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Abstract. Depression is a prevalent mental illness that requires autonomous detection
systems due to its complexity. Existing machine learning techniques face challenges such as
background noise sensitivity, slow adaptation speed, and imbalanced data. To address these
limitations, this study proposes a novel ModWave Cepstral Fusion and Stochastic Embedding
Framework for depression prediction. Then, the Gain Modulated Wavelet Technique removes
background noise and normalises audio signals. Difficulties with generalisation, which results
in a lack of interpretability, hinder extracting relevant characteristics from speech. To address
these issues, an Auto Cepstral Fusion extracts relevant features from speech, capturing
temporal and spectral characteristics caused by background voice. Feature selection becomes
imperative when choosing relevant features for classification. Selecting irrelevant features can
result in overfitting, the curse of dimensionality, and less robustness to noise. Hence, the
Principal Stochastic Embedding technique handles high-dimensional data, minimising noise
influence and dimensionality. Furthermore, the XGBoost classifier differentiates between
depressed and non-depressed individuals. As a result, the proposed method uses the DAIC-
WOZ dataset from USC for detecting depressions, achieving an accuracy of 97.02%, precision
0f 97.02%, recall of 97.02%, F1-score of 97.02%, RMSE of 2.00, and MAE of 0.9, making it a
promising tool for autonomous depression detection.

Keywords: depression detection, machine learning, ModWave Cepstral Fusion,
background noise, XGBoost classifier, DAIC-WOZ dataset, autonomous detection system,
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1. Introduction. Depression is the most significant reason for non-
fatal health loss. In 2017, there were 322 million individuals worldwide
who suffered from depression, according to the World Health
Organization [1]. Depression can cause self-harm in addition to having a
severe negative influence on one's family, career, and educational
performance. Depression in adolescence is linked to mood disorders and
severe mental illness in later life [2]. While depression is most commonly
identified in those in their 30s and 40s, it can also be seen in older adults,
youngsters, and those under stress in their relationships and academics [3],
also frequently producing results comparable to those of major depression,
minor depression, however less severe, adds significantly to the economic
and social burden [4, 5]. As the most common mental illness in the world,
MDD affects approximately 300 million individuals and is associated with
significant financial burden and impairment [6, 7]. In Brazil, depression is
the sixth most common health problem, with a lifetime prevalence of up to
16.8% and a prevalence rate of 5.8%. Depression symptoms include low
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mood, irritation, anhedonia, fatigue, psychomotor slowness, cognitive
impairment, and disturbances in internal systems. Early identification of
depression symptoms, such as modified speech patterns, may facilitate
immediate action and help avert the development of suicidal thoughts and
poor social function [8].

A vital component of healthcare is mental health assessment, which
enables early intervention and individualised therapy for people in
psychological distress. Clinical examinations and subjective self-reporting
are the foundations of conventional evaluation approaches, and they can be
costly, time-consuming, or biased. However, new technological
developments, especially in machine learning (ML), have opened the door
for creative methods of mental health evaluation [9]. Using voice recordings
in conjunction with ML techniques is one such potential method for
identifying and tracking mental health issues. Tone, pitch, rhythm,
articulation, and other aspects of voice carry much information that can
reveal underlying emotional states and cognitive processes. Studies have
demonstrated that people suffering from mental health conditions such as
sadness, anxiety, and schizophrenia display unique patterns in their speech
characteristics [10].

By analysing these fine-grained audio characteristics from speech
recordings, ML techniques may detect patterns linked to particular mental
health issues. These algorithms can acquire the ability to discriminate
between normal and abnormal speech patterns with a high degree of
accuracy by training on many annotated voice samples [11]. Furthermore,
as time passes, ML algorithms can adjust and improve, constantly
enhancing their prediction power. There are various benefits to combining
ML and voice recording in mental health assessments. It offers a scalable,
affordable, and non-invasive way to test people who could be at risk of
mental health issues [12]. It also makes it possible to continuously track
how well patients are doing and how they are responding to treatment,
which makes tailored treatments easier to implement and enhances clinical
results.

Common symptoms of depression include depressed emotions, loss
of interest, mental slowness, and other symptoms. It is challenging to
diagnose and has a protracted therapy cycle, a high incidence rate, and a
sluggish onset [13, 14]. Psychotherapy and medication therapy are the
primary forms of treatment. However, the diagnosis of depression has
several deficiencies. First of all, depression is a prevalent mental illness, but
many individuals avoid getting active therapy because they are embarrassed
to admit they have it. Second, the widely utilised instrument for subjectively
diagnosing depression is the Diagnostic and Statistical Manual of Mental
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Disorders (DSM-5) [15, 16]. Misdiagnoses and missed diagnoses result
from this. Thirdly, patients frequently lack the expertise required for self-
assessment, and large-scale, low-cost depression screening instruments are
absent [17]. As an outcome, many patients are unaware of their condition,
which restricts their options for treatment. Finding an objective technique
for quick screening and early warning for depression is therefore essential.

Several studies have shown an association between depression and
an individual's behaviour. Research has shown that voice recordings of
people can be a beneficial tool for characterising mental health and can
offer significant insights into people's mental health. Furthermore, it has
been proposed that precise results for depression prediction can be achieved
by refining a combination of features. Since Mel-Frequency Cepstral
Coefficients (MFCC) are trustworthy and effective even at low
dimensionalities, they are the most often employed feature for audio signal
processing. Several studies have demonstrated the effectiveness of an
algorithm developed via ML techniques in detecting depression in voice
samples. This study offers the following:

—  With an autonomous system for detecting depression, the
proposed ModWave Cepstral Fusion and Stochastic Embedding Framework
addresses the complexity of conventional clinical diagnosis methods and
offers an effective solution to the increasing number of depression cases
worldwide.

—  The proposed strategy, which introduces the Gain Modulated
Wavelet Method, improves the quality of pre-processed data by efficiently
removing background noise from audio recordings, normalising amplitude
levels, and capturing both low and high-frequency information.

—  The Auto Cepstral Fusion Feature extraction method is utilised
to extract relevant features, thereby minimising the impact of noise,
improving the robustness of the model, and capturing the temporal and
spectral characteristics essential for depression prediction.

—  Moreover, the Principal Stochastic Embedding method reduces
dimensionality, minimises noise impact, and manages high-dimensional
data, enhancing feature selection and classification precision.

— In addition to effectively predicting depression, the proposed
approach thoroughly studies performance parameters like accuracy,
precision, ROC, F1 score, recall, and sensitivity, offering valuable data for
model comparison and evaluation.

The article will discuss recent studies on depression detection in
machine learning, proposed methods and their explanations, the outcomes
of the proposed work, and future directions with references.
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2. Related Structure. Distinctive speech patterns such as lower
articulation rate, pauses, slower speaking, lesser intensity, and unusual
voice quality can be used to diagnose depression. Pitch, intensity, rhythm,
speed, jitter, shimmer, energy distribution, and cepstral characteristics are
examples of speech's prosodic, phonetic, and spectral aspects that must be
taken into account to identify fluctuations in emotional state. Because jitter
is sensitive to abrupt changes in speech, it is essential for identifying mood
states. Cepstral coefficients — in particular, MFCC — have been well-
researched for vocal analysis-based depression diagnoses that are well-
suited for identifying depression speech.

The study by the authors in study [18] aimed to develop an ML tool
for diagnosing depressive disorders. They used vocal feature extraction
algorithms and ML classification techniques such as MLP, polynomial
kernel SVM, polynomial kernel, normalised SVM PUK kernel, and random
forest (RF) to extract vocal acoustic features from recordings. The results
showed the tool's viability for cost-effective and non-invasive recognition
and screening of MDDs, demonstrating its potential in diagnosing and
screening these disorders. However, this technique lacks interpretability and
also contains inconsistencies in voice, leading to misclassification of
depressive disorders.

Paper [19] proposed a unique attention-based deep neural network
that enables the merging of several modalities. This network is used to
regress the depression level. This network has been trained using acoustic,
text, and visual modalities. The regression process relies primarily on verbal
input, which validates the therapist's experience. It can be challenging to
combine text, graphics, and audio to estimate depression levels since
integrating and synchronising multiple data sources is complicated and may
require specialised technological knowledge and resources.

Study [20] extracted voice data features using Python programming
and stored them in CSV files. For modelling, a database of 1479 voice
feature samples was created. Utilising algorithmic selection and 10-fold
cross-validation, a decision tree screening framework for depression was
developed. Enhanced accuracy in forecasting was attained by the approach,
enabling patients with depression to get early warning and care. It shows
that clinical depression may be quickly identified and diagnosed using
speech data. Depending on the complexity of this model, there is a risk of
overfitting and limited generalizability.

An investigation on the creation of a supplementary tool for
detecting depressive illnesses was carried out by the authors in paper [21],
whereas 33 participants — 22 with a history of MDD and 11 healthy
controls — were used to test automated classification algorithms and extract
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voice acoustic characteristics. ML approaches and an approach for
extracting vocal features were applied to the recordings. According to
outcomes, random tree models with 100 trees outperformed other models in
terms of categorisation, pointing to a non-invasive, low-cost technique for
severe depressive illness detection and screening.

In study [22] suggested utilising multiple regression to predict the
risk of depression using the context-DNN model. The expertise required to
forecast circumstances and surroundings impacting depression while
considering context information makes up the context of the suggested
context-DNN. Every context data about depression predictor variables
enters the DNN as an input, and each variable is used to predict the
depression output of the DNN. Regression analysis was utilised to forecast
the risk of depression for DNN connections to predict the possible context
that may influence that risk. Due to their high learning capacity, DNNs may
overfit, mainly when working with noisy or limited datasets.

To automatically identify depressed individuals on social media and
provide an explanation for the model prediction, the authors in [23]
suggested explainable Multi-Aspect Depression Detection with Hierarchical
Attention Network (MDHAN). They've considered user posts that had been
enhanced with extra Twitter functionality. Specifically, the author computes
the relevance of each tweet and word, encodes user posts using two levels
of attention mechanisms applied at the tweet and word levels, and extracts
semantic sequence features from user timelines (posts). The hierarchical
attention approach was designed to identify patterns that provide
interpretable outcomes. However, this model may have problems
comprehending complicated models and raising privacy issues because the
data it uses is sensitive.

This cross-sectional, descriptive-analytical study involved 205
pregnant Iranian patients under the care of Tabriz health centres. Cluster
sampling was the sampling technique employed by the authors
in paper [24]. Pregnant women completed the online Depression, Anxiety
and Stress Scale-21 (DASS-21) and the sociodemographic characteristics
questionnaire as part of the data-gathering process. The general linear
model was employed to ascertain the components that were predictive of
stress, anxiety, and depression. If a sample is not randomly selected or
consists exclusively of people from a particular demographic, the study may
be biased towards selection.

As a result, there were many restrictions on the method for
identifying depression-related disorders. It must be interpretable and
encounters consistent voice data, which could result in incorrect
classifications. It takes specialised technological knowledge and resources
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to integrate and synchronise text, video, and audio to determine depression
levels. The existing works could have limited generalizability and run the
risk of overfitting, especially with noisy or small datasets. Although it
provides a low-cost, non-invasive method for detecting and screening
severe mental disorders, there were several significant obstacles, including
the model's complexity, potential biases in sample selection, and privacy
issues because the data was sensitive.

3. Proposed Methodologies. ML algorithms have shown potential
in detecting voice signal depression, potentially transforming mental
disorder diagnosis. However, challenges remain, such as background noise
sensitivity, limited adaptation speed, and low signal clarity due to class
imbalances. It is challenging to reliably distinguish depression detection
from speech signals due to these issues. Despite ongoing efforts to improve
precision and accuracy, ML efficacy in mental health assessment remains
limited by issues like interpretability, robustness, computational
complexity, generalisation issues, overfitting, and dimensionality reduction.
This study presents a novel ML paradigm for mental health depression
detection, aiming to advance mental health diagnostics by enabling more
precise and scalable detection. A rising number of individuals worldwide
suffer from depression, a severe mental illness that affects people of any
age. Traditional methods for diagnosing depression through mental health
evaluations are complex and require machine learning techniques.
However, limitations such as background noise sensitivity, less adaptation
speed, and imbalanced data can impair the accuracy of existing machine
learning systems. This study proposes a novel ML framework, ModWave
Cepstral Fusion and Stochastic Embedding Framework, to predict
depression. To overcome these challenges, a Gain Modulated Wavelet
Technique is employed to remove background noise from audio recordings,
capturing low- and high-frequency information. The next step is feature
extraction, which reduces noise impact and improves model robustness. The
Auto Cepstral Fusion Feature extraction technique is introduced to capture
temporal and spectral characteristics caused by background voice. Feature
selection is crucial for classification, as selecting irrelevant features can lead
to overfitting, the curse of dimensionality, less robustness to noise, and low
interpretability. The Principal Stochastic Embedding technique handles
high-dimensional data, minimises noise influence, and enhances model
performance. Classification is performed using the XGBoost classifier to
determine if a person is depressed. Figure 1 shows the proposed workflow
diagram comprising pre-processing, feature extraction, feature selection,
and classification procedures.
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Fig. 1. Proposed Workflow diagram

3.1. Pre-processing based on Gain Modulated Wavelet
Technique. Gain Modulated Wavelet (GMW) Technique removes
background noise from audio recordings, capturing both low- and high-
frequency information in voice signals and normalising audio signals to
ensure consistent amplitude levels across recordings. Pre-processing of
audio signals typically involves several steps aimed at enhancing the
signal's quality or extracting useful information from it. To remove noise
from audio signals, the GMW technique strengthens the adaptive gain
model and discrete wavelet transform methods. Pre-processing audio
signals with adaptive gain control and discrete wavelet transform can be
effective for several functions, including audio denoising and capturing
information at low and high frequencies.

Decompose the audio signal x(n) into wavelet coefficients using
discrete wavelet transform (DWT), which is a powerful tool for time-
frequency analysis. The decomposition of the audio signal into wavelet
coefficient using DWT is determined in equation (1):

_ J—
x(n) = Y=o ¢k o (M) + Z§=1 legﬁ) ! 4y ik (M), (1

where ¢ are the approximation coefficients at scale /,d; are the detail
coefficients at scale j, and ¢ J,k and 1 j, k are the scaling and wavelet
functions, correspondingly.

Estimate the noise level o; in each detail coefficient sub-band
employing robust methods, including median absolute deviation (MAD) or
local variance estimation. The estimation of noise level is measured in
equation (2):

o, = MAD(d,)/ 0.6745, ©)

where g; represents the estimated noise level in the jt" detail coefficient
sub-band. MAD(d;;) refers to the mean absolute deviation of wavelet
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coefficients in j** sub-band. 0.6745 is a constant scaling factor used to scale
MAD to estimate standard deviation for normally distributed data.
Combining everything, the formula determines the noise level (oj). The
MAD(d; ) of the wavelet coefficients in a given sub-band is obtained by
dividing it by a scaling factor (0.6745).

Apply adaptive gain control to the detail coefficients using the
estimated noise levels. The gain factor g; for each sub-band is calculated in
equation (3):

~_ Starget 3
8j o 3)
where 014 ger 18 the target noise level. Normalise the detail coefficients by
multiplying them with the respective gain factors g;. The normalised

coefficients are determined in equation (4):
dix = - djso )

where d;, are the modified detail coefficients after gaining control.
Reconstruct the denoised signal x'(n) by applying the inverse discrete
wavelet transform to the modified coefficients. The reconstruction of the
denoised signal is calculated in equation (5):

’ - ’ N/2i-1 ’
x'(0) = INZ3 g ) + Ty Tilo T dicy (). (5)

Adaptive gain control and discrete wavelet transform are combined
in this hybrid method to efficiently reduce noise in the audio stream while
maintaining significant signal characteristics. The raw data is normalised to
eliminate background noise from audio recordings, capturing both low- and
high-frequency information present in voice signals and normalising audio
signals to ensure consistent amplitude levels across recordings using the
combined power of adaptive gain control and discrete wavelet transform.
The next stage is to extract features from pre-processed data. The dataset
was balanced using the SMOTE approach, which comes after the noise
removal procedure. The Synthetic Minority Over-sampling Technique
(SMOTE) is a machine learning algorithm that addresses class imbalance,
where a minority class is underrepresented in a dataset, leading to biased
models. SMOTE balances class distribution, making the model more robust
and less biased towards the majority class. Although its effectiveness
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depends on the dataset and problem, it is a valuable tool for handling
imbalanced datasets by generating synthetic samples for the minority class,
improving machine learning model performance, especially in situations
where the minority class is of significant interest. The process of SMOTE
algorithm could be divided into several steps:

1. To create additional samples, choose one minority sample and
generate it as x;.

2. Determines k closest neighbors x;. Make a random selection
from them and mark it with x;.

3. To create a new sample of x,.,,. Equation (6) uses 6, a random
number between 0 and 1.

Xpew = X; + 0 * (xj — xi). (6)

4. Repeat steps 2 and 3 a total of round (N/100) times to create
round (N/100) minority samples.

5. Apply the aforementioned process to every minority sample
(i=12,..T).

In imbalance situations, the SMOTE method produces minority
samples to improve classifier performance and balance datasets. All
samples are treated equally, though, thus it might miss samples that could
be mistakenly labelled. Proposed algorithms for over-sampling aim to
increase the accuracy of minority samples by giving greater weights to
samples that are prone to misclassification. In unbalanced datasets, this
method guarantees that minority samples are given greater weight than
majority samples.

3.2. Feature extraction based on Auto Cepstral Fusion technique.
In audio signal processing, extracting relevant features from pre-processed
data is crucial for various applications. However, difficulties arise with
generalisation and interpretation due to the raw nature of voice signals,
leading to poor performance in feature extraction. A technique called Auto
Cepstral Fusion feature extraction is introduced to address these challenges.
This method combines Autocorrelation and Mel Frequency Cepstral
Coefficients (MFCCs) to enhance feature extraction capabilities.
Autocorrelation and MFCCs are combined to capture spectral and temporal
information from audio signals, making the technique versatile and practical
for various audio analysis tasks. The process begins with pre-processed
audio signals. MFCC extraction is applied to capture the spectral envelope,
while autocorrelation extracts the audio's pitch period and harmonic
structure. Combining these techniques allows for a comprehensive
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understanding of audio signals, improving interpretability and performance
in feature extraction tasks.

3.2.1. Mel Frequency Cepstral Coefficients (MFCCs). Feature
extraction is the technique of considering a stationary speech segment that
is small enough while identifying and computing a collection of features for
every short time frame of the input speech signals to provide meaningful
modelling. Since the MFCC method's computation depends on short-time
power, features are extracted in this study utilising the mel-frequency
cepstral coefficient. The spectrum obtained from the vocal cords of humans
further maps the known fluctuation of critical bandwidth frequencies of the
human ear using two filters to capture the essential components of speech: a
logarithmic filter at high frequencies above 1 kHz and a linear filter at low
frequencies below 1 kHz. Figure 2 illustrates the MFCC feature extraction
process. The MFCC includes some extraction process which follows.

Pre-emphasis. It needs to go through a filter to make up for the
high-frequency part muted through the human sound-generating process.
The high pass filter is applied to the voice signal in equation (7):

x1(n) = x(n) —a*x(n-1), ™

where x;(n) represents the output signal, x(n) and x(n — 1) signifies
present and past signal individually. The value « lies between 0.9 to 1.

Frame Blocking. The continuous speech signal is split into N
sample-sized frames, with N-M samples overlapping and M samples (M<N)
separating neighbouring frames. This procedure keeps going till the signal
is divided into smaller frames.

Windowing: the windowing process involves tapering the signal to
zero at the beginning and end of every frame to reduce spectral distortion.
After multiplying the signal x(n) by a window w(n) at time n, the
extracted signal is obtained by equation (8):

y2(m) = x(n) *w(n), 0Sn<N-1, ®)
where N is the number of samples in every frame. Since the Hamming
window sinks the sidelobe level of window transfer while reducing the

frequency resolution of spectral analysis, it is used in this case; the spectral
analysis for reducing the frequency resolution is determined in equation (9):

w(n) = 0.54— 046 cos [, 0<n<N-1. ©)
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Fast Fourier Transform. Transfers N frequency domain samples
to the time domain. The Discrete Fourier Transform (DFT), which depends
on a collection of N Samples (yn), is developed using the widely used FFT
approach. The estimation of the DFT process is determined in
equation (10):

Y, = YNty esizmko/N gk =0,12.....,N—1. (10)

A spectrum or periodogram is a concept used to describe the
outcome of the FFT process.

Mel-frequency wrapping. Mel frequency depends primarily on
research on how humans perceive frequency. All frequency bands exhibit
varying degrees of sensitivity in human hearing. It becomes less responsive
to increased frequencies over 1000 Hz. Mel-frequency, defined as linear
frequency spacing below 1 kHz, is the voice signal. The estimation of the
Mel-frequency wrapping process is measured in equation (11):

Mel(f) = 2595 * log, (1 + f/700). (11

Cepstrum. In this final step of the MFCC procedure, the log mel
spectrum is transformed into the time domain. Since DCT's results include
significant quantities of energy, DCT typically conducts this conversion.
The DCT output is expressed as MFCC and is represented in equation (12):

CIn] = $N=¢ log |ZN=¢ x(nexp ()| exp (25, (12)

where n=0, 1,2,...... N-1. C[n] means MFCC, and twelve cepstral
coefficients are retrieved from every frame, where n is the number of
coefficients (n=12).

" Pre- Frame Fast Fourier
emphasis Blocking Transform
Speech Signal

Spectrum

Mel -
Mel-Cepstrum<—— Cepstrum Frequency
‘Wrapping

Fig. 2. MFCC feature extraction process
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3.2.2. Auto Correlation. The autocorrelation function compares the
similarity between the delayed and original signals to determine how self-
similar a signal is in the temporal domain. A strong positive association is
indicated by an autocorrelation value of +1, a negative association by -1,
and no association by 0. Because the signal has a perfect correlation with
itself, the autocorrelation at lag zero is always 1. Autocorrelation is
instrumental in capturing periodic and repetitive patterns in speech signals.
It's computed by correlating the signal with itself at various time lags,
revealing crucial speech characteristics like formants and pitch. Calculate
the autocorrelation function for each speech signal frame to better
understand its self-similarity. The autocorrelation function is defined in
equation (13):

1 —N-1
R(K) = Nz _x().x(n 4 k), (13)

where N is the frame length, x(n) represents the signal at the time index n,
k is the lag at which autocorrelation is computed, and R(k) is the
autocorrelation value at lag k. The autocorrelation function captures the
self-similarity of the signal, highlighting periodic components.
Autocorrelation values may vary depending on the amplitude and energy of
the signal. Normalisation helps make the feature more robust and invariant
to changes in amplitude. Each autocorrelation value is divided by the
autocorrelation at lag 0 to normalise it. The autocorrelation process for
normalising the value is measured in equation (14):

R(K)

From the computed autocorrelation function, you can extract various
features that are useful for speech recognition and periodicity of the signal,
such as:

—  Pitch period: the pitch period of the signal is frequently
correlated with the lag corresponding to the first peak following lag 0.

—  Harmonic Structure: the autocorrelation function's regularly
spaced peaks can indicate that the signal has harmonic components.

—  Envelope Information: the signal envelope can be obtained
from the decay rate of the autocorrelation values. In audio and voice
processing applications, autocorrelation facilitates the extraction of
significant signal features, making tasks like pitch estimation, harmonic
analysis, and envelope identification easier. While the autocorrelation
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features offer more details about the temporal and periodic patterns, the
MFCC features capture the speech's spectrum qualities. Auto Cepstral
Fusion, a Feature extraction technique, extracts relevant features, reducing
the impact of noise, improving the robustness of the model, and aiming to
capture temporal and spectral characteristics caused by background voice.
The proposed strategy provides feature selection to minimise
dimensionality based on the particular application and requirements. This is
described in more detail in the steps that follow and can aid in identifying
the most valuable features while reducing computing complexity.

3.3. Feature Selection based on the Principal Stochastic
Embedding technique. Selecting the most pertinent characteristics is the
next step after feature extraction. The principal stochastic embedding
technique, which supports t-distributed Stochastic Neighbor Embedding (t-
SNE) along with Principal Component Analysis (PCA), is used to carry out
this procedure. This combination allows for capturing global and local
structures identified in voice signal data, making it possible to visualise
complex relationships more thoroughly. PCA is good at capturing global
structures, which helps it discover broad patterns and trends within the data.
Still, t-SNE focuses on maintaining local structures, which allows it to
capture complex interactions among neighbouring data points. When these
two approaches work together, complicated relationships in the data can be
shown more effectively, leading to a more informed feature selection
technique.

3.3.1. t-SNE algorithm. The essential elements strongly associated
with the target characteristic are selected by applying dimensional reduction
techniques. Significant and highly representative features are collected to
achieve high accuracy. Decreasing the amount of variables in a dataset is
known as dimensional reduction. A proposed technique for reducing the
dimensionality of nonlinear data is to drop it from a high-dimensional space
into a low-dimensional one using the t-SNE technique. The method focuses
on the variance of neighbourhood points and data inclusion in a low space,
producing random, unconfirmed probability. It assigns comparable traits
with greater probability and dissimilar characteristics to lower probability
when distributing pairs of X; and X;. The pairwise similarity in the high-
dimensional data space is determined in equation (15), and the data points
representation by t-SNE in a low-dimensional space is demonstrated in
equation (16). Equation (17) illustrates how the technique iteratively
operates the same probability distribution across a smaller space to show
data points in a low-dimensional space and lower the Kulback-Leibler (KL)
variance. The probability distribution with low KL variance is determined
in equation (17):
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S(Xi ) X)

) =g D (s)
SCYi, Y)

/%) =55, v "

_ P(Xi/X;)
KL = ZZ P(X;,  X;)log QW) (17)

where P(X /X j) high-dimensional data is space and X;/X; are pairs in the P
space; Y;/Y; is low-dimensional data space, and Y;/Y; are pairs in the Q
space (Figure 3).

Input
High-dimensional data

Minimize Kullback-
A4 Leibler divergence
> between high-
dimensional and low-
dimensional data

Compute pairwise
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datapoints
L \
Initialize low- Output
dimensional embedding Low-dimensional data

Y

Compute similarity
matrix for low-
dimensional embedding

Fig. 3. Flowchart for t-SNE algorithm

3.3.2. PCA Algorithm. Principal components of PCA, an
unsupervised statistical technique, are linearly uncorrelated when correlated
features are converted. Normalising the dataset uses mathematical ideas like
variance, covariance, eigenvalues, and eigenvectors. Correlation is the
connection between two characteristics, whereas dimensions are the amount
of features in the collection. To ensure there are high-variance features, the
method divides the individual value by the standard deviation of all
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features. The Z covariance matrix includes the variance among the two
feature pairs, and eigenvectors represent high-variance information axes. In
the P matrix, the technique places eigenvalues and eigenvectors in
descending order. The Z covariance matrix is multiplied by the P matrix to
generate new features. Important and pertinent characteristics are kept,
while less important ones are eliminated to produce a new dataset. The
dimensionality reduction feature selection technique aids in reducing
features while preserving the most significant amount of relevant
information. PCA identifies the principle components that primarily explain
the variation in the data, whereas t-SNE produces a low-dimensional
representation that preserves the local structure. The hybrid strategy lowers
the risk of overfitting and improves model generalisation by combining
both techniques to achieve more effective dimensionality reduction. This
optimised feature selection process produces a subset of characteristics that
are very discriminative and informative of the underlying structure in the
data. Enhanced visualisation, complete data representation, improved
dimensionality reduction, optimal feature selection, and increased
performance in machine learning tasks are just a few benefits of the hybrid
feature selection approach utilising principle stochastic embedding. Figure 4
shows the flowchart for the PCA algorithm. The next step involves a
classification process, which classifies depressed patients.

Select principal
components based on
number of components

Input
High-dimensional data

A 4

Yy Y

Standardize the data Project data on selected
principal components

Y

Compute the covariance Y
matrix

Output
Low-dimensional data

Y

Perform eigen
decomposition

Fig. 4. Flowchart for PCA
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3.4. XGBoost Classifier. Using the XGBoost classifier, also known as
the Extremely Gradient Boosted Decision Tree, can effectively segment data
into smaller subsets, leading to remarkable accuracy across many Natural
Language Processing (NLP) applications and ML models. This classifier
boasts several advantages, including scalability, parallelizability, and swift
execution times, making it a preferred choice in various settings. Moreover, it
is a regularised model in which formalisation helps to prevent overfitting,
thereby enhancing performance compared to other algorithms. Utilising the
XGBoost classifier, the proposed technique demonstrates superior
performance in identifying depressed individuals compared to existing
approaches. Through its expertise in handling intricate relationships within
data and its robustness against overfitting, XGBoost ensures high accuracy
and reliability in predicting outcomes, thereby offering a promising avenue
for advancing depression detection. The XGBoost workflow schematic is
shown in Figure 5. The blue-coloured zone represents the training and testing
data. The boxes inside the dashed lines represent the testing and training
procedures, where GBM stands for gradient boosting machine and T is for
tree. The results obtained from XGBoost from the dashed box are displayed in
the two oval boxes on the right.

Training Procedure

Tune hyper- i . |
Build models using the A
parameter —> ggregrate
(optional) Besipaimeiensel importance lists

Training

Training data

i

All available data

Testing data

e e e e e
C T T T [

| Testing Procedure |

| |

| Predict test set using Averag'e l{mdels | Final test set

I GBM models predictions | predicitons

| |

b e e |

Fig. 5. XGBoost classifier

4. Results and Discussion. The Distress Analysis Interview Corpus:
Wizard of Oz (DAIC-WOQOZ) dataset is employed in this research [25].
Based on feature vectors, data was chosen and split into two categories:
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80% for training and 20% for testing. The dataset comprises text, audio, and
video exchanges among individuals and an automated interviewer. The
interview questions are based on the physical manifestations of depression.
Two versions of this dataset have been released up to this point; the
expanded DAIC-WOZ is utilised in this study. There are 189 sessions in the
sample (102 men and 87 women), of which 133 are not depressed, and 56
are depressed. The dataset is split into 80% and 20% for training and
testing. The outcomes achieved are presented in the subsections that follow.
The Python tool, Windows 7 (64-bit) OS, and Intel Premium CPU with
8GB RAM are used to carry out this proposed work. In conclusion, it
compared previous approaches and the proposed system. This section
discusses how well the approach we propose works for identifying
depressed patients.

4.1. Performance analysis. The amplitude of the audio signal is
shown in the waveplot graph. Unequal or fluctuating amplitude in a noisy
audio waveplot indicates the existence of background noise. The noisy
waveplot implies that the audio signal has been affected by unwanted noise,
which might affect the clarity of the audio. Figure 6(a) shows that the x-axis
depicts the sample, and the y-axis is the audio signal's amplitude. The audio
signal amplitude following noise reduction processing is seen in the
denoised waveplot: a less amplitude fluctuating, smoother waveplot than
the noisy version. The denoised waveplot shows that the noise reduction
procedure has successfully eliminated or reduced background noise,
producing a more precise and cleaner audio stream. Figure 6(b) shows that
the x-axis depicts the sample, and the y-axis is the audio signal's amplitude.

A spectrogram shows the audio signal's frequency content with time.
The presence of noise is shown in spectrograms of noisy audio as extra
energy in different frequency bands, which frequently take the form of
irregular patterns or streaks. A noisy spectrogram may mask or distort the
properties of the underlying signal by highlighting spectral contamination
carried on by background noise. Figure 6(c) shows that the y-axis indicates
hz, and the x-axis represents time. The frequency content of the audio signal
is seen on the denoised spectrogram following noise reduction. Reduced
energy in background noise-corresponding frequency regions improves the
visibility of signal characteristics and produces more apparent spectral
patterns. A denoised spectrogram shows how noise reduction may improve
the signal-to-noise ratio, which makes it easier to identify and analyse
relevant audio properties. Figure 6(d) shows that the y-axis indicates Hz,
and the x-axis represents time in seconds. With the wave plot showing
changes in amplitude and the spectrogram indicating changes in frequency
content, both offer useful information on how noise reduction affects audio
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signals. These graphics help evaluate how well noise reduction methods
work and how they affect the audio signal's overall quality.

Waveplot for audio 300_Noisy Viaveplot for audio 300_Denoised

Amplitude
H

Amplitude

-2 o2

o4

ap Y] a4 o8 10
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a) Noise images before pre-processing  b) Denoised images after pre-processing

Spectrogram for audio 300_Noisy Spectrogram for audio 300_Denoised

¢) Noisy spectrogram audio d) Denoised spectrogram audio
Fig. 6. Wave plot and Spectrogram visualisation

4.2. Imbalanced Datasets. Figure 7 below shows the dataset
modelling (before and after balancing the dataset). There are two types of
class labels: 0 is represented as depressed, and 1 is represented as not
depressed. The dataset utilised in this study comprises individuals
categorised as depressed and not depressed, but it exhibits an inherent
imbalance and is contaminated with background noise. Consequently, the
pre-processing methodology outlined in this study addresses these
challenges. Following pre-processing, the dataset achieves a balance
between the depressed and not-depressed categories while also effectively
eliminating background noise. Furthermore, this pre-processing method
ensures the capture of low and high-level features within the dataset. Here,
we used the SMOTE technique to balance the dataset, which was performed
after the noise removal process.
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Fig. 7. Dataset modelling

4.3. Confusion matrix. One kind of performance metric employed
in ML and classification to evaluate a model's ability to identify depression
is a confusion matrix. It offers a summary of the variations among predicted
labels and the actual ground truth labels so that the model's accuracy may be
evaluated. The four groups in the confusion matrix are TP, FP, FN, and TN,
where 0 denotes people who are depressed, and 1 represents those who are
not depressed. Several performance measures, including accuracy,
precision, recall, and Fl-score, may be computed using the confusion
matrix to assess how well the framework identifies depression. Figure 8
shows the confusion matrix for the proposed work.

-]

True Label

0 1
Predicted Label

Fig. 8. Confusion matrix

4.4.ROC curve. A graphical depiction of a binary classification
model's accuracy across various threshold values is called a Receiver
Operating Characteristic (ROC) curve. At various threshold values, it shows
the true positive rate (TPR) versus the false positive rate (FPR). The ROC
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curve, shown in Figure 9, depicts the false positive rate (specificity) on the
x-axis and the true positive rate (sensitivity) on the y-axis. An area under
the curve (AUC) of 0.97 on an ROC curve for detecting depression denotes
good discriminating power in differentiating between those who are
depressed and those who are not. A high likelihood of ranking a randomly
selected sad person higher than a randomly chosen non-depressed person is
indicated by an AUC of 0.97. This suggests that the model makes few
prediction errors, achieving high sensitivity while maintaining low false
positive rates across various threshold settings.
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Fig. 9. ROC curve

4.5. Comparative analysis. The depression prediction framework
was evaluated with several performance metrics: root mean square error
(RMSE), mean absolute error (MAE), accuracy, precision, recall and F1-
score. The performance metrics are compared with several existing works
such as Deep Convolutional Neural Network-Deep Neural Network
((DCNN-DNN) [26], Deep Convolutional Generative Adversarial Network
(DCGAN) [27], Transformer Encoder + Convolutional Neural Network
(TE+ CNN) [28], Bidirectional-Long Short term Memory + Attention (Bi-
LSTM + Attention) [29], Graph Convolutional Neural Network
(GCNN) [30], Convolutional Neural Network (CNN) [31], Gated Recurrent
Unit (GRU) [31], Bimodal Attention-GRU (BiAtt-GRU) [31], Two-
dimensional CNN-LSTM (2D-CNN-LSTM) [32], Decision Tree (DT) [32],
Deep AudioNet (DAN) [32], Transformer-CNN-CNN (TCC) — Softmax
[32], Unimodal Ensemble (UE) [33], Multimodal + Selective dropout +
Transfer Learning (MM + SD + TL) [33], Multimodal + Selective dropout-
Normalization-Attention + Transfer Learning + Spectral-Normalized Neural
Gaussian Process (MM+ SD-Norm-Att + TL + SNGP) [33].
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The Root Mean Square Error (RMSE) is a frequently employed
metric for assessing a model's or prediction's accuracy. The definition of
this term is the square root of the average of the squared differences
between the actual and predicted values. Mathematically, RMSE is
represented in equation (18):

RMSE = (18)

The accuracy of a model's predictions is gauged by the Mean
Absolute Error (MAE) metric. The mean of the absolute differences
between the actual and predicted values is how it is defined. Without
considering direction, the mean absolute error (MAE) quantifies the average
magnitude of mistakes in a set of predictions. A lower MAE value denotes a
more precise model. The MAE is determined in equation (19):

n
1
MAE =19, - yil, (19
i=1

where ¥;, y; and n display the actual severity score, the predicted score
generated from the model, and the amount of test data corresponding to it.
By using equations (18) and (19), the RMSE and MAE values are
calculated. The proposed method performs significantly fewer errors than
other existing techniques. Figure 10 compares RMSE and MAE graphs for
the proposed model with several existing works. Table 1 shows the
comparison values for the RMSE and MAE metrics.
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Fig. 10. Comparison graph for: a) RMSE; and b) MAE
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Table 1. Comparison of error metrics

Method RMSE MAE
DCNN-DNN [26] 5.63 4.85
DCGAN [27] 5.52 4.63

TE+ CNN [28] 5.37 4.48
Bi-LSTM + Attention [29] 4.76 3.61
GCNN [30] 2.15 1.25
Proposed 2.00 0.90

The efficiency of the suggested strategy is demonstrated by comparing
approaches for predicting depressive illnesses based on their Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE). With an MAE of
1.25 and the lowest RMSE of 2.15, the GCNN demonstrates excellent
prediction accuracy. The suggested approach, on the other hand, outperforms
the others in terms of predicting the severity of depression, with an even
lower RMSE of 2.00 and MAE of 0.90. While models such as the Bi-LSTM
+ Attention demonstrate competitive performance (RMSE of 4.76 and MAE
of 3.61), they are less effective than the proposed technique. The Transformer
Encoder + CNN and DCGAN approaches show slightly higher prediction
errors, with corresponding MAE values of 4.48 and 4.63 and RMSE values of
5.37 and 5.52, respectively. The suggested approach stands out for its
precision and accuracy in estimating the severity of depressive disorder,
providing encouraging developments in this area of study.

Evaluation metrics. Accuracy, precision, recall, and F1 score were
used as performance indicators for this study. These metrics finally
demonstrate the proposed technique's performance reliability. Figure 11
below displays the comparison graph for the proposed work.
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Fig. 11. Comparison graph for performance metrics: a) Accuracy, b) Precision,
Recall and F1-score
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The work proposed provides all of the current methods, and Tables 2
and 3 display the comparative analysis of the performance metrics for the
proposed model with several existing works.

Table 2. Comparison of Accuracy metrics

Model Accuracy (%)
CNN [31] 69.00
GRU [31] 66.00
BiAtt-GRU [31] 89.00
UE [33] 80.54
MM + SD + TL [33] 87.55
MM + SD-Norm-Att + TL + SNGP [33] 95.07
Proposed 97.02

The suggested model outperforms multiple existing models in
detecting depression-related conditions, with the maximum accuracy of
97.02%. By contrast, the accuracy of the GRU model is 66%, the CNN
model is 69%, and the BiAttention-GRU model is 89%. While the
Multimodal + SD + transfer learning model achieves 87.55% accuracy, the
Unimodal Ensemble model only manages 80.54%. 95.07% is achieved by
the Multimodal + SD-Norm-Att + transfer learning + SNGP model,
demonstrating a notable improvement with the suggested approach.

Table 3. Comparison of Precision, Recall and F1-score

Model Precision (%) Recall (%) F1-score (%)
2D-CNN-LSTM [32] 90.80 92.60 91.70
DT [32] 78.90 80.20 79.60
DAN [32] 82.80 84.90 83.80
TCC-Softmax [32] 93.90 93.80 93.80
UE [33] 80.96 78.13 79.52
MM + SD + TL [33] 89.26 89.17 89.21
Proposed 97.02 97.02 97.02

A high degree of accuracy and consistency in its predictions is
indicated by the suggested model's precision, recall, and F1-score, which
are all at 97.02%, suggesting outstanding performance in diagnosing
depression. It performs better than a number of other models, including the
TCC-Softmax model, which attains a precision, recall, and Fl-score of
93.8%, and the 2D-CNN-LSTM, which has a precision of 90.8%, recall of
92.6%, and Fl-score of 91.7%. Some models perform better than others,
such as the Unimodal Ensemble and Deep AudioNet, which scored 79.52%
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and 83.8%, respectively, on the F1 score. Furthermore, the F1-score for the
Multimodal + SD + transfer learning model is 89.21%.

This research demonstrates the superiority of the novel method in
terms of depression detection, with a low MAE of 0.9 and an exceptional
accuracy of 97.02%. In terms of precision and forecast accuracy, this
strategy outperforms earlier ones. The study also emphasises the
significance of accuracy and Fl-score, standard metrics in evaluation
processes, in determining the model's efficiency. The proposed method is a
potential growth in effective depression detection methods as it outperforms
currently available methods and produces reliable findings regarding the
accuracy and F1 score.

5. Conclusion. In conclusion, the high incidence of depression
necessitates the development of autonomous detection systems, given the
complexities associated with traditional clinical diagnosis methods. Existing
ML techniques for depression detection encounter challenges such as
sensitivity to background noise, slow adaptation speed, and imbalanced
data, which can compromise accuracy. To overcome these limitations, this
study introduces a novel ModWave Cepstral Fusion and Stochastic
Embedding Framework for depression prediction. They address issues like
background noise in audio signals and low amplitude levels during pre-
processing by employing the Gain Modulated Wavelet Technique. This
technique removes background noise while capturing low and high-
frequency information in voice signals, subsequently normalising the audio
signals. Difficulties in generalisation and lack of interpretability pose
obstacles to extracting relevant characteristics from speech. To tackle these
challenges, an Auto Cepstral Fusion extraction technique was proposed to
extract pertinent features, aiming to capture both temporal and spectral
characteristics caused by background voice. Moreover, feature selection is
crucial to ensure robust classification. To address this, the Principal
Stochastic Embedding technique handles high-dimensional data, reduces
the influence of noise, and minimises dimensionality. Utilising the
XGBoost classifier, the proposed method distinguishes between depressed
and non-depressed individuals using the DAIC-WOZ Datasets from USC.
The proposed approach achieved a remarkable accuracy of 97.02% and a
low MAE of 0.9, positioning it as a promising tool for autonomous
depression detection. This proposed model provided enhanced accuracy by
effectively integrating multiple data modalities. Developing advanced
machine learning methods presents interesting chances to improve
depression detection systems. In particular, deep learning has demonstrated
great promise for identifying complicated patterns and characteristics in
large, complex data sets. Future studies might examine how deep learning

Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print) 1777
ISSN 2713-3206 (online) www.ia.spcras.ru



WCKYCCTBEHHbBIN MHTEJIJIEKT, UHKEHEPUS JIAHHBIX M 3HAHUI

architectures can be applied to assess multimodal data more effectively and
accurately identify minor signs of depression. By utilising wearable
technology, smartphone apps, and other digital platforms, these systems
might continually monitor people's physiological and behavioral signals and
offer therapies and notifications when early indications of depression are
identified. These kinds of systems can lessen the harmful effects of
depression and enhance people's general well-being by providing early
detection and access to mental health services.
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. JKENKOB, K. KAHHAH
YCOBEPHIEHCTBOBAHHASI CUCTEMA MAIIIMHHOI'O
OBYYEHMSI 1151 ABTOHOMHOI'O OBHAPYXXEHUS
JAEIMPECCHUHU C UCTTOJIB3OBAHUEM MOJAYJIUPOBAHHOI'O
BEMBJIET-KEIICTPAJIBHOI'O CJIUSIHUS U
CTOXACTHYECKOI'O BCTPAUBAHUS

Loceiiko6 []., Kannan K. YcoBeplIeHCTBOBAHHAs CHCTeMa MAIIMHHOIO O0y4YeHHs JJIsi
ABTOHOMHOI'0 00HAPY:KeHHSsI JeNPecCHH C UCNO0JIb30BAHHEM MOJY/IHPOBAHHOIO BeiBjeT-
KeINCcTPAJbHOTO CJIHSHAA H CTOXaCTHYECKOT0 BCTPAaHBAHUS.

AnHoTammsi. Jlenmpeccuss — 3TO  pacIpoCTpaHEHHOE MCHUXMUYECKoe 3abolieBaHME,
TpeOytoliee  CHCTEM  aBTOMATHHYECKOTO  OOHApyXKeHHs H3-32  CBOGH  CIIOXHOCTH.
CyIIeCTBYOIIE METOIbI MAIIMHHOTO O0YYeHHs CTaJKMUBAIOTCS C HPOOIEMaMH, TaKMMHU KaK
YyBCTBUTEJIIBHOCT K  (DOHOBOMY  IIyMy, MEIJIEHHas CKOPOCTb  aJanTalMd "
HecOanaHCUpPOBaHHbIE JaHHbIe. JIsi yCcTpaHEHMsl 3TMX OTPAHMYECHHII B 3TOM HCCJIEJOBAHUM
[PEAIaraeTcss HOBas CTPYKTYpa MOAYJIHPOBAHHOTO BEHBIET-KENCTPAILHOIO CIMSHHSA MU
CTOXaCTHYECKAsi CTPYKTYpa BCTPaMBAHUs JUIi NPOTHO3MPOBAHMS JCHPECCHU. 3aTeM TEXHUKa
MOJYJIUPOBAHHBIX BOJHOBBIX (yHKUMHA ymamsier (GOHOBBIH LIyM M HOPMAJIM3YeT
aymuocurHansl.  TpyaHoctn ¢ 00oOIieHHEM, KOTOpbIE IIPUBOAST K  OTCYTCTBHIO
HHTEPIPETUPYEMOCTH, 3aTPYIHSIOT H3BJICUYEHHE COOTBETCTBYIOIINX XapaKTePUCTHK pedr. [l
pEIIeHHsT 3THX TPOOIEM HCHOJIb3YeTCs aBTOMATHYECKOE KENCTPalibHOE CIHMSHHE, KOTOpOe
M3BJCKACT COOTBETCTBYIOIME XAapaKTCPUCTHKH  pEYM, 3axBaThiBask BPEMEHHbIC U
CIEKTpaIbHbIE XapaKTePUCTHKH, BBI3BaHHBIC (OHOBHIM ToJOCOM. BpIGop mpu3HaKoB
CTaHOBHTCS Ba)KHBIM, KOIJa BBIOMPAIOTCS pPENICBAaHTHBIC NPU3HAKH I KJIACCH(HKAIUH.
BbIOOp HEpeneBaHTHBIX INPH3HAKOB MOXET MNPUBECTH K I1EPEOOYYCHHIO, HAPYLICHHUIO
Pa3MepHOCTH M MEHBIIEH YCTOMYMBOCTH K IIyMy. [109TOMY MeTOR CTOXaCTHYECKOI NMMepCHI
CIIPABIISIETCS ¢ BHICOKOPA3MEPHBIMHU JTaHHBIMH, MHHUMH3UPYSI BIMSHUE OIyMa U Pa3MEPHOCTH.
Kpome Toro, kmaccuduxatop XGBoost ormnmuaer mroneld ¢ agenpeccueid m smoaei 0e3
Jenpeccud. B pesynbTaTe NpemIoKeHHBI METOJ MCIoib3yeT Habop maHHBIX DAIC-WOZ
Vhausepcurera IOxnoit Kamudopann uist oOHapykKeHHs JACNPECCHi, JOCTUTas TOYHOCTH
97,02%, npeumsuonnoctu  97,02%, momHotel  97,02%, ouenku F1  97,02%,
cpenHekBaaparnyeckod ommOkn 2,00 m cpenHeit abcomorHoi ommOkm 0,9, nemas ero
MHOT'000€IIAIOIIIM HHCTPYMEHTOM JUISl aBTOHOMHOTO OOHAPYKEHHS JICTIPECCHH.

KiroueBble c10Ba: oOHapyKeHHe Ienpeccuy, MamuHHoe o0ydenne, ModWave Cepstral
Fusion, ¢oHoBbIi 1myM, knaccudukarop XGBoost, Hadbop nanusix DAIC-WOZ, aBToHOMHAast
cucTeMa 0OHAPYKEHHSI, TOYHOCTb.
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