learning. The experimental results underscore
the exceptional representation extraction capabilities of CNN-based models.
In paper [12] the authors introduced a hybrid DL approach that combines
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CNN with bidirectional LSTM for malware detection. Study [13] integrated
attention mechanisms with CNN to direct the model’s focus towards regions
of higher importance for the classification task during the learning process.
Paper [9] developed a malware detection framework using Depthwise
Efficient Attention Module and DenseNet, using spatial pyramid pooling to
improve detection performance and overcome obfuscation sensitivity and
computational overhead. The attention-based approach in these models is built
upon convolutional layers. Despite the promising results in the referenced
paper, there are limitations associated with using convolutional-based
attention mechanisms. CNN may struggle to learn representations from
long-range dependencies due to the constrained receptive field of convolutional
layers, potentially hindering the model’s ability to grasp global context and
relationships among distant elements in the input sequence.

Recently, transfer learning (TL) has emerged as a prevalent methodology
within security research. This technique, by applying knowledge gained from
addressing one issue to a similar and related one, can mitigate the issue of
inadequate training data and enhance the capability to detect malware or
network attacks with great robustness. A notable application of TL involves an
automated vulnerability detection method that converts source code into a
minimal intermediate representation, employing pre-trained convolutional
classifiers for analysis, demonstrating high granularity [14]. Research
employing TL frequently favours CNN-based models, not only for malware but
also for conducting network traffic analysis. Study [15] introduced a ConvNet
model that employs transfer learning for network intrusion detection, markedly
improving the detection accuracy for both known and novel attacks, as verified
through experiments on the NSL-KDD dataset. Additionally, a ConvNet-based
malware detection model, through a novel framework that incorporates a deep
unsupervised pre-training clustering technique, surpassed the performance
of ConvNets with a shallower structure [16]. TL-based approaches often
necessitate deep models, especially for malware imagery analysis. While a
shallow CNN model with merely three convolutional layers and one feed
forward layer may suffice for network intrusion detection due to fewer
features [17], opcode-based malware images typically demand more layers for
effective representation learning. In the Malbert framework [18], a deep model
comprising twelve encoder blocks for representation learning, a pre-classifier
layer for anomaly detection, and a malware classification layer were used.
Despite its complex structure, Malbert surpassed other deep learning models,
such as LSTM, and ensemble learning models, such as Random Forests.
A study comparing pre-trained CNN models for malware classification
underscored the efficacy of TL and examined prevalent challenges like
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over-fitting and high resource consumption, utilising simpler CNN models like
MobileNet and ResNet50 [19]. Ultimately, the study revealed the importance
of employing deep and complex models, where MobileNet showed more stable
outcomes than ResNet50, yet with fewer parameters, indicating a potential
equilibrium between classification efficacy and resource efficiency.

The existing literature underscores the effectiveness of CNNs and AEs
in security domains, particularly malware analysis capabilities. Furthermore,
the adoption of TL strategies, leveraging data from related fields, has been a
cornerstone in advancing security solutions. Building upon the remarkable
progress spotlighted in recent studies on malware detection through DL
techniques, this paper proposes a novel malware analysis framework integrating
self-attention mechanisms and GAN oversamplers with convolutional AE
as generators. This research aims to utilise the inherent strengths of ViT
self-attention frameworks while implementing a relatively lightweight model
structure. Moreover, by employing convolutional AEs within GANs to generate
oversampled data, this study seeks to address the challenges of imbalanced
datasets, a recurrent issue in malware classification tasks.

3. Methodology. Figure 1 illustrates the overall workflow of the
proposed method, which comprises three major steps: malware conversion,
GAN-based oversampling, and image classification. Transforming malware
binaries into images is a common initial step in imagery-based malware
analysis approaches, aimed at visually representing binary data for pattern
detection using image analysis techniques. Malware files in any binary PE
format will have each byte read as an 8-bit unsigned integer before being
organised into an imagery array for further processing. Starting with the
original malware samples, the binary files are opened in binary reading
mode. Each byte of the binary data is then converted into its hexadecimal
representation. Subsequently, the hexadecimal values are used to create
images: in greyscale images, each hexadecimal value corresponds directly
to a pixel value, where 0x00 represents black and OxFF represents white,
with intermediate values translating to shades of grey; in RGB images, the
hexadecimal data is distributed across the three-colour channels (Red, Green,
Blue). Finally, the numeric array dimensions are reshaped to the desired image
array size, typically from 128*128 to 256*256 pixels per channel.
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Fig. 1. The workflow from imagery generation to classification

Following data preparation, the initial step involves analysing the
distribution of different classes. Since certain types of malware are relatively
scarce, data imbalances emerge. To address this issue, a GAN-based
oversampling technique is employed to rectify the skewed class distribution by
generating synthetic samples. Lastly, a self-attention-based convolution-free
image classifier is devised for the classification task. A comprehensive
elaboration of these pivotal stages is provided in the following sub-sections.

3.1. GAN-based Oversampling. GANs are a class of artificial
intelligence algorithms proposed by the authors in [20]. GANs consist of two
neural networks, the generator and the discriminator, which are concurrently
trained in a competitive manner. The generator’s objective is to create data
that closely resembles the original input, while the discriminator’s role
is to distinguish between generated and authentic data. This adversarial
framework compels both networks to enhance their performance, culminating
in the generator producing remarkably realistic results. GANs can acquire
deep representations by propagating back-propagation signals through the
competitive training of the generator (G) and discriminator (D). Through
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pre-training, G learns from original input X and endeavours to generate
synthetic samples X' that closely match X, hence aiming to minimise the
reconstruction loss. On the other hand, D receives both generated data and
original input and aims to identify fake data from the real ones, leading to
the objective of minimising the loss for the binary classification task. The
objective of the loss function of the GAN framework can be represented as
follows:

mci;anaxg(D,G) =E, p[logD(x)] +E_.p () [log(1 = D(G(2)))], (1)

where P(X) represents the distribution of the original data and P(z) is the
distribution of the generator’s noise input z. Function G(z) maps random
noise to generator models with weights learned from original data, namely
learns from X and generates X’; meanwhile, function D(x) represents the
probability of identifying that x is real data rather than generated. During the
optimisation process, the former should be minimised, and the latter should
be maximised. By playing this min-max game, the generator G is forced
to produce more realistic samples matching the training data distribution to
fool the discriminator, allowing GAN to generate new synthetic samples for
minority class enhancement.

A GAN-based oversampling technique could work well with
sequential network traffic data, in which a simple model structure with
only one-dimensional layers is utilised [21]. For malware imagery analysis,
a more complicated model structure is essential. Figure 2 illustrates the
GAN oversampler’s model structures. The generator is designed as a deep
convolutional AE, where both the encoder and decoder comprise two
convolutional blocks. Each encoding block consists of three Conv2D layers
and one Pooling2D layer. In the latent space, an additional convolutional layer
is added. Subsequently, the decoder commences the reconstruction process
in two blocks, each featuring three Conv2D layers and one UpSampling2D
layer. The convolutional layer units are consistent within each block, with
the units across the four blocks specified as “64, 128, 256 for the latent
space, 128, 64,” respectively. Finally, the reconstruction phase yields the
output using a Conv2D layer, producing a 3-channel output representing
the reconstructed image. The discriminator initiates with 128-unit initial
convolutional layers, followed by batch normalisation and global average
pooling. Batch normalisation aids in stabilising the model training and
accelerating convergence. Global Average Pooling, instead of flattening
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the multi-dimensional layers directly, reduces the total parameters and
enhances computational efficiency by leveraging a globally learned parameter
set. Moreover, it directs the network to prioritise crucial features, thereby
improving interpretability and generalisation. Subsequently, a dropout layer
is incorporated to prevent over-fitting, followed by two feed forward layers,
among which the last layer is for binary classification output.
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Fig. 2. The workflow from imagery generation to classification in GAN Oversampler

Algorithm 1 presents the training and oversampling process of
GANOversampler, primarily focusing on enhancing the representation
of minority classes in the dataset. This process generally includes GAN
initialisation, a pre-training generator, and oversampling by training and
applying the discriminator. The input of the oversampler takes feature sets
X _train and label sets y_train as input. During initialisation, the default
minority class threshold is set at 1000, which is adjustable. This quantification
is selected based on the observations across selected experimental datasets, in
which a threshold of 1000 sufficiently equalises the representation of minority
samples. In the oversampling phase, the discriminator differentiates samples
by assessing their predicted probabilities. A threshold of 0.5 is employed
as a critical distinction, where samples above this threshold are deemed
indistinguishable from genuine data by the discriminator. These selected
samples are then used in the oversampling process to enhance minority class
representation. The final outputs of the algorithm are an oversampled feature
set and an oversampled label set.
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Algorithm 1. GANOversampler

1: G = generator()
2: D =discriminator()
3: define GAN(G, D)
4: decide an array of the class id of minorities minority_class_id
5: decide the threshold of minorities threshold = 1000
6: Prepare the input data, feature set X_train and label set y_train
7: Train the discriminator on the original data G. fit(X_train)
8: for i € minority_class_id do
9: Create subset filtering by minority id X (i), y(i)
10: Count the current volume of i class cnt = len(y(i))
11: while cnt < threshold do
12: Generate synthetic samples sample_raw = G.predict(noise)
13: Keep only those samples predicted to be True new_samples =
sample_raw[D.predict(sample_raw) > 0.5]
14: Add new_samples into X _train and y_train and update cnt
15: end while
16: end for

17: Shuflle the updated X_train and y_train

The generator learns the complex distributions and generates new data
instances, while the discriminator evaluates their similarity to real data. This
adversarial process continuously improves the quality of synthetic samples to
closely mimic real data characteristics, demonstrating the generator’s ability
to learn and replicate the target distribution. With a customised threshold
indicating the preferred volume of minorities, the oversampler can generate
synthetic samples of under-represented classes from original volumes to
the desired one, thereby balancing the dataset and providing equal training
opportunities for all classes. Among traditional oversampling methods, simple
random oversampling only copies the original samples. K-nearest-neighbour
(KNN)-based methods like the Synthetic Minority Oversampling Technique
(SMOTE) and the Adaptive Synthetic (ADASYN) fall short when working
with high-dimensional data and can be time-consuming due to the computation
of KNN. GANSs, on the other hand, can navigate these high-dimensional spaces
to produce more accurate and feasible synthetic data. The model is trained
extensively before performing oversampling; hence, it will not be as time-
consuming as KNN-based oversampling methods. Overall, the introduced
oversampling technique excels not only in enhancing the sample size but also
in preserving the quality and diversity of synthetic data, thereby ensuring that
the augmented dataset supports effective model training.
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3.2. Self-attention-based Classifier. As mentioned in the previous
session, while convolutional-based attention mechanisms are effective for
modelling local dependencies, they may struggle to effectively capture and
utilise long-range relationships across the input data. On the other hand,
self-attention mechanisms, as employed in ViT, allow for the modelling
of interactions between all input elements simultaneously without being
constrained by fixed receptive fields. This enables ViT to capture long-range
dependencies more effectively and facilitates better integration of global context
into the model’s representations.

Our study suggests utilising the self-attention mechanism for the
classification of malware imagery. This mechanism was initially introduced in
the transformer model for machine translation [22], comprising an encoder and
a decoder. The encoder consists of stacked self-attention and fully connected
layers, while the decoder integrates multi-head attention over the encoder
output. The attention mechanism employed is known as Scaled Dot-Product
Attention, which calculates dot products of queries and keys, scales them, and
applies a SoftMax function. With several input sets, queries, and keys with
dimensions of d; and values with a dimension of d,, a set of queries can be
packed into Q, K, and V respectively. Afterwards, the attention matrix can be
calculated as follows, in which the scaling factor 1/+/d is to counteract the
potential issue of large value dot products in case of large values of dj.

Attention(Q,K,V) = softmax(QK" /\/d;)V. 2)

Within the classifier, the initial input image undergoes patch
tokenization to divide it into multiple patches. These patches, referred to as
tokens, are subsequently embedded to derive the value vectors (V). Following
this, distinct linear projections are utilised on the value vectors to create
query (Q) vectors and key (K) vectors, which are essential for subsequent
self-attention operations. This query-key-value mechanism enables ViT
models to concentrate attention on the most pertinent areas of the input by
assessing the similarity between queries and keys [22]. In ViT, images are split
into small patches and treated as tokens [23], which are embedded and fed to
the transformer architecture. The position embedding, which is essential to
retaining the imagery patches’ positional information, is combined with patch
embedding as input too.

Figure 3 illustrates the model architecture of the proposed malware
classifier.
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Fig. 3. The model structure of malware classifier with multiple self-attention-based
blocks

Following image patching and embedding, the model incorporates
multiple self-attention blocks. Within each block, multi-head attention applies
separate linear projections to queries, keys, and values, enabling parallel
attention computations. Each multi-head attention module contains eight
attention layers in parallel, with reduced dimensions to ensure computational
efficiency. Layer normalisation is applied after each block to stabilise
training and mitigate issues such as vanishing gradients. Two feed forward
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layers utilising GELU activation top each transformer block for non-linear
transformation, and the block outputs are concatenated to represent the input
image. Residual connections link stacked transformer blocks. Subsequently,
a token extraction layer flattens the outputs, followed by dropout to prevent
overfitting. Finally, an additional feed forward layer extracts features while
the last layer classifies inputs. We optimise the block numbers based on
performance, aiming to find a balance between performance and relatively low
model complexity.

3.3. The Optimised Training Process. We employ several techniques
to enhance stable and efficient training, including the following: TL with
pre-trained weight parameters to leverage prior knowledge and avoid lengthy
training from scratch; implementing class weight initialisation based on the
proportion of classes in the dataset to address imbalance classification; utilising
adaptive learning rate during training.

3.3.1. Transfer Learning. It is common for software to contain
diverse types of malware, necessitating the classification of different malware
labels. Therefore, malware image classification inherently involves numerous,
imbalanced labels. Our approach pre-trains the classifier on the ImageNet
dataset, which is proven beneficial for learning generalised features [24].
Initially, the base model is trained on ImageNet with a 1000-class output setting
to learn sufficient parameters for complex classification tasks. Subsequently,
the output layer is removed, a dropout layer is added, and feed forward layers
with corresponding output units specified in the malware imagery set are
incorporated. This leverages the pre-trained model for feature extraction
from malware images, utilising the learned feature representations from
ImageNet. However, the final layers of the pre-trained model require retraining
for the new task to acquire task-specific weights. The base model layers are
initially frozen by setting their trainable parameter to "false," transforming the
pre-trained model into a fixed feature extractor for the new dataset. During
this phase, only the classification head layers, initialised randomly, are trained
to discern patterns from the extracted features, as outlined in Table 1. The
model undergoes training in the frozen setting for 20 epochs. Following the
training of the classification head, the base model layers become trainable by
setting their trainable parameter to True. Subsequently, the complete model,
encompassing both pre-trained and randomly initialised layers, undergoes
end-to-end fine-tuning on the target data for 20 epochs with a reduced learning
rate, as detailed in Table 1. This process facilitates further optimisation of
feature representations to achieve tailored adaptation to new tasks.
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Table 1. Classification Model Settings

Model Structure

InputLayer

Transformer_block (stacked)

LayerNormalization

ExtractToken

— output size(768)

Dropout — rate(0.2)

(Dense(256,activation="gelu", kernel_regularizer=regularizers.12(0.01))
Dense(num_classes, activation="softmax’, kernel_regularizer=regularizers.11(0.01))

Optimistion

Stage 1:

optimizers.AdamW (weight_decay=0.01, learning_rate=0.005)
Stage 2:

optimizers.AdamW (weight_decay=0.05, learning_rate=0.0001)

3.3.2. Weight Initialisation. To mitigate the impact of imbalanced data,
in addition to employing oversampling techniques to equalise the distribution
of different classes, we also incorporated class weights to prioritise the
minority classes during training. The initialisation of class weights entails
computing weights for each class according to their distribution in the training
dataset, aiming to tackle class imbalances. Algorithm 2 outlines the key steps.
The initialised class weights dictionary is then passed to the model during
compilation to account for class imbalance during training.

Algorithm 2. WeightInit

Prepare input: Original label set y_train
Extract the unique class labels unique_classes
Calculate the frequency of unique class labels class_counts
Calculate the total number of samples total = len(y_train)
for class_id € unique_classes do
weight (class_id) = total | (num_classes * count)
end for
Output: Standardised and return the class weight array W

3.3.3. Optimisation with Adaptive Learning Rate. Adam [25], an
adaptive gradient algorithm, has been widely favoured for compiling DL
models. However, there are variations that can enhance its performance.
According to an optimisation-focused study [26], L2 regularisation in Adam
is ineffective, and weight decay is only applied after parameter updates, even
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though weight decay is crucial for preventing over-fitting. This research
explores both L2 regularisation and weight decay regularisation, demonstrating
that the proposed Decoupled Weight Decay Regularisation (DWDR) is more
effective. The main concept behind DWDR involves adding an extra term for
weight decay during the parameter update step. With true label y and predicted
label ¥/, the original binary cross-entropy function can be presented as (3),
while the regularisation addition to the loss function can be represented as (4):

1 & .
BCE_loss = - Y (y'logy" + (1 —y)log(1 —y")), 3)
i=1
loss = BCE_loss + A Y w? 4)
- 2mé&

In which w represents the weight learned and A is a hyper-parameter
that need to be initialised manually. When using DWDR, the weight update
process from w; to w, is updated with a subtraction from the weights as (5),
in which [r represents the learning rate and 3 is another hyper-parameter for
weight decay. The term in the square bracket is the original updating step. In
this way, we reduce the updated weight by a small portion at each step.

Wit = [wy — Ir X gradient] — Ir X B X wy. (5)

As illustrated in Table 1, we initially freeze the base model and train it
with a larger learning rate and a smaller decay hyper-parameter, followed by
fine-tuning it with a smaller learning rate and a larger decay hyper-parameter.
In the first stage of training, this configuration accelerates the training process,
enabling the model to rapidly learn general patterns and features from new data.
It also enhances generalisation by allowing the model to adapt more effectively
to the new dataset. During the fine-tuning stage, the smaller learning rate
and larger decay contribute to stabilising the training process and preventing
over-fitting. We employ this approach to maximise the benefits of adopting
transfer learning.

4. Experiments

4.1. Dataset Description. To thoroughly validate the proposed
methods, we conduct experiments on two malware imagery datasets within a
multi-classification setting. Both datasets are divided into training, validation,
and testing subsets as pre-defined by the original authors. The first dataset,
Big2015 [27], was proposed by Microsoft and comprises 10,470 malware
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files from nine distinct families. Each file is characterised by an identifier,
a 20-character hash value, and a class label. The class labels, malware
types, and their original proportions in the training set, as well as after the
application of oversampling, are presented in Table 2. A backdoor is a type
of malware that permits unauthorised access to a computer system, typically
bypassing standard authentication mechanisms to facilitate remote control or
data theft. Adware constitutes unwanted software that displays advertisements
on a user’s device. Obfuscated malware is malicious software with code
deliberately obfuscated to evade detection by security software. A worm is
a self-replicating type of malware that exploits security vulnerabilities and
spreads across computer networks. A Trojan is a type of malware commonly
disguised as legitimate software. Similarly, a Trojan downloader is a type of
Trojan horse designed to download and install additional malware onto the
infected system.

Table 2. Data Summary for Big2015

Labels Malware Types Initial Weight ~ Weight after oversampling
Gatak Backdoor 9.3% 12.3%

Kelihos_verl Backdoor 3.7% 9.6%

Kelihos_ver3 Backdoor 27.1% 17.8%

Lollipop Adware 22.8% 15.0%

Obfuscator. ACY  Any obfuscated malware  11.3% 7.4%

Ramnit Worm 14.1% 9.3%

Simda Backdoor 0.4% 8.0%

Tracur TojanDownloader 6.9% 9.1%

Vundo Tojan 4.4% 11.5%

The second dataset, MALIMG [28], was proposed in the paper for
malware imagery visualisation research. It consists of 9,458 samples from 25
different malware families. The class labels and their original proportions in
the training set, as well as after the application of oversampling, are presented
in Table 3. Apart from the malware types covered in Big2015, MALIMG
contains several new types: Dialer malware is malicious software designed
to connect a system to a network or phone number for a fraudulent purpose.
Rogue malware is generally characterised by deceptive behaviour; it pretends
to be legitimate but can cause significant harm once installed. PWS, short for
Password Stealing Ware, aims at stealing sensitive information such as login
credentials, passwords, and other personal data.

The malware images contain transformed binary data, with sections
such as .text holding the executable code, .rdata containing read-only data like
constant values and strings, .data storing initialised data, and .rsrc housing

Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print) 1883
ISSN 2713-3206 (online) www.ia.spcras.ru



NHP®OPMAILIMOHHA S BE3OITACHOCTb

specific resources used by the executable and version information. Various code
sections will be mapped to distinct textures within the images, as illustrated in
Figure 1. Our approach relies on learning these anomalous patterns to inform
the classification process by identifying similarities among the patterns.

Table 3. Data Summary for MALIMG

Labels Malware Types Initial Weight =~ Weight after oversampling
Allaple. A Worm 31.6% 13.5%
Allaple.L Worm 17.1% 7.3%
Yuner.A Worm 8.6% 3.7%
Instantaccess Dialer 4.6% 3.4%
VB.AT Worm 4.4% 3.4%
Fakerean Rogue 4.1% 3.4%
Lolyda.AA1 PWS 2.3% 3.4%
C2LOP.gen!g Trojan 2.1% 3.4%
Alueron.gen!J]  Trojan 2.1% 3.4%
Lolyda.AA2 PWS 2.0% 3.4%
Dialplatform.B  Dialer 1.9% 3.4%
Dontovo.A TojanDownloader  1.7% 3.4%
Lolyda.AT PWS 1.7% 3.4%
Rbot!gen Backdoor 1.7% 3.4%
C2LOP.P Trojan 1.6% 3.4%
Obfuscator. AD  TojanDownloader 1.5% 3.4%
Malex.gen!J Trojan 1.4% 3.4%
Swizzor.gen!l TojanDownloader  1.4% 3.4%
Swizzor.gen!lE  TojanDownloader 1.4% 3.4%
Lolyda.AA3 Dialer 1.3% 3.4%
Adialer.C PWS 1.3% 3.4%
Agent.FYI Backdoor 1.2% 3.4%
Autorun.K Worm 1.1% 3.4%
Wintrim.BX TojanDownloader  1.0% 3.4%
Skintrim.N Trojan 0.9% 3.4%

When resizing the imagery data for the classification task, we consider
the original image size in both datasets. For Big2015, where the original images
were standardised to the shape of (128, 128, 3), we utilise this shape as well.
For MALIMG, the original size varies, so we resize the data into a shape of
(224, 224, 3), as this is the standard input size for the original ViT model.

4.2. Baselines and Evaluation Metrics. In our comparative analysis,
we select three prominent CNN-based image classifiers to compare with
our convolution-free approach. The first model, Inception [29], leverages
parallel convolutional operations to effectively capture spatial hierarchies and
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patterns, characterised by its impressive depth of 22 layers. The second
model, MobileNet [30], is equipped with a novel efficient segmentation
decoder, specifically designed for semantic segmentation, which delivers
optimal performance even on mobile CPUs. The third model, Xception [31],
employs a linear stack of depth-wise separable convolution layers with residual
connections, which is followed by a point-wise convolution (1*1), implemented
after the spatial convolution over each channel.

In the process of evaluation, we consider not only the overall accuracy
but also the detection capability for minor classes and the equilibrium of
performance. The metrics used are presented in Table 4, in which TP, FP, TN,
and FN stand for true positive, false positive, true negative, and false negative,
respectively.

Table 4. Basic evaluation metrics

Name Equation
. TP
Recall/Detection Rate 757
. TP
Precision TP+FP

AUC

TP+TN
Accuracy TPYFPYTNTFN
Fl-score 2xrecallxprecision

recall+precision

Accuracy, a prevalent performance measure, compares the correctly
predicted observations to the total observations. However, it can be misleading
in imbalanced class distributions, particularly in security sectors such as
malicious traffic detection and malware classification. The Area Under
Curve (AUC) evaluates the performance across all conceivable classification
thresholds. Precision, the ratio of correctly predicted positive observations
to the total predicted positive observations, signifies a low false positive rate
when high. Recall, on the other hand, is the ratio of correctly predicted positive
observations to all actual positives, indicating sensitivity and detection ability.
The F1 score, being the harmonic mean of precision and recall, serves as a
better measure in cases of imbalanced classes. In multi-label classification
tasks with imbalanced classes, such as our task of malware analysis, precision,
recall, and F1 score are generally deemed more crucial metrics for evaluation.

4.3. Result Comparison. To evaluate the impact of the transformer
block implemented in the classifier on the final performance, we test three
variations with 4, 5, and 6 blocks implemented in the classifier, which are
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represented by labels Trans-4, Trans-5, and Trans-6, respectively. Table 5
presents the overall performance on the test set of the Big2015 task. Generally,
the convolution-free approaches outperform all the CNN models. Not only
do our approaches have higher accuracy and AUC scores, but they also have
relatively higher recall. While a model like Xception has a recall of only 0.3242,
our approaches, Trans-4, Trans-5, and Trans-6, boast much higher recall scores.
Furthermore, it is suggested that it may not be necessary to make the model
extremely deep as the Trans-5, namely the model with 5 transformer blocks
implemented, achieves the highest accuracy of 0.8369, AUC of 0.9791, and
recall of 0.7959. Although the Trans-6 model has equally high accuracy, the
highest precision of 0.8989, and F1 of 0.8359, the difference is not significant,
indicating that the performance is not compromised by a lighter-weight model.

Table 5. Overall Performance on Test Set— Big2015
Accuracy AUC Precision Recall F1

Inception 0.7592 0.9580 0.8480 0.6758 0.7522
MobileNet  0.7399 0.9470  0.8235 0.6563  0.7304
Xception 0.6774 0.9150 0.8384 0.3242  0.4676
Trans-4 0.8223 0.9698  0.8820 0.7666  0.8203
Trans-5 0.8369 0.9791  0.8792 0.7959  0.8355
Trans-6 0.8369 0.9777  0.8989 0.7813  0.8359

Conversely, the training process of our models could potentially be
further improved. As presented in Figure 4, the trend of enhancing evaluation
metrics stabilises during the fine-tuning phase; for example, our models
consistently achieve lower loss rates. Specifically, Trans-5 exhibits the least
loss and highest accuracy and AUC post the 46th epoch. Though our models
showcase improved accuracy and reduced loss, it is evident that our model
encounters notable variations throughout training, particularly in the validation
loss curves. These fluctuations in loss optimisation may stem from the weight
initialisation technique we employ. Nonetheless, it is worth noting that there is
no sign of overfitting in our models. This indicates that despite the training
fluctuations, our model remains dependable and robust, underscoring its
efficient design and execution.
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Table 6 presents the outcomes of the test set for MALIMG, a particularly
challenging task owing to its 25 categories. The findings reveal that all CNN
models, along with Trans-4, slightly struggled with learning and accurate
prediction, as indicated by their low accuracy and recall scores. In contrast,
Trans-5 and Trans-6 exhibit superior performance. Although Trans-6, the
deepest model, achieves the highest accuracy, recall, and F1 score, the
discrepancies between Trans-5 and Trans-6 are not significant. With an
accuracy of 0.9686, an AUC of 0.9992, a recall of 0.9686, and an F1 score of
0.9686, Trans-5 delivers satisfactory outcomes compared to the CNN models.

Table 6. Overall Performance on Test Set— MALIMG
Accuracy AUC Precision Recall Fl1

Inception 0.8537 0.9011  0.8701 0.8418 0.8557
MobileNet  0.8537 0.9911 0.8701 0.8418  0.8557
Xception 0.8174 0.9008 0.8311 0.8311 0.8311
Trans-4 0.8581 0.9899  0.8601 0.8527 0.8564
Trans-5 0.9686 0.9992  0.9686 0.9686  0.9686
Trans-6 0.9697 0.9998 0.9707 0.9697  0.9702

Figure 5 presents the optimisation process for both the training and
validation sets. In terms of loss and accuracy scores, all models exhibit
continuous improvement during the initial training stage, although CNN
models lag behind compared to Trans models. During the fine-tuning stage,
the pronounced fluctuation of all curves highlights the increased challenge
of training on tasks with more class labels. As MobileNet achieves the best
training loss and accuracy but relatively poor validation loss and accuracy, there
is a suggestion that this CNN-based model may be susceptible to overfitting. For
Trans models, while the loss optimisation curve displays a consistent decrease,
the accuracy experiences more significant fluctuations. This can be attributed
to the weight initialisation process, where higher loss weights are assigned to
minorities. Considering that accuracy evaluates overall performance, these
fluctuations are to be expected. Nevertheless, a key point of optimism is that
our model maintains an accuracy rate above 80% for the majority of the time,
indicating its promising and reliable performance.
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AUC presents a distinctive case. Except for Xception, all other models
exhibit consistently high AUC scores across the entire training process. The
reason behind the elevated AUC scores and the varying performance levels of
the different models may be linked to the inherent nature of the AUC metric
itself. While AUC evaluates the model’s capacity to differentiate between
positive and negative classes, the high AUC scores could possibly stem from
the intrinsic characteristics of the data. Conversely, due to the imbalanced class
distribution, the assessment of models’ effectiveness through recall and the
precision-recall equilibrium, known as the F1 score, can offer a more accurate
evaluation of the performance.

CNN models exhibit satisfactory performance on the Big2015 task but
fall short on the MALIMG task. In contrast, our approach consistently delivers
superior results. This could be attributed to the capacity of self-attention-
based models to manage long-range dependencies between pixels in images
by assigning weights and prioritising patches for predictions. Consequently,
these models can capture complex patterns and structures that may elude
CNN:ss, particularly in intricate tasks requiring the prediction of 25 labels.
Moreover, attention-based blocks are more readily parallelised, facilitating
faster training times and enhanced performance. In scenarios involving
extensive data, attention-based blocks also exhibit a less pronounced inductive
bias. Nonetheless, Transformers may surpass CNNs in specific tasks or
datasets. As highlighted in the original ViT paper, CNNs may still outperform
transformers when dealing with smaller datasets.

4.4. Discussion on Future Research. Despite the demonstrated
reliability and robustness of our model, there remain areas for potential
enhancement. Primarily, the model’s representation learning ability and
detection capability could be further improved, as suggested by the results
of the Big2015 task. Recent research has investigated various methods for
transformer optimisation. For example, the Swin Transformer employs a
shifted window-based self-attention mechanism, enabling it to capture both
local and global dependencies in images [32]. Another notable study is
DynamicViT [33], which introduces a technique that allows the model to
adaptively adjust its computational complexity based on the complexity of the
input image.

Another limitation is the insufficient consideration of obfuscation
techniques, which can significantly impact the performance of malware
classification systems. The technique employed for concealing malicious code
makes accurate threat identification challenging. One possible enhancement
involves augmenting the proposed method’s resilience through feature
engineering specifically tailored for obfuscation detection. In [34] the
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authors undertook further static analysis to discern obfuscation patterns
and devise discriminating features that distinguish benign applications
from malware; this strategy enhanced the detector’s efficacy in identifying
obfuscated malware. An alternative approach is exploring adversarial ML
techniques to simulate attacks on the classification model using obfuscated
malware samples. Random noise can be generated and incorporated into
image arrays to mimic obfuscation. This method can assist in identifying
weaknesses within the classifier and subsequently refining the model to more
effectively resist obfuscation techniques. Furthermore, extensive research
into information-hiding techniques can be applied to image-based malware
analysis. Several techniques exist for mitigating blurring to unveil hidden
content or anomalies, including patch-line and fuzzy clustering-line priors
for dehazing [35], as well as noise-aware filtering reversal through modified
Landweber iterations [36].

Lastly, from the perspective of usable security, we intend to refine
and expand upon our current methodology for malware classification. While
the existing approach exhibits commendable performance in tasks involving
multi-label classification, it encounters substantial challenges when confronted
with novel or previously unidentified malware variants. Such instances are
prone to misclassification or, more concerning, being erroneously identified
as benign behaviours. Hence, our future endeavours will be directed towards
the development and implementation of an advanced two-module framework.
This innovative strategy will amalgamate a sophisticated multi-label classifier
with an anomaly detection model. The latter component is planned to either
embody an AE or leverage a probabilistic model specifically designed for
outlier detection. In scenarios where the classifier is unable to accurately
categorise a sample, defaulting to label it as benign, and concurrently, the
anomaly detection module identifies it as an anomaly diverging from the
established distribution patterns, such instances will be flagged as "potential
new attacks". This designation will trigger alerts, thereby facilitating timely
intervention and analysis. This strategic enhancement aims not only to bolster
the accuracy and reliability of malware classification but also to establish a
proactive defence mechanism against emerging cyber threats. By incorporating
this two-pronged approach, our system will be better equipped to adapt to the
evolving landscape of cybersecurity threats, ensuring enhanced protection for
digital ecosystems.

5. Conclusion. In this study, we introduce a convolutional-free
malware classifier, complemented by a GAN-based oversampler. This
oversampling technique significantly amplifies the minority classes with
realistic samples, while the classifier consistently surpasses CNN models
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such as MobileNet, Inception, and Xception on a range of public datasets.
Looking ahead, we aim to investigate the potential for enhancing the
malware classification capability of our model and reducing its complexity.
Nevertheless, the superior performance of our model across various tasks
emphatically attests to its reliability and robustness. This not only substantiates
our model’s credibility but also positions it as a promising solution for tackling
diverse and complex malware imagery classification tasks.
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X. IyH
KIIACCUOPUKAIIN A N3 0BPAKEHUN BPEJIOHOCHBIX
IMPOT'PAMM BE3 NCITIOJIb30BAHHUA CBEPTOK C
HNCITIOJIb30BAHUEM MEXAHU3MOB BHYTPEHHEI'O
BHUMAHUA

Ayn X. Kaaccudpukamusi n300paceHnii BpeJOHOCHbIX MPOrpamMM 0e3 HCIIOJb30BAHHS
CBEPTOK C HCIOJb30BaHHEM MEXaHH3MOB BHYTPEHHEr0 BHUMAHHUS.

AHHOTanusl.  AHaJuM3 BpPEJOHOCHBIX IPOTrpPaMM SIBJISIETCS BaKHEHIIMM aCMEKTOM
KnOepOe30MacHOCTH, HATIPABJIEHHBIM Ha BhIsIBJIeHUe U quddepeHipanmio BpegoHocHoro 10 ot
0e3BpeAHBIX MPOrPaMM JIs1 3ALUTHl KOMITBIOTEPHBIX CHCTEM OT yrpo3 Ge3omacHocti. HecMoTpst Ha
JOCTIKEHHS B Mepax KuOepOe30IacHOCTH, BPEIOHOCHbIE POTrPAMMBI ITPOIOJIKAIOT MPECTABIISTh
3HAUHUTEJIbHbIE PUCKU B KHOEPIPOCTPAHCTBE, TPpeOysl TOYHBIX U OBICTPBIX METOIOB aHaM3a. B
3TOii CTaThe NPEACTABICH MHHOBALMOHHBIN MOAXO0 K KJ1AacCH(UKAIMK BPEJOHOCHBIX IIPOrPAMM C
WCHOJIb30BaHNEM aHAIM3a N300paKEeHUIH, BKIIOYAIOIIHI TPH KJIIOUEBBIX dTama: Npeodpa3oBaHue
KOJIOB ofepaluii B faHHble n300paxenuit RGB, ucnonb30BaHue reHepaTUBHO-COCTSI3ATEIbHON
cetn (GAN) 111 CHMHTETHUYECKOW TepeMCKpeTH3alMd U HCIHOJIb30BaHHE YIIPOIIEHHOTO
KJiaccuduKaropa Ha OCHOBe Bu3yaibHOro TpaHcgopmepa (ViT) mis aHamusa n300pakeHuid.
JlaHHBIl METO/ TIOBBILIIAET OOraTCTBO (PYHKIIMI U OOBICHUMOCTD C TIOMOIIIBIO IAHHBIX BU3YaJIbHBIX
N300paXXeHuii U yCTpaHsieT HecOATaHCUPOBAHHYIO KJIACCU(HKALIMIO C MCTIOIb30BAHUEM METO/IOB
nepeauckpetusanun Ha ocHoBe GAN. TlpenioxeHHas CTPyKTypa codeTaeT B cebe MpeuMyecTBa
CBEPTOYHBIX aBTOIHKOJEPOB, THOPHIHBIX KJIACCH(UKATOPOB U aIaNTUPOBaHHBIX Mozeneit ViT s
JOCTIKEeHUs1 OalaHCa MEK/1y TOYHOCTBIO Y BBIUMCIUTENbHOM 3(hdekTBHOCTHI0. Kak nmoka3zanu
9KCHEPUMEHTHI, Halll OAX0[ O3 NCIOIB30BaHMUS CBEPTOK 00/1aJaeT PEBOCXOJHOI TOUHOCTBHIO U
MPELM3UOHHOCTDIO 10 CPABHEHHMIO CO CBEPTOUHBIMU MOJEJISAMU U npeBocxoauT Mozaenu CNN Ha
IBYX Habopax JaHHBIX OJIarofiapsi MEXaHU3My MHOTOTrOJIOBOTO BHMMaHus. Ha Habope JaHHBIX
Big2015 Hama moxesns npesocxoaut apyrue mogeat CNN ¢ toynocTsio 0,8369 u ruiommaipio mnojs
kpuBoii (AUC) 0,9791. B yactHoCTH, Hama Moaesb Jocturaet TouHoctu 0,9697 u ouenku F1
0,9702 na MALIMG, uTO fIBJIAETCS SKCTPAOPAMHAPHBIM PE3YyJIbTATOM.

KutroueBble cj10Ba: 00HAPYKEHHE BPEIOHOCHBIX IPOrpamMM, KHOepOe30MacHOCTb, [Iy00KOe
o0yueHHe, aBTOIHKOZIEP.
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