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Abstract. 360-degree video content has become a pivotal component in virtual reality
environments, offering viewers an immersive and engaging experience. However, streaming such
comprehensive video content presents significant challenges due to the substantial file sizes and
varying network conditions. To address these challenges, view adaptive streaming has emerged as
a promising solution, aimed at reducing the burden on network capacity. This technique involves
streaming lower-quality video for peripheral views while delivering high-quality content for the
specific viewport that the user is actively watching. Essentially, it necessitates accurately predicting
the user’s viewing direction and enhancing the quality of that particular segment, underscoring
the significance of Viewport Adaptive Streaming (VAS). Our research delves into the application
of incremental learning techniques to predict the scores required by the VAS system. By doing so,
we aim to optimize the streaming process by ensuring that the most relevant portions of the video
are rendered in high quality. Furthermore, our approach is augmented by a thorough analysis of
human head and facial movement behaviors. By leveraging these insights, we have developed a
reinforcement learning model specifically designed to anticipate user view directions and improve
the experience quality in targeted regions. The effectiveness of our proposed method is evidenced
by our experimental results, which show significant improvements over existing reference methods.
Specifically, our approach enhances the Precision metric by values ranging from 0.011 to 0.022.
Additionally, it reduces the Root Mean Square Error (RMSE) by 0.008 to 0.013, the Mean Absolute
Error (MAE) by 0.012 to 0.018 and the F1-score by 0.017 to 0.028. Furthermore, we observe an
increase in overall accuracy of 2.79 to 16.98. These improvements highlight the potential of our
model to significantly enhance the viewing experience in virtual reality environments, making
360-degree video streaming more efficient and user-friendly.

Keywords: head-eye movement, reinforcement learning, deep learning, machine learning,
video streaming, 360-degree video.

1. Introduction. In recent years, prediction models have gained
significant attention in the research community, particularly in the field of
360-degree video streaming. Accurate prediction in this context is crucial as
it enhances the viewer’s immersion and understanding of the video content.
However, achieving high prediction accuracy remains a challenging task,
especially under varying network conditions.

Existing research has explored various methods to improve the
performance of prediction models for 360-degree videos. For example,
reinforcement learning has been used to control model predictions based on
data-driven designs, significantly improving performance, as demonstrated in
the work of the authors in paper [1].
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In the context of 360-degree videos, accurate prediction is excellent
since it increases the viewer’s understanding and immersion of the video.
Significantly, when network conditions change, adapting to meet viewers’
needs is difficult. From these research issues [2-4], the prediction models are
built based on head movements to adapt to different types of videos on the
Viewport Adaptive Streaming (VAS) system. However,the adaptability and
self-learning ability are not only low but also dependable on the initial data, so
it is still difficult when the data changes continuously.

In the context of 360-degree videos, accurate viewport prediction is
essential for adapting to viewers’ needs, especially when network conditions
fluctuate. Studies such as those by the authors in [2-4] have developed
prediction models based on head movements to adapt to different types of
videos on the Viewport Adaptive Streaming (VAS) system. However, these
models often suffer from limited adaptability and self-learning capabilities,
particularly when data changes continuously, making it difficult to maintain
accuracy.

Virtual reality (VR) presents additional challenges in this domain. As
VR technology becomes more widespread, ensuring users feel fully immersed
and interactively engaged is critical. However, video streaming in VR is
constrained by factors such as network bandwidth, video resolution, and
content complexity. High-speed transmission in the viewer’s viewport area,
coupled with lower quality in other areas, is a fundamental requirement for
VR video streaming. Many studies have attempted to address these challenges
by analyzing network conditions and employing optimization methods, but
achieving a balance between network optimization and user immersion remains
a significant hurdle. Therefore, predicting the viewer’s viewport area is valid
and applicable, considering the user’s perspective without downloading the
entire content. This means that the video content will be offloaded, and the
network will have more space, which will help to improve the user’s viewing
area. In fact, [5] research has also shown critical retinal areas of the viewer;
these are considered core areas. Based on these areas, we can quickly fix minor
problems, such as limiting the quality of areas that are not considered and
thereby improving the quality of areas that are considered.

Predicting the audience’s view is a real challenge. Because each person
will have a completely different view angle when turning their head and moving
eyes. One more challenge for this problem is that the heads may not be moved
when the viewers move their eyes. Only the movements of the eyes do not
provide enough basis for a prediction model since we need both head-eye
movements to be analyzed. Figure 1 shows information and forecast areas
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in recent times. However, in this paper, we build on the principles of head
movements to determine a better viewport position.

Head movements Head and Eye movements

PREVIOUS RESEARCH OUR RESEARCH

Fig. 1. Head-eye movements

Besides, psychology and perspective on movement are essential issues
to analyze and make the right prediction [6-8]. First, the video contents partly
affect viewers’ psychology. For example, in emotional videos, viewers tend to
change their head and eye movements when they have excess feelings. Second,
many authors have been also researching perspective effects to evaluate the
standard user’s field of view. The factor of heads and eyes moving without
following the rules also contributes significantly to incorrect prediction orders.

Furthermore, streaming 360-degree videos requires much more
bandwidth compared to regular videos. The prediction method is necessary to
achieve the user’s perceived quality QoE because the user only sees a part of
it. Thus, watching adaptive video streaming is an effective method to satisfy
video quality [9-12]. However, this performance relies on the view adaptation
scheme, view prediction and bandwidth. To overcome these problems, we
propose a server-to-client streaming framework based on reinforcement
learning, which optimizes 360-degree video streaming in viewport prediction
to adapt to changing network conditions. We call this method HEVERL.:

— To address these issues, we propose the HEVERL (Head-eye
Movement Oriented Viewport Estimation Based on Reinforcement Learning)
approach, which represents an advancement in viewport prediction for VR
applications. Unlike traditional methods that rely solely on head orientation
data, HEVERL incorporates both head-eye movement information to more
accurately forecast the user’s future viewport. This multi-modal sensing
strategy provides a comprehensive understanding of the user’s visual attention
and behavior within the VR environment, leading to improved prediction
accuracy.
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— The HEVERL algorithm also introduces a novel content preparation
and delivery mechanism that adaptively prefetches and updates the bitrate
of previously viewed perspectives based on predicted viewport distribution.
This proactive, viewport-aware content optimization enhances the user’s
perceived quality of experience by addressing network fluctuations and view
prediction errors. By integrating prefetching and adaptive bitrate selection for
previously visited viewports, HEVERL sets itself apart from traditional VR
video streaming solutions, which generally rely on reactive strategies.

In summary, the HEVERL algorithm’s dynamic adaptation to
fluctuating network conditions and its ability to overcome potential view
prediction errors represent a significant advancement in VR video streaming.
The algorithm HEVERL may enhance the robustness and reliability of the
VR experience, especially in latency-sensitive applications, and marks a
step forward in achieving consistently high-quality VR viewing experiences.
To provide a better understanding of our research, this report includes the
following content: Section 2 discusses the related work. Section 3 describes
the suggested viewport estimation technique. Section 4 evaluates the proposed
method’s performance compared to other methods. Section 5 concludes.

2. Related work

2.1. Streaming Video 360 Degrees. Recent research has focused on
360-degree video streaming, aiming to optimize bandwidth usage without
compromising video quality. Studies [13-15] suggest that 360-degree video
should be used as standard content to transmit the entire video, ensuring high
viewing quality for users in all directions. However, streaming the full video
consumes substantial bandwidth, allowing only a portion of the 360-degree
video to be viewed at a time.

According to the research [16], there are two types of view-adaptive
streaming: proposed tile-based streaming and asymmetric panorama image-
based streaming. Panorama-based streaming generates multiple versions of
a 360-degree video from different perspectives, necessitating video playback
based on the user’s orientation. While this approach reduces the apparent
quality of the viewport and significantly lowers bandwidth usage, it also
requires greater flexibility because limited versions result in poor display
quality in viewer mode.

In tile-based streaming, the video is divided into multiple encrypted
tiles, and different devices request tiles based on the user’s perspective. Many
algorithms for 360-degree video streaming [17, 18] transmit the Field of View
(FoV) in this manner, effectively reducing bandwidth. However, this method
is less flexible due to the dynamic changes in the user’s perspective. As a
result, recent viewport adaptation methods have relied on FoV [19,20]. These
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FoV-based prediction methods have improved significantly by reducing the
performance impact caused by network distance to the predicted FoV and
uneven bitrate assignment [21-24]. They dramatically reduce tile quality
variation within the FoV. However, they still depend heavily on accurate
bandwidth calculations, which can be influenced by network conditions, leading
to estimation errors and performance degradation.

To overcome these limitations, we propose a reinforcement learning
method combined with user behavior analysis to automatically adapt to network
conditions and select tiles that optimize the predicted viewport area.

2.2. Synthetic prediction models. In this section, we will present some
models built for prediction in recent years.

2.2.1. Head movements. In studies [3,4,25-27], the authors developed
segment prediction models based on head movements. While many of these
models are similar to our proposed model and aim to enhance the accuracy
of predicting future user views in recommender systems, we identified some
limitations. Notably, these methods primarily consider head movements while
neglecting eye movements. The head can remain stationary while the eyes move.
Therefore, experimental methods should account for head-eye movements to
improve prediction accuracy.

Regarding head movements, most studies focus on changes in head
position, acknowledging that head movements are generally slower compared
to eye movements. However, addressing both types of movements presents
a significant challenge. Many studies exclusively target head movements,
overlooking the crucial role of eye movements. In reality, while the head
may turn left or right, the eyes can independently look in different directions.
This disparity underscores the importance of algorithmic adaptation to
accommodate more complex movements for improved accuracy in prediction
models.

2.2.2. Head-eye movements. In the study [28], the author developed
cloud streaming for head-mounted displays, allowing viewers to experience
the illusion of being in a virtual room by rotating their viewpoint. Additionally,
in the study [29], the authors implemented a caching strategy that predicts user
views based on cell resolution, aiming to forecast the viewing frequency of
360-degree video tiles. This method is particularly impactful under limited
buffering conditions.

In another approach [30], the authors focused on predicting how
different segments of a 360-degree video would be viewed on a head-mounted
display. This method incorporated overlapping views and utilized techniques
such as saliency detection, face detection, and object detection. However, the
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algorithm primarily fine-tuned a fixed prediction network, leaving questions
unanswered regarding the adaptability to changing movement dynamics.

While studies [28-30] have made significant strides in considering both
head-eye movements, there is a pressing need for further research on the
Viewport Adaptive Streaming (VAS) system’s role in predicting user views.
This gap in our understanding presents an exciting opportunity for future
exploration and innovation in the field.

2.3. Reinforcement learning-based prediction. Viewport adaptation
schemes for 360-degree video rely on estimated frequency width accuracy
and are categorized based on throughput and buffering [31,32]. However, this
approach needs more flexibility and performs optimally only under specific
network conditions. Therefore, adaptive algorithms are designed based on
bitrate and user behavior to address these challenges and enhance adaptability
and performance.

Approaches that rely on explicitly storing states and actions rather
than using approximate functions are not scalable for real-world cyber
environments. In response, D-DASH [33, 34] computes the action value
Q using a neural network model (such as RNN or LSTM). D-DASH has
shown superior performance and faster convergence compared to traditional
Q-learning methods. However, its performance is still contingent on specific
states and actions. To tackle this limitation, we propose an RL-based algorithm
for decision-making that autonomously adapts to environmental changes.

Furthermore, the correlation between video perspective quality and
video bitrate is non-linear. A neural network predicts video quality, while an
RL algorithm selects the bitrate. This approach outperforms existing methods
by delivering higher video quality and reducing latency.

While the authors have demonstrated that reinforcement learning
optimizes adaptive bitrate for videos [35], this approach utilizes deep
reinforcement learning (DRL) to train the curriculum autonomously. This
enables bitrate decisions for 360-degree videos based on chunk selection and
planning. This method has shown superior experimental results compared to
state-of-the-art techniques. However, it primarily focuses on bitrate selection
and chunk planning decisions, contrasting with our proposed method, which
leverages user behavior to automatically adjust the bitrate and determine
quality levels specifically for the viewport area.

On the contrary, in a recent study [36], researchers developed a system
tailored for adaptation on Facebook’s video platform using reinforcement
learning (RL) in a live environment. They simulated the RL technique to
train the agent effectively. Similarly, [37] introduced an advanced sequential
reinforcement learning model to streamline decision-making and enhance the
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Quality of Experience (QoE). These studies highlight the effectiveness of RL
techniques in optimizing video streaming environments. However, these studies
primarily concentrate on improving QoE by addressing factors like buffering,
video quality, and timing without incorporating behavioral considerations.

Generally, reinforcement learning methods involve an agent making
adaptive decisions in an interactive environment through trial and error [34].
Reinforcement learning empowers the agent to optimize its actions based on
feedback, which is crucial for navigating dynamic and uncertain network
conditions. However, these methods can be time-consuming, and their
effectiveness hinges on the exploration strategy employed. Therefore, our
proposed method aims to swiftly predict and make decisions that do not
compromise the viewer’s perception amidst fluctuating network conditions.

3. Proposed viewport estimation method - HEVERL. HEVERL is
an acronym that stands for Head Eye Movement Oriented Viewport Estimation
Based on Reinforcement Learning in Figure 2. Before discussing the HEVERL
design, we will formulate the video streaming problem using the assumptions
and constraints described in Section 3.
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Fig. 2. HEVERL architecture

In this part, we present a problem that needs to be solved by predicting
the viewport area that the human movement direction is using. Prediction is
done when the direction of the user’s movement does not change because it
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is easier to predict and increase the quality of that area. However, in reality,
prediction is very complicated because the more flexible the user is, the more
significant the changes in prediction. Therefore, for each period ¢, it is necessary
to predict the viewport area, and the next point will change, and so on, until
the end of period #,.

Furthermore, these changes will affect the user’s perceived quality
because when the user’s movement direction is in any position, that area will
increase in quality and reduce the near-quality area when not noticed. Therefore,
this prediction increases the quality of user perception and limits bandwidth
consumption in limited network conditions.

The core principle of tiling-based viewport adaptive streaming lies in
the spatial partitioning of video content into distinct, granular sections known
as tiles. This innovative architectural design deviates from the conventional
view of the entire video frame as a single entity. By breaking down the video
in this manner, the streaming system can handle the delivery of each tile
independently, leading to more advanced adaptation strategies.

Expanding on the tiled structure, the tiling-based approach generates
numerous encoded versions for each tile. This extensive range of tile variants
empowers the system to enhance video quality based on the user’s current
viewport or field of view. Tiles that intersect with the user’s viewport, called
'visible tiles,” are encoded at a higher quality to deliver an immersive viewing
experience. In contrast, tiles outside the user’s viewport, known as ’invisible
tiles,” are encoded at a lower quality to conserve bandwidth and system
resources in Figure 3.

The tiling-based viewport adaptive streaming approach is built on
selectively assigning quality to visible and invisible tiles. By delivering the
highest quality version of the tiles currently in the user’s viewport, the system
can provide an optimal visual experience without requiring high-quality data
to be transmitted for the entire frame. This targeted quality allocation allows
for efficient bandwidth utilization while reducing the risk of stalls or quality
degradation during playback, as the system can dynamically adjust tile quality
in response to user navigation and viewport changes.

The tiling-based viewport adaptive streaming model represents a
significant step forward in video delivery, addressing the challenges of
providing high-quality content while maximizing resource utilization. By
spatially partitioning the video into tiles and selectively encoding multiple
quality versions for each tile, the system can adaptively deliver the most
appropriate content to the user based on their current viewport, resulting in a
more immersive and bandwidth-efficient streaming experience.
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Fig. 3. Tiling-based Viewport Adaptive Streaming

3.1. Design of viewport prediction and selection. In this section,
our focus is on designing a predictive model and devising methodologies for
computing and categorizing viewport regions using reinforcement learning,
illustrated in Figure 4.

Input data Output data
= Environment
; p—
&
_ - :
2
<
-
— ] —_—
v =]
= -
’ z
Agent g —

Fig. 4. HEVERL System

The system is structured as follows:
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First, the data undergoes preprocessing before input. The data is
represented through two states: ¢ and t'. These states are stored as arrays
and evolve spatially and temporally.

Second, we configure the environment settings and perform analysis
based on these states. Subsequently, the algorithm calculates weights and
dynamically predicts the user’s viewing area throughout the video. The
parameters are determined as follows:

— Agent. The Agent’s objective is to locate the flag image, depicted in
Figure 5. The Agent’s path includes obstacles that influence the determination
of the necessary route, impacting subsequent decision-making. Figure 5
illustrates how the Agent interacts with the Environment through actions such
as left, right, up, and down.

«O
=
[ |

Fig. 5. Agent

— State. The state indicates the current position within the environment.
Following each action, the environment provides the agent with a corresponding
state.

— Best Action. The optimal action represents the transition process
from the Agent to the environment. When the Agent reaches a forbidden box,
the process terminates. The sequence of interactions between the Agent and the
environment from start to finish is termed an Episode. Throughout the episode,
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the Agent aims to select actions that maximize the Reward. The method by
which the Agent selects these actions is known as the Policy.

— HEVERL. HEVERL will determine the final value to be saved and
prepare for the next step based on the best action selections. Once identified
and classified, the results will arrange the viewport sections sequentially and
decide where to display information on the user’s screen.

On the one hand, our approach utilizes the Markov Decision Process
(MDP), a framework that aids agents in making decisions based on specific
states. In applying this framework, we assume states possess the Markov
property: the transition probability between two states is influenced solely by
the preceding state.

Firstly, the concept of "probability of switching between two states"
arises because, in reality, actions do not always yield deterministic outcomes.
In an ideal scenario, repeating an action would consistently produce identical
results. However, real-world processes are often stochastic. For instance, as
depicted in Figure 6, if an agent decides to move upward and the environment’s
response is not deterministic, the outcomes can vary probabilistically. In this
example, the agent might experience an 80% chance of returning to the "upper
cell" state, with a 10% probability of transitioning to the "left cell" state and
the "right cell" state each.

Fig. 6. Example process

3.2. Viewport Estimation Using Reinforcement Learning for
360-degree Video Streaming — HEVERL. HEVERL is the method we
propose. It is based on the MDP model and is represented as follows. First, we
calculate the Qy,; value when performing action # at state ¢ by:
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QVaIZQ(tJl)=X(t,h)+am;1xQ(t’,h). (1)

Let X be the reward received when transferring state and X (¢, 4) is the
reward received v’ith ¢’ is the next state. Let o be the discount coefficient,
ensuring that the farther "far away" from the Qy,; target, the smaller it is.
Besides, let ¢ be the state, and / be the action. This formula demonstrates that
the Qy,; of action & at state 7 equals reward X (¢,h) plus the largest Qy,; of
the following states ¢’ when performing action 4. As a result, we can create
a state-action matrix as a lookup table using only that simple formula. As a
result, for each state agent, the action with the highest Qy,; should be chosen.
However, the Qy,; before and after acting will differ because RL is a stochastic
process. This distinction is known as Temporal Difference:

Fht) = X(e,) + amax Q{1 ) — Q-1 t,1). @)

Therefore, the matrix Qy,; needs to be weighted based on TD by:
Qu(t,h) = Qa—1(t,h) + 0 fu(t, h), 3)

where o is the learning rate, through the times the agent performs actions,
Qv will gradually converge. Thus, we aim to choose the appropriate action
for a particular state. In other words, we use state as input and output as an
action. During this stage, we realized that there is no constant solution using
Neural Network (NN). All we need to do is remove the lookup table Qy,;
and replace it with a simple NN in Figure 7. Besides, we employ a neural
network structured with 4 layers. The configuration specifies the number of
neurons per layer: 64, 128, 64, and 128 for layers 1, 2, 3, and 4, respectively.
On the other hand, we use 3 neurons with x; as longitude, x; as latitude, and
x3 as the user’s head-eye movement speed in Figure 7. In this part, we use
x3 represents the user’s head-eye movements speed. It quantifies how quickly
the user shifts their gaze. This variable can offer insights into user attention
and focus, potentially indicating areas of interest or distraction. It could be
measured in degrees per second if tracking angular movement per second
for screen-based interactions. Understanding this speed, we can use adaptive
content based on user engagement levels. All layers utilize ReLU activation
functions, and regularization techniques include a Dropout set to 0.5 and an
L2 regularization set to 0.01.
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Fig. 7. State - Action

However, the most crucial part of NN is still missing. That is the Loss
function. We aim to force the NN to learn how to accurately estimate the Qy,;
for actions. Therefore, to determine the error between the actual and predicted
Qvar- The formula is determined and calculated as follows:

Loss_function = (X + oumaxy Q(t' 5 @') — O(t, h; ))>. 4

On the other hand, our HEVERL algorithm is proposed to perform as
follows:

— Step 01: the setup environment injects a state into the network is #;
The output is the Qy,; of the corresponding actions;

— Step 02: the agent chooses an action with a Policy and executes that
action,;

— Step 03: the environment returns state ¢’ and reward x as the result
of action h and saves the experience tuple [t,4,x,t'|into memory;
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— Step 04: sample the experiences into several batches and train the
NN;

— Step 05: repeat until the end of M (M = 1000) episodes.

After performing the aforementioned steps, we calculate the predicted
positions, which may fluctuate between different states. Experiments also
indicate that our algorithm has shown improvement compared to conventional
methods.

4. Performance Evaluation

4.1. Experimental Settings. To experiment, we use five videos: the
Video Turtle describes People releasing baby turtles into the sea on the beach
during the day. The Bar video describes the Bar as Light, with users moving
and the bartender at work. The Video Ocean is described as follows: Under the
ocean, people go underwater to see whales. Besides, there are two videos, Sofa
and Po. Riverside is described as People sitting on sofas in the living room
to talk, and Riverside videos outdoors during the day, with human activities.
Each video contains traces of corresponding head-eye movements, and the
information is also confirmed to change even when there is no head movement
in Figure 8.

On the one hand, our dataset originates from the CSV file
referenced [38]. We use two columns to indicate the viewer’s position
in latitude and longitude, normalized to a range of O to 1. Longitude values
are scaled by multiplying by 27, and latitude values by 7 to determine
their on-screen positions. To display these positions accurately on an
image, multiply longitude by the desired width and latitude by the desired
height. Using these longitude and latitude coordinates, we can pinpoint
the exact position of the observer. Besides, according to the authors in
the article [38], head-eye movement data were collected from panoramic
(360-degree) videos using head-eye tracking technologies. Head motion
sensing technologies utilize accelerometers, gyroscope sensors, and kinematic
trackers. Eye movement sensing technologies employ infrared eye trackers
and eye-tracking glasses. 360-degree videos are recorded for users to view in
virtual reality environments. Data from head-eye tracking sensors are recorded
simultaneously with the video to provide information about how users interact
with the content.

In this study, we utilized a dataset from [38] comprising head-eye
movements data collected from 57 participants, including 25 women, whose
ages ranged from 19 to 44 years (mean age: 25.7 years). Each participant
viewed five distinct 360-degree videos for 20 seconds. The gaze data, sampled
at 250Hz, yielded approximately 285,000 samples per video, totaling 1,425,000
samples across all videos. For model development, 80% of the data was
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allocated for training and 20% for testing, ensuring comprehensive exposure
during training and robust evaluation of model performance.

-—Longitude (degrees) ——Latitude (degrees) ——Longitude (degrees) ——Latitude (degrees)
1
T Ses1zg,

ﬂmun unﬂﬂ :

a) Bar video

b) Sofa video
—Longitude (degrees) —Latitude {degrees) ——Longitude (degrees) —Latitude (degrees)

¢) Turtle video d) Ocean video

—Longitude (degrees) —Latitude (degrees)

¢) Po. Riverside

Fig. 8. Head-eye movements Dataset [38]

On the other hand, we experimented with the Windows 10 computer
operating system, a Python-written experiment on a PC running 64-bit
Windows 11, with 8192 MB RAM and an Intel® CoreTM 15-10400F Processor
(6 Core, 12 Thread) CPU to measure the training time of different solutions.
The proposed method HEVERL will be evaluated alongside other methods

316  Undopmaruka u aBromarusanms. 2025. Tom 24 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru



ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

by calculating the Root Mean Square Error (RMSE) based on precision
calculation in the context of VAS.

The values defined in Table 1 should be replaced by the following
abbreviations: TP for true positives, TN for true negatives, FP for false positives,
and FN for false negatives.

— Accuracy. Accuracy is useful when the dataset’s classes are well-
balanced, with a similar number of instances in each class. However, accuracy
can be misleading in imbalanced datasets, where one class significantly
outnumbers the others.

TN+TP

Act = : o)
TN+TP+FN+FP

— Precision. Indicates the precision with which Positive issues are
detected.

TP
Prec = ——— . 6
= TPLFP ©)

— Recall. Recall measures the ability to find all the positive samples.

Recall =~ @)
eca = TPLFN’

— F1-Score. F1-Score is the harmonic mean of precision and recall,
providing a balance between the two.

Prec x Recall
F1-S =2k — 8
core * Prec+ Recall ®)

Table 1. Definition of parameters
Values Description
True Positives (TP) True Positives are received True Positive;
False Positives (FP) True Negatives are obtained False as Positive;
True negatives (TN) | True Negatives are received True Negatives;
False negatives (FN) | True Positives are received False as Negative.

Root Mean Square Error —- RMSE. RMSE is one of the two leading
performance indicators for a regression model. It computes the average
difference between values predicted by a model and actual values. It estimates
how well the model can predict the target value (accuracy):
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RMSE :\/ Laz (Preca = Acta)?. ©)
H
Mean Absolute Error - MAE. MAE is the average absolute magnitude
of the errors between predicted and observed (true) viewport positions.

1 H
MAE = Ea; |Prec, — Act,, (10)

where:

— Let Prec, be the prediction rating,

— Let Act, be the actual rating in the testing data set,

— H represents the number of rating prediction pairs between the testing
data and the prediction result.

4.2. Viewport prediction performance. The viewport prediction
performance of the HEVERL model is compared to the current reference
models, including GLVP [3], AEVE [4], and GRU [39], in terms of Precision,
RMSE, and MAE. This comparison aims to evaluate the viewport prediction
capabilities of HEVERL against the benchmark models, intending to identify
the advantages and effectiveness of the HEVERL model in applications that
rely on accurate viewport prediction. Assessing these key performance metrics
provides insights into the relative strengths and improvements offered by the
HEVERL approach compared to the existing reference techniques.

The viewport prediction performance of HEVERL is compared with
the current reference models such as GLVP [4], GRU [39], and AEVE [4] in
terms of Precision, RMSE (Root Mean Square Error), MAE (Mean Absolute
Error) in Table 2.

Table 2. HEVERL compared to the reference methods

Methods Accuracy | Precision | Recall | Fl-score | RMSE | MAE
GRU 71.23 0.865 0.860 0.861 0.248 0.147
GLVP 69.26 0.876 0.871 0.872 0.244 0.140
AEVE 83.45 0.869 0.862 0.864 0.249 0.144
HEVERL 86.24 0.887 0.893 0.889 0.236 0.128

The study compares the viewport prediction performance of
HEVERL, a new proposed model, to existing reference models. Viewport
prediction is essential in many applications, including adaptive streaming and
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virtual/augmented reality, because it allows for efficient resource utilization
and a better user experience.

In terms of precision, the study assesses each model’s ability to predict
the user’s viewport. A higher Precision value indicates improved predictive
performance. The results show that HEVERL outperforms the reference
models in accurately predicting the user’s viewport.

The study also examines the models’ root mean square error (RMSE)
and mean absolute error (MAE). These metrics are crucial in assessing the
disparity between the predicted and actual viewport coordinates. Lower RMSE
and MAE values indicate a higher level of predictive performance. The findings
reveal that HEVERL exhibits lower RMSE and MAE than the reference models,
suggesting that it delivers more accurate viewport predictions with fewer errors.

The study’s results demonstrate that the HEVERL model is highly
effective in viewport prediction. This model holds significant promise as a tool
for optimizing resource allocation and enhancing the overall user experience
in various applications that rely on accurate viewport prediction. Significantly,
it surpasses the current reference models in terms of Precision, RMSE, and
MAE.

4.3. Training time evaluation. Table 3 illustrates the performance of
four algorithms (AEVE, GRU, GLVP, and HEVERL) across five datasets (Bar,
Ocean, Po Riversides, Sofa, and Turtle). The performance metrics indicate that
these algorithms yield favorable results, with average processing times below
100ms for the entire video. This demonstrates the algorithms’ effectiveness in
aiding decision-making processes.

Table 3. Training time overview

Methods Bar Ocean | Po. Riversides | Sofa Turtle
AEVE 0.0953 | 0.0644 | 0.0722 0.0904 | 0.0933
GRU 0.1020 | 0.0766 | 0.0708 0.0921 | 0.0983
GLVP 0.1030 | 0.0951 | 0.0649 0.0954 | 0.0913
HEVERL | 0.0885 | 0.0971 | 0.0863 0.1100 | 0.0782

However, it is critical to consider not only raw performance metrics but
also the algorithm’s consistency and stability. An algorithm that performs well
on average but has a high degree of variability in results may be less desirable
than one with slightly lower peak performance but is more stable and reliable.

Choosing the best algorithm is a nuanced decision based on the
problem’s requirements and constraints. If the goal is to maximize performance
across all data sets, the HEVERL algorithm is the top choice. However, the
algorithm’s performance in specific data sets or use cases may be more relevant.
A thorough understanding of the problem context and desired outcomes is
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required before making a definitive recommendation on the best algorithm for
training time evaluation.

5. Conclusions. In this paper, we tackle the difficult task of viewport
prediction in the context of VR video streaming. The proposed solution
outperformed four reference methods in several critical evaluation metrics,
such as Precision, Root Mean Square Error (RMSE), and Mean Absolute
Error. By accurately predicting the user’s current and future viewport, the
authors’ approach has the potential to significantly improve VR content
delivery, lowering latency and improving overall viewing quality. Accurate
viewport prediction is a critical enabler for optimizing bandwidth utilization
and selectively streaming high-quality content only for the regions of interest,
ultimately increasing user satisfaction and engagement with more immersive
and enjoyable VR services across various domains, such as gaming, education,
and training.

Our strategy focuses on exploring and optimizing techniques to enhance
the performance of Reinforcement Learning models within the VAS system,
aiming to predict and improve user experience quality. Moving forward, we
plan to conduct additional experiments to validate the effectiveness of this
approach, while also investigating solutions for integrating and deploying these
optimized models across real-world virtual reality platforms.
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H. XvHr, ®.T. JAT, H. TAH, H.A. KvyAH, JI. TPAHT, JI.M. HAM,
OIIEHKA OBJIACTU TIPOCMOTPA C UCIIOJIbB3BOBAHUEM
OBYYEHUNA C ITIOAKPEIIJIEHUEM J1J14 IHOTOKOBOU
IHNEPEJIAYU BUJAEO B ®OPMATE 360 I'PA/IYCOB

Xyne H., /lam @.T., Tan H., Kyan H.A., Tpane JI., Ham J1.M. Ouenka o6acTa mpocMoTpa ¢
HCIIOJIb30BaHNeM 00y4YeHHsI ¢ OAKPeNJIeHneM [IIsl IOTOKOBOII lepejauyn Bijieo B hopmare
360 rpaaycos.

Amnnotamus. BuneokonTenT B popmate 360 rpaaycoB cTa KITIOUEBBIM KOMITIOHEHTOM B CpeJiax
BHUPTYaJIbHOI pealbHOCTH, NIpeJIjIarast 3puTe/IsiM 3aXBaThIBAIOIIMIA 1 yBJIEKaTeIbHbI OIbIT. OTHAKO
MIOTOKOBasI Nepejada TaKoro KOMIUIEKCHOTO BHJEOKOHTEHTA CONpsDKEHA CO 3HAYMTEIbHBIMU
TPYAHOCTSIMH, OOYCJIOBJICHHBIMU CYIIECTBEHHBIMU pa3MepaMu (hailJioB M NepeMEeHYMBBIMU
CeTeBbIMH YCJIOBHUSAMM. [IJIsl pellleHHs 9TUX MpoOjeM B KauecTBe MEePCHEeKTUBHOIO PEIleHHs,
HaIpaBJIeHHOTO Ha CHKEHNE Harpy3KH1 Ha MPOITYCKHYIO CIOCOOHOCTB CETH, MOSIBIJIACH aJalITHBHAS
MOTOKOBasI epeada IpoCcMOTpa. DTa TeXHONOTHs NPeroaraeT nepeaady Buaeo 6onee HU3KOro
KayecTBa 1151 epu(epUitHbIX 30H IPOCMOTPA, a BHICOKOKAUEeCTBEHHbIIT KOHTEHT — /151 KOHKPETHON
30HBI MPOCMOTPA, HA KOTOPYIO aKTHBHO CMOTPHT T0/1b30Batelb. [1o cyTn, 310 TpebyeTt TOUHOro
IIPOTHO3UPOBAHNS HAIpPaBJIeHUs] IPOCMOTpa IIOJIb30BaTesIsl W IOBBIIICHUS] KauyecTBa 3TOrO
KOHKPETHOTO CEerMeHTa, UTO MOJYePKUBAeT 3HAYMMOCTb aJalTHBHOW MOTOKOBOH Hepeaavu
npocmotpa (VAS). Hame uccrnenoBanue yniyOisieTcsi B IpUMEHEHHe METOJOB IIOLIaroBOro
00yueHus1 sl POrHO3UPOBAHKSI OLIEHOK, TpeOyeMbix cucteMoil VAS. TakuM 00pa3oM, Mbl
CTPEMHMCS ONTHMH3KPOBATh IPOLiecC IIOTOKOBOH Mepegaun, 00ecrednBast BHICOKOE KaueCTBO
oToOpakeHUs1 HauboJIee BaXHBIX (PparMeHToB Bueo. Kpome Toro, Hamr nNogxoj AOMONHSIETCS
TIIATe/IbHBIM aHAIH30M HOBEICHNs JBIKCHUIT TOJIOBBI U JIMIIA YeJIoBeKa. VICTonb3ys 3Ty JaHHbIe,
MBI pa3paboTay MoJeab OOYUeHWs C NMOAKPEIUICHHEM, CIELMAIbHO IpeJHa3HAYeHHYIO IS
HPOrHO3MPOBAHKS HAIIPABJICHUIT B3IJIs1/1a MOJIb30BATEJIs M MOBBILICHNS Ka4eCTBa N300paKeHHs B
IeJIeBbIX 001acTsX. DhOEeKTHBHOCTb NpelaraeéMoro HaMyu MeToJa NOATBePK1aeTCs HallluMU
9KCNEPUMEHTAIBPHBIMU PE3Y/IbTaTaMH, KOTOpble MOKA3bIBAIOT 3HAUUTE/IbHbIE YIyUllEHHs IO
CPaBHEHHIO C CYIECTBYIONIMMYU STaJOHHBIMU METOAaMU. B 4acTHOCTH, Halll TOAXO[ MOBHIIAET
METpPUKY NPELM3MOHHOCTH Ha 3HauYeHus B auaraszone ot 0,011 go 0,022. Kpome Toro, oH cHuxaet
cpeaHekBaaparuunyio oumoky (RMSE) B quanazone ot 0,008 1o 0,013, cpepHion abcomoTHyI0
ommoky (MAE) — o1 0,012 10 0,018 n onenky F1 — ot 0,017 5o 0,028. Kpome Toro, Msl Hadmogaem
yBeauyerue odiet TouHocTd ¢ 2,79 10 16,98. I yiaydineHns NOAIEPKUBAIOT IOTEHIIHAT HaIIei
MOJIeJIH IS 3HAUUTEIBHOTO YTy qIIeH)s KadecTBa IPOCMOTPa B cpeJjax BUPTYaIbHON peabHOCTH,
Jejiasi MOTOKOBYIO Iepenady Buaeo Ha 360 rpamycoB Oosee 3((EeKTHBHOM U yIOOHON aJIst
OJIb30BaTeIS.

KuroueBble cjioBa: IBIDKCHHE TOJIOBBI U I71a3, 0Oy4eHHE C IOAKpPEIUICHHEM, NIyOoKoe
o0y4eHue, MalllMHHOe 00yJeHKe, MOTOKOBas epeaavya BUaeo, Buieo Ha 360 rpasycos.
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