INFORMATION SECURITY

DOI 10.15622/ia.24.1.5

Y. IMAMVERDIYEV, E. BAGHIROV, 1.J. CHUKWU
DETECTING OBFUSCATED MALWARE INFECTIONS ON
WINDOWS USING ENSEMBLE LEARNING TECHNIQUES

Imamverdiyev Y., Baghirov E., Chukwu I.J. Detecting Obfuscated Malware Infections on
Windows Using Ensemble Learning Techniques.

Abstract. In the internet and smart devices era, malware detection has become crucial
for system security. Obfuscated malware poses significant risks to various platforms, including
computers, mobile devices, and 10T devices, by evading advanced security solutions. Traditional
heuristic-based and signature-based methods often fail against these threats. Therefore, a cost-
effective detection system was proposed using memory dump analysis and ensemble learning
techniques. Utilizing the CIC-MalMem-2022 dataset, the effectiveness of decision trees, gradient-
boosted trees, logistic Regression, random forest, and LightGBM in identifying obfuscated
malware was evaluated. The study demonstrated the superiority of ensemble learning techniques in
enhancing detection accuracy and robustness. Additionally, SHAP (SHapley Additive exPlanations)
and LIME (Local Interpretable Model-agnostic Explanations) were employed to elucidate model
predictions, improving transparency and trustworthiness. The analysis revealed vital features
significantly impacting malware detection, such as process services, active services, file handles,
registry keys, and callback functions. These insights are crucial for refining detection strategies and
enhancing model performance. The findings contribute to cybersecurity efforts by comprehensively
assessing machine learning algorithms for obfuscated malware detection through memory analysis.
This paper offers valuable insights for future research and advancements in malware detection,
paving the way for more robust and effective cybersecurity solutions in the face of evolving and
sophisticated malware threats.

Keywords: malware detection, machine learning, malware analysis, cybersecurity.

1. Introduction. In the rapidly evolving digital era, malware continues
to be a severe and prevalent threat to computer systems worldwide. Windows
operating systems, in particular, are frequent targets due to their extensive
user base and the variety of vulnerabilities that malicious actors can exploit.
Malware can lead to severe consequences, including data theft, system damage,
and financial loss, necessitating robust detection mechanisms to safeguard
systems and users. The ongoing battle between malware distributors and
the extensive efforts mobilized for malware detection persists, driven by
the destructive potential of malware. This includes significant financial
losses, disruption of critical services, and even human casualties in critical
infrastructures such as SCADA. Cybercriminals leverage malware as a weapon
due to its capacity to inflict widespread harm and chaos [1].

Traditional signature-based methods, which rely on identifying known
malware signatures, have proven insufficient in the face of new and sophisticated
malware variants. These methods often fail to detect novel threats and zero-day
attacks that lack predefined signatures. As a result, the focus has shifted

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 99
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

towards machine learning and behavioral-based detection approaches, which
offer the potential to identify previously unseen malware by analyzing patterns
and behaviors indicative of malicious intent [2]. This shift is driven by
the increasing complexity and obfuscation techniques employed by malware
authors, making static analysis methods less effective [3].

On the other hand, dynamic analysis involves executing the software
in a controlled environment, such as a sandbox, to observe its behavior and
interactions with the system. This method can detect malware that evades
static analysis by monitoring runtime behavior, including network activity, file
modifications, and registry changes. The strength of dynamic analysis lies in
its ability to identify zero-day threats and polymorphic malware. However, it
is resource-intensive and time-consuming, requiring a secure environment to
execute potentially harmful software. Additionally, sophisticated malware can
detect when it is running in a sandbox and alter its behavior to avoid detection,
reducing the effectiveness of dynamic analysis [4].

Machine learning-based malware detection leverages the power of
statistical analysis and pattern recognition to detect malicious activities in real
time. Techniques such as ensemble methods, which combine multiple machine
learning models, have shown significant promise in enhancing detection
accuracy and robustness. By integrating the strengths of various base classifiers,
ensemble techniques can improve detection performance and reduce false
positives, making them a valuable tool in the fight against malware [5]. Recent
studies have demonstrated the effectiveness of various machine learning and
deep learning approaches in malware detection, highlighting the need for
continual advancement in this field [6-8].

Moreover, profound and self-supervised learning advancements have
opened new avenues for malware detection. Techniques such as Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have shown
potential in identifying complex patterns within large datasets, improving
detection rates for previously unseen malware [4]. Self-supervised learning
approaches, which do not require large labeled datasets, offer promising
solutions for developing efficient and scalable malware detection systems [9].

Despite these advancements, challenges remain in deploying
machine learning-based malware detection systems. Issues such as model
interpretability, adversarial attacks, and the need for large labeled datasets
must be addressed to ensure the effectiveness and reliability of these systems in
real-world scenarios. Research efforts continue to explore innovative solutions
to these challenges, aiming to develop more robust and adaptable malware
detection frameworks [10,11].

100 Undopmaruka u asromaruszaums. 2025. Tom 24 Ne 1. ISSN 2713-3192 (mieu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

The primary objectives and contributions of this paper can be
summarized as follows:

Interpretability of Model Predictions: To enhance the interpretability of
our model predictions, we employ SHapley Additive exPlanations (SHAP) and
Local Interpretable Model-agnostic Explanations (LIME). These techniques
elucidate the contribution of various system and process-related features to the
model predictions, improving transparency and trustworthiness.

Identification of Key Features: Our study identifies vital features
that significantly impact malware detection, such as the number of process
services, active services, file handles, registry keys, and callback functions.
Understanding these features helps refine detection strategies and improve
model accuracy.

Future Research Directions: The paper outlines future research
directions, including exploring deep learning models, real-time detection
systems, dataset expansion, and the integration of behavioral analysis. These
directions aim to advance the field of malware detection further and enhance
the robustness of detection systems.

The remainder of this paper is structured as follows: Section 3 reviews
related works in the field of malware detection, discussing previous studies and
their methodologies. Section 4 details the dataset and the machine learning
models used in the analysis. In contrast, section 5 presents the results, including
the performance metrics of different models and the explainability results
using SHAP and LIME to understand the model predictions. Finally, section 6
describes the conclusion and outlines future research directions, summarizing
the essential findings and suggesting areas for further investigation.

2. Problem statement. Malware continues to pose a significant threat
to Windows operating systems, exploiting the extensive user base and diverse
vulnerabilities. Traditional heuristic and signature-based detection methods are
increasingly inadequate against sophisticated threats, particularly obfuscated
malware designed to evade detection by altering its appearance and behavior.
This study aims to develop a robust, cost-effective system for detecting
obfuscated malware using memory dump analysis and ensemble learning
techniques. By evaluating machine learning algorithms on the CIC-MalMem-
2022 dataset and employing SHAP and LIME for model interpretability, this
research seeks to enhance detection accuracy, robustness, and transparency in
malware detection.

The study utilizes ensemble learning techniques, including methods
such as Random Forest, Gradient Boosting, and LightGBM, known for their
robustness in handling complex datasets and their ability to generalize well
across various conditions. Robustness is ensured through the use of ensemble

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 101
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

methods, which reduce the likelihood of overfitting by aggregating predictions
from multiple models, thus enhancing the stability and reliability of the
system. Cost-effectiveness is a key consideration in the selection of models
and the design of the system. By leveraging memory dump analysis — a
method that focuses on analyzing snapshots of system memory — we reduce
the computational overhead associated with real-time monitoring and analysis.
Additionally, the choice of LightGBM, known for its efficiency in both training
time and memory usage, further contributes to the cost-effectiveness of the
system. This approach allows for the deployment of the detection system in
environments with limited computational resources, making it practical for
widespread use.

3. Related work. Several studies, drawing from IEEE Xplore, Web
of Science, and Scopus databases,, have focused on applying machine
learning and deep learning techniques in the field of malware detection
and adversarial attack mitigation [12-32]. In particular, some studies
focus on leveraging machine learning models to enhance malware detection
capabilities while addressing the vulnerabilities posed by adversarial attacks
[13,15,17,18,20,22,23,26,27,29-31]. These efforts include the development
of frameworks like EvadeDroid [12], which applies a practical evasion attack
on Android malware detectors, and MEME [13], a model-based reinforcement
learning algorithm designed to create adversarial malware capable of bypassing
detection systems. Additionally, other works have explored the use of deep
learning architectures, such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), to classify malware based on various
features, including API call sequences and syscall subsequences, as seen in
studies focusing on these methods [18-20,22,31]. These approaches not only
demonstrate the effectiveness of machine learning in identifying malware but
also highlight the challenges posed by adversarial examples, necessitating the
development of robust defense mechanisms, such as adversarial training and
randomized smoothing techniques, to safeguard these systems.

A novel opcode-based methodology that leverages multiple behavioral
target variables to enhance static malware classification was proposed by
the authors in [6]. Their methodology’s robustness against random opcode
injection attacks was validated on the AMDArgus and MOTIF datasets,
achieving superior mean classification accuracy and F1 scores compared to
other convolution-based architectures. While the proposed opcode-based
malware classification approach shows promise, it also has some limitations.
One significant drawback is the assumption that all weak target variables are
independent, neglecting the potentially complex relationships between them.

102 Undopmaruka u asromarusauus. 2025. Tom 24 Ne 1. ISSN 2713-3192 (meu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

This simplification might limit the model’s effectiveness in capturing nuanced
patterns in the data.

A novel malware detection scheme for Smart IoT environments called
Mal3S, which leverages a multi-spatial pyramid pooling network, was suggested
by the authors in [3].Their approach involves static analysis to extract features
such as bytes, opcodes, API calls, strings, and dynamic link libraries (DLLs).
These are then converted into images of different sizes for training the SPP-
net model. Evaluating Mal3S on three malware datasets, they achieved an
average detection accuracy of 98.02% and a classification accuracy of 98.43%,
outperforming existing techniques. This method also demonstrated effective
generalization capabilities across different types of malware. However, the
approach’s reliance on static analysis means it might struggle to detect malware
that extensively obfuscates its code or dynamically modifies its behavior.
Future work could explore integrating dynamic analysis techniques to address
these limitations and enhance detection accuracy.

The approach for malware classification using self-supervised learning,
named MalSSL, was suggested in [4], addressing the challenges of requiring
large labeled datasets. MalSSL utilizes image representation, contrastive
learning, and data augmentation to classify malware without needing labeled
data. The model is first trained on an unlabeled Imagenette dataset as a pretext
task and then retrained on an unlabeled malware dataset for downstream
tasks, including malware family and benign classification. The results show
an accuracy of 98.4% for the malware family classification on the Malimg
dataset and 96.2% for the malware and benign classification on the Maldeb
dataset, outperforming other self-supervised methods. However, the reliance
on pretraining with a dataset like Imagenette might limit its adaptability to more
diverse or complex malware datasets. Future work could explore enhancing the
model’s adaptability and testing its efficacy on varied and evolving malware
datasets.

A comparative performance analysis of malware detection algorithms
based on various texture features and classifiers was suggested by the authors
in [10] to address challenges. Their method includes four stages: converting
malware to grayscale, extracting features using segmentation-based fractal
texture analysis (SFTA), Local Binary Pattern (LBP), Haralick, Gabor, and
Tamura, classifying with Gaussian Discriminant Analysis (GDA), k-Nearest
Neighbor (KNN), Logistic, Support Vector Machines (SVM), Random Forest
(RF), and Extreme Learning Machine (Ensemble), and evaluating the results.
The study used the Malimg imbalanced and MaleVis balanced datasets to
assess classifier performance and feature effectiveness. Results indicated that
KNN outperformed other classifiers in accuracy, error, F1, and precision, with

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 103
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

SVM and RF as runners-up. Gabor performed better in MaleVis, while SFTA
excelled in the Malimg dataset. The SFTA-KNN and Gabor-KNN methods
achieved 96.29% and 98.02% accuracy, respectively, surpassing current state-
of-the-art approaches. However, the study relied on specific feature extraction
methods and comparative analysis using balanced and imbalanced datasets,
revealing that balanced datasets significantly improved accuracy and precision
while reducing error compared to imbalanced datasets.

The application of several machine-learning algorithms to build a
malware detection model for Android systems was suggested by the authors
in [11]. Traditional methods of detecting malware using anti-virus software
often fall short due to the rapid increase in applications and potentially
embedded advertisements or unwanted software. To address this, the authors
developed unweighted and weighted models to handle unbalanced data. Their
experiments indicated that the weighted random forest model achieved the
best performance with an accuracy of 98.94%. However, the study primarily
focuses on static analysis and may not account for dynamically changing
malware behaviors. Future research could explore incorporating dynamic
analysis techniques to enhance detection capabilities further.

A cost-effective obfuscated malware detection system, utilizing diverse
machine-learning algorithms through memory dump analysis, was proposed by
the authors in [33]. The research focused on the CIC-MalMem-2022 dataset,
simulating real-world scenarios to evaluate the effectiveness of decision trees,
ensemble methods, and neural networks in detecting obfuscated malware.
Despite the balanced nature of the dataset, with equal malware and benign
samples (50%), the authors highlight the application of undersampling and
oversampling methods to address potential imbalances within specific malware
categories. However, in real-world scenarios, these methods often do not have
a positive impact, as they can lead to overfitting or underfitting, reducing the
model’s generalizability.

Common problems in malware detection research include the over-
reliance on static analysis, which struggles against malware with dynamic
behavior or advanced obfuscation techniques, and the frequent issue of
imbalanced datasets that lead to overfitting or underfitting in models.
Simplifying complex relationships between features by assuming their
independence can result in models that miss intricate patterns, reducing
classification accuracy. Additionally, the use of specific feature extraction
methods may limit the generalizability of models to different types of malware.
Pretraining with non-malware-specific datasets further hampers adaptability,
underscoring the need for integrating dynamic analysis techniques, enhancing

104 Undopmaruka u asromarusauus. 2025. Tom 24 Ne 1. ISSN 2713-3192 (meu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

dataset diversity, and capturing interdependencies more effectively in future
research.

4. Methodology. Dataset description. The CIC-MalMem-2022
dataset [34], used for this study, comprises memory dumps categorized
into four classes: benign, spyware, ransomware, and trojan. Detailed memory
features such as process counts, threads, handles, and DLLs are extracted,
which help identify malicious patterns. The dataset is balanced, with a total of
58,596 records. Specifically, it includes 29,298 benign records (50%), 10,020
spyware records (17.1%), 9,791 ransomware records (16.7%), and 9,487 trojan
records (16.2%).

It is important to note that this is a multiclass classification problem
rather than a binary classification task. The distribution of classes reflects a
realistic scenario where benign processes are more common, while the various
types of malware are less prevalent. This class imbalance (50% benign and the
remaining 50% distributed among the three types of malware) adds complexity
to the classification task and aligns with real-world situations where malware
constitutes a smaller, yet significant, portion of system processes.

Enviromental setup. Our analysis and modeling experiments were
conducted using the robust Dataiku platform with advanced data analytics and
machine learning capabilities. Dataiku offers a comprehensive suite of tools
for data preparation, feature engineering, model development, and evaluation,
making it an ideal environment for our research. For this study, we utilized
Dataiku version 10.0.5 (licensed), with the notebook server running version
5.4.0-dku10.0-0 and Python 3.6.8.

Model description. In this section, we delve into the machine learning
models employed in this study, examining their fundamental principles, loss
functions, activation functions, and mathematical formulations. We also
discuss each model’s strengths, weaknesses, and limitations, providing a
comprehensive understanding of their capabilities in the context of obfuscated
malware detection.

Decision Tree. Decision Trees are used for classification tasks by
recursively splitting the data into subsets based on input feature values. The
split criterion, typically Gini impurity or entropy, evaluates the quality of splits.
Gini impurity is shown in Equation 1.

Gini =Y pi(1—pi). (1)
=1

In this formula, n represents the total number of classes, and p; is the
probability of an element being classified to class <.

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 105
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

Entropy is shown in Equation 2:

Entropy = = _ pilog(pi)- ()

i=1

Strengths include interpretability and ease of implementation, while
weaknesses involve susceptibility to overfitting and poor performance on
complex datasets [35].

Gradient Boosted Trees. Gradient Boosting builds models sequentially,
correcting the errors of previous models. It minimizes a specified loss function
using gradient descent. The loss function is shown in Equation 3:

n

Lin(y, F(2)) = > Li, Fo1(20) + v - o (24)). 3)

=1

This formula represents the loss function used in gradient boosting,
where L, (y, F(x)) is the loss for each instance 4, y; is the actual value,
F,,—1(x;) is the prediction from the previous iteration, v is the learning rate,
and h,, (x;) is the new model to be added.

Strengths include high accuracy and robustness against overfitting,
while weaknesses include longer training times and complexity in tuning
hyperparameters [36].

LightGBM. LightGBM (Light Gradient Boosting Machine) is designed
for speed and performance, using a histogram-based approach to find the best-
split points, reducing memory usage and increasing training speed. Histogram-
based decision tree learning is shown in Equation 4:

n_ o2

a=> %)

where n is the number of instances, g; is the gradient of the loss function
concerning the prediction, for example, 7, and h; is the Hessian (second
derivative) of the loss function concerning the prediction for instance .
Strengths include high accuracy, scalability, and efficiency, while
weaknesses might involve sensitivity to hyperparameter settings [37].
Logistic Regression. Logistic Regression models the probability of a
binary classification by applying the logistic function to a linear combination

106 Undopmaruka u asromaruszanus. 2025. Tom 24 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

of input features. The logistic function has the following form:

1

P(y = 1|I) = 1+ e—(ﬂo+ﬁ1x1+[32$2+“'+ﬁn$n)7

®)

where P(y = 1|x) is the probability of the binary outcome y being one given
the input features x. The expression By + S121 + Bexa + -+ + Bpy, is a
linear combination of the input features x1, x2, . . . , x,, with their respective
coefficients Sy, 81, 52,..., 0. The logistic function (sigmoid function)
transforms this linear combination into a probability value between 0 and 1.

Strengths include simplicity and interpretability, while weaknesses
involve limitations in handling non-linear relationships [38].

Random Forest. Random Forest constructs multiple decision trees
during training and outputs the mode of the classes (classification) or mean
prediction (Regression) of the individual trees. The Random Forest algorithm
is shown in Equation 6:

. 1 E
Fa)= 5D folo). (©)

b=1

Here, f (z) is the final prediction, B is the number of individual models
in the ensemble, and f,(z) is the prediction of the b-th individual model. The
ensemble prediction is obtained by averaging the predictions of all individual
models.

Strengths include robustness and reduced overfitting, while weaknesses
involve complexity and longer training times for large datasets [35].

XGBoost. XGBoost (Extreme Gradient Boosting) is an optimized
gradient boosting library for high efficiency, flexibility, and portability. It uses
a more regularized model formalization to control overfitting. The regularized
objective is shown in Equation 7:

n K

LO) = i) + Y Q). (7)

i=1 k=1

In this formula, L(6) represents the total loss, where the first term
>, U(yi, yi) accounts for the loss for each instance i, with y; being the true
value and y; being the predicted value. The second term Zszl Q(fr) is the
regularization term that penalizes the complexity of the model, where Q(f)
applies to each feature k to prevent overfitting.

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 107
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

Strengths include high performance and efficiency, while weaknesses
involve complexity in implementation and tuning [39].

Evaluation metrics. To comprehensively understand our models’
performance and robustness, we evaluated using these metrics:

Accuracy. Accuracy measures the proportion of correctly predicted
instances out of the total cases. While accuracy provides a general performance
measure, it may not be suitable for imbalanced datasets.

Precision. Precision, also known as the positive predictive value,
indicates the proportion of accurate positive predictions out of all positive
predictions. Precision is crucial when the cost of false positives is high.

Recall. Recall, also known as sensitivity or actual positive rate, measures
the proportion of accurate positive predictions out of all actual positive instances.
Recall is necessary when the cost of false negatives is high.

F1-Score. The F1-score is the harmonic mean of precision and recall,
providing a balanced measure of both metrics. It is beneficial when dealing
with imbalanced datasets.

ROC-AUC. The ROC-AUC score evaluates the model’s ability to
discriminate between positive and negative classes. The ROC curve plots the
actual positive rate (recall) against the false positive rate. The AUC represents
the area under this curve, with a value closer to 1 indicating better model
performance.

The evaluation metrics have been shown in Table 1, where the following
formulas are used.

Table 1. Metrics used

Metric Formula
Accuracy % x 100
Precision %

Recall TPZ%
Fl-Score | 2 x hedimde

Explainability. By incorporating explainability into our methodology,
we ensured that our machine-learning models for detecting obfuscated malware
are transparent and interpretable. While decision trees, regression models,
and ensemble methods are generally considered interpretable, the level of
interpretability can vary significantly depending on the specific model and
its complexity. Simple models like linear regression or single decision trees
offer straightforward interpretations; their predictions can be easily understood

108 Undopmaruka u asromaruszauus. 2025. Tom 24 Ne 1. ISSN 2713-3192 (meu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

by examining coeflicients or the structure of the tree, respectively. However,
as models become more complex — particularly with the use of ensemble
techniques such as boosting and bagging — their interpretability diminishes.
Ensemble methods, by their nature, involve the aggregation of predictions
from multiple models, often hundreds or thousands of decision trees, each
contributing to the final output.

In these complex scenarios, the simple interpretability associated with
individual models becomes obscured. It is no longer practical to visualize or
directly understand the contribution of each feature across all the constituent
models within an ensemble. The final prediction emerges from the collective
behavior of many models, making it difficult to deconstruct the prediction into
understandable parts.

We used SHapley Additive exPlanations (SHAP) [40] and Local
Interpretable Model-agnostic Explanations (LIME) [41] to enhance the
explainability of our machine-learning models for detecting obfuscated
malware. These techniques assisted us in understanding and interpreting
the decisions made by complex models, ensuring transparency and trust.

SHAP (SHapley Additive exPlanations). SHAP values are based on
cooperative game theory, providing a unified feature importance measure.
They explain how each feature contributes to the prediction by averaging
over all possible orderings of features. SHAP ensures three properties: local
accuracy, missingness, and consistency. Local accuracy ensures that the sum
of feature attributions matches the model output for each instance. Missingness
guarantees that features not present in the model have no impact. Consistency
ensures that if a model changes such that a feature’s contribution increases
or stays the same, the attribution should not decrease. SHAP values can be
computed using various methods such as Kernel SHAP, which approximates
the values for any model type [40].

The formula for the SHAP values is given in Equation 8:

b = Z |S|!(|N||N|!5| —1)! [F(SU{iY) = £(9)], (8)

SCN\{i}

where ¢; is the SHAP value for feature i, S is a subset of all features [V
excluding i, f(S U {i}) represents the prediction for the model including
feature 4 in the subset S, and f(S) represents the prediction excluding feature i.
The term W is a weighting factor based on the size of the subset.

LIME (Local Interpretable Model-agnostic Explanations). LIME

explains the predictions of any classifier by approximating it locally with an

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 109
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

interpretable model. It perturbs the data around the instance to be presented
and trains a simple, interpretable model (like linear Regression) on these
perturbed samples. This local model can provide insights into how each feature
influences the prediction in that particular vicinity of the instance. LIME’s
essence is to balance interpretability and fidelity to the original model [41].
The formula for the LIME explanation model is given in Equation 9:

§(x) = argmin y m:(2) (f(2) - 9(2))” + Qg). ©)

In this formula, £(x) is the explanation model for the instance z, g € G
represents a family of interpretable models, 7, (z) is a proximity measure
between z and x, f(z) is the prediction of the complex model, and g(z) is the
prediction of the interpretable model. The term €2(g) is a regularization term
to ensure simplicity in the explanation model.

5. Results of the experiments. Our study applied multiple machine-
learning models to the CIC-MalMem-2022 dataset to evaluate their
performance in detecting obfuscated malware. The models were evaluated
based on accuracy, precision, recall, F1-score, and ROC AUC. The results are
summarized in Table 2.

Table 2. Performance comparison of machine learning models for malware detection

Model Train Time | Accuracy | Precision | Recall | Fl-score | ROC AUC
Decision 6s 0.76 0.67 0.64 0.64 0.84
Tree
Gradient 23s 0.81 0.72 0.72 0.72 091
Boosted
Trees
LightGBM 28s 0.87 0.81 0.81 0.81 0.95
Logistic Im 14s 0.74 0.62 0.61 0.61 0.83
Regression
Random 1m 9s 0.87 0.80 0.80 0.80 0.95
Forest
XGBoost 21s 0.82 0.73 0.73 0.73 0.92

The performance analysis of the machine-learning models on the CIC-
MalMem-2022 dataset reveals several key insights. LightGBM achieved the
highest F1 score at 0.81, indicating a balanced performance in terms of precision
and recall, which is notably higher than other authors’ results on the same
dataset, with [42] reporting an F1 score of 68% and [43] achieving 70.33%.
This score demonstrates that LightGBM is highly effective in identifying
true positives while minimizing false positives and false negatives. Similarly,
LightGBM also achieved the highest ROC AUC score of 0.95, highlighting

110 Undopmaruka u asromaruszauus. 2025. Tom 24 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

its excellent capability to distinguish between benign and malicious memory
dumps. The high ROC AUC score suggests that LightGBM is highly
effective in distinguishing between the positive and negative classes.

SHAP explanation. The SHAP (SHapley Additive exPlanations) values
for each class of malware and benign processes are presented in Figures 1(a),
1(b), 1(c), and 1(d).

High Hoh
svescan.process_services -+ ¢4 - - svescan.nservices & o——P—
handles.avg_handles per_proc ==+ =+ tof§ handles.nevent P
svescan.nservices - 4’-’——- handles.avg_handles_per_proc o
handles.nevent ~dof - handles.nkey —p—
callbacks.ncallbacks — b - - handles.nsemaphore - —‘h—
handles.nthread 0+ . pslist.nppid —ﬂ-‘-
pslist.avg_threads —Clv malfind.uniquelnjections ——-‘-ﬁ-
svescan.shared_process_services + handles.nmutant — -
Idrmodules.not_in_load_avg -||-- . Mrmodules.not_in_mem — - .
pslistavg_handlers [3 pslist.avg_threads P . H
psxview.not._in_session_false_avg . % svescan.nactive - ':é
handles.ndirectory 2 £ dillist.ndlls £
handies.ntimer 4 handles.nfile
malfind.commitCharge - Krmodules.not_in_load_avg -
handles.nhandles } handles.ntimer —t
dlllist.avg_dlls_per_proc malfind.commitCharge =erem = oo s
malfind.uniquelnjections handles.nsection e
handles.ndesktop handles.nthread —fp—
psxview.not_in_deskthrd_false_avg - Idrmodules.not_in_init_avg -
Idrmodules.not_in_init_avg dillist.avg_dlls_per_proc -{}—-—
EOWE N s 1o 65 o0 05 tow
SHAP value (impact on model output) SHAP value (impact on model output)
a) Shap for benign class b) Shap for spyware class
High High
handles.nfile —p—— ——— handies.nkey et el {
handles.nsection — - handles.nsection 4
callbacks.ncallbacks o handles.nevent o | —o—
handles.nkey pslist.avg_threads -’-.—-
svcscan.nservices + handles.nmutant . —*.—_ -
handles.nmutant . Idrmodules.not_in_mem R
pslist.nppid svcscan.shared_process_services ' <+
handles.nthread Idrmodules.not_in_init e
handles.nsemaphore . svescan.nservices -4t .
handles.nhandles] handles.nthread s o 75
handles.ntimer % dillist.avg_dlls_per_proc e H
ldrmodules.not_in_load_avg & Idrmodules.not_in_load 44— &
svescan.nactive .- handi j‘
malfind.commitCharge = e + handles.nfile —g—
malfind. protection e fp— - Idrmodules.not_in_mem_avg o
malfind.uniquelnjections —_— e malfind.commitCharge e
dillist.avg_dlls_per_proc -‘b—- handles.ntimer 4'— -
handles.avg_handles_per_proc 4= callbacks.ncallbacks -
Idrmodules.not_in_init_avg -d}- pslist.avg_handlers - ——
handles. ndirectory - Idrmodules.not_in_load_avg e
5 o —
SHAP value (impact on model output) SHAP value (impact on model output)
¢) Shap for trojan class d) Shap for ransomware class

Fig. 1. SHAP explanations for different classes: a) benign; b) spyware; c) trojan;
d) ransomware

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 111
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

These figures illustrate the impact of various features on the model
output for each class. After analyzing the results, we can draw several
significant conclusions about the behavior and characteristics of each type of
malware and benign processes.

Ransomware is characterized by high values of handles.nkey indicates
that these processes heavily utilize registry keys, possibly for configuration
and execution. Extensive use of memory sections (handles.nsection) suggests
complex memory operations. High event handle usage indicates the reliance
on synchronization mechanisms (handles.nevent). Furthermore, ransomware
processes tend to have a higher average number of threads (pslist.avg_threads),
indicating parallel operations and multitasking. High values of mutant handles
(handles.nmutant) point to advanced process control and manipulation.

Trojans exhibit a distinctive pattern where they frequently use many file
handles (handles.nfile), likely for file manipulation or monitoring activities.
They also make extensive use of memory sections, similar to ransomware.
Higher callback counts (callbacks.ncallbacks) suggest that trojans hook
into numerous system processes to maintain control and monitor activities.
Their extensive interaction with the registry, utilizing numerous registry
keys (handles.nkey), is notable. The presence of many running services
(svescan.nservices) indicates that trojans might rely on system services for
persistence and functionality.

Spyware processes are marked by their involvement with multiple
services (svcscan.nservices), possibly for data collection and transmission.
High event handle usage indicates significant synchronization operations
within spyware processes. High average handle usage per process
(handles.avg_handles_per_proc) suggests intensive interaction with system
resources. Frequently engaging with the registry (handles.nkey) and using
semaphores (handles.nsemaphore) indicate multiple concurrent processes.

Benign processes, in contrast, show a pattern of routine service
operations (svcscan.process_services). Higher average handle usage per
process is typical in benign software, reflecting standard interactions
with system resources. Everyday system events are frequent in benign
processes (handles.nevent), and the presence of callbacks is typical for
maintaining standard system functionality. In summary, malicious processes
(ransomware, trojan, spyware) generally use handles and registry keys more,
indicating manipulation and monitoring activities. Event and memory section
handles are frequently used in ransomware and spyware, suggesting complex
synchronization and memory usage patterns. Service and callback usage are
significant across all classes, differentiating between types of malware and
benign processes.

112 Undopmaruka u asromarusauus. 2025. Tom 24 Ne 1. ISSN 2713-3192 (nieu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

Ransomware is identified by high thread and mutant handle usage,
trojans by extensive file and section handle usage, and spyware by intensive
service and handle operations. Benign processes exhibit regular service and
handle usage patterns, which are typical of standard system operations.

LIME explanation. The provided LIME (Local Interpretable Model-
agnostic Explanations) explanation, shown in Figure 2, visualizes the prediction
of the LightGBM model for a particular instance. This instance is classified as
’Spyware’ with a probability of 0.52. The LIME plot illustrates how different
features contribute to the prediction, showing their impact on the model’s
decision.

Prediction probabilities NOT Spyware Spyw MC. Feature Value
Benign _ SVCSCan.process_servic...
Spyware svescan.nservices <= ... svcacan.process_services
Trojan handles.nfile <= -0.30) RISSISES
Ransomware o -0.86 < handles.avg_ha... RS
Po.09

handles.avg_handles_per_proc
handles.nkey

handles.nkey <= -0.66)
o003

callbacks.nanonymous...
o007 callbacks.nanonymous

callbacks ncallbacks ...
006
-0.76 < handles nsecti...

callbacks ncallbacks

handles.nsection

handles.ntimer <= -0.69 ‘handles.ntimer
flooa
-0.80 < handles.nevent... handles nevent

003

Fig. 2. LIME explanation for spyware instance

The model predicts the instance as ’Spyware’ with a probability of
0.52, followed by "Trojan’ with a probability of 0.42. The probabilities for
’Benign’ and ’Ransomware’ are much lower, at 0.00 and 0.06, respectively.
The bar graph on the right-hand side of the LIME plot lists the features and
their respective values that contributed to the prediction. Features that increase
the likelihood of the instance being classified as *Spyware’ are highlighted in
orange, whereas features that decrease the possibility are shown in teal.

We observe that the number of process services (svcscan.process
_services) had the highest positive impact on the Spyware classification, with a
value of -0.69. This suggests that the number of process services is indicative of
spyware activity. Similarly, the number of active services (svcscan.nservices),
with a value of -0.51, also positively influenced the classification towards
’Spyware,” implying that the number of active services is a significant factor.
The number of file handles (handles.nfile), with a value of -0.30, contributed
positively to the classification, suggesting t hat s pyware p rocesses involve
numerous file handles.

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 113
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

Further, the average number of handles per process
(handles.avg_handles_per_proc), with a value of -0.68, indicates higher activity
for spyware. The number of registry keys (handles.nkey), with a value of -0.80,
significantly influenced the model toward predicting *Spyware.” Additionally,
anonymous callback functions (callbacks.nanonymous), with a value of -0.03,
and the total number of callback functions (callbacks.ncallbacks), with a value
of -0.29, also played a role in the classification. Memory-related features such
as the number of memory sections (handles.nsection), with a value of -0.76,
and the number of timer handles (handles.ntimer), with a value of -0.69, were
also influential. The number of event handles (handles.nevent), with a value of
-0.75, was another significant factor.

From the LIME explanation, it is clear that the LightGBM model relies
heavily on specific system and process-related features to distinguish between
different types of malware. For this particular instance, classified as ’Spyware’,
the number of process services, active services, file handles, and registry keys
were vital indicators. In addition, the average number of handles per process,
anonymous callback functions, and memory-related features were critical to
the prediction.

6. Conclusion and future works. This paper demonstrates a
comprehensive approach to detecting obfuscated malware through memory
dump analysis using various machine-learning algorithms. Our study
leveraged the CIC-MalMem-2022 dataset, which simulates real-world
scenarios to evaluate the effectiveness of machine-learning models in
identifying obfuscated malware. We implemented and assessed multiple
algorithms, including decision trees, gradient-boosted trees, logistic regression,
random forest, and LightGBM, to understand their strengths and limitations in
malware detection.

The results of the study confirm that the proposed system achieves both
robustness and cost-effectiveness, meeting the goals outlined at the outset. The
use of ensemble learning techniques, particularly LightGBM, ensures that
the system remains robust even when faced with challenging data conditions,
such as obfuscated malware samples. Furthermore, the system’s efficiency in
terms of computational resource usage makes it cost-effective, allowing it to
be deployed in environments where resources are limited. This combination
of robustness and cost-effectiveness is crucial for practical applications in
real-world cybersecurity scenarios, where systems must not only perform
accurately but also operate efficiently.

Our findings highlight the superior performance of ensemble learning
techniques, particularly LightGBM, in achieving higher detection accuracy
and robustness across diverse malware types. We further enhanced the

114 Undopmaruka u asromaruszauus. 2025. Tom 24 Ne 1. ISSN 2713-3192 (meu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

interpretability of our models using SHapley Additive exPlanations (SHAP)
and Local Interpretable Model-agnostic Explanations (LIME), which provided
valuable insights into the contribution of various system and process-related
features to the model predictions. Features such as the number of process
services, active services, file handles, registry keys, and callback functions
were identified as significant indicators in distinguishing between different
types of malware and benign processes.

In conclusion, integrating advanced machine learning algorithms and
interpretability techniques offers a promising solution to improve malware
detection capabilities. This study paves the way for further research in
developing robust, interpretable, and practical cybersecurity solutions to
combat the ever-evolving landscape of malware threats.

Although this study provides a comprehensive approach to obfuscated
malware detection using memory dump analysis and machine learning, several
avenues for future research and enhancement remain. Future work could
explore the application of deep learning models, such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), which have shown
promise in various complex classification tasks. Implementing real-time
detection systems that can analyze memory dumps and detect malware on
the fly is another crucial step. Expanding the dataset to include more diverse
and recent malware samples, including those targeting different operating
systems and platforms (e.g., macOS, Linux, Android, and IoT devices), would
improve the generalizability of the models. Additionally, incorporating benign
samples from a broader range of applications and user behaviors could further
enhance the model’s ability to distinguish between benign and malicious
activities. Conducting a more in-depth investigation into feature engineering
and selection, studying the impact of adversarial attacks, and exploring other
explainable Al techniques would further improve model performance and
transparency. Integrating the proposed detection system with existing security
frameworks, incorporating behavioral analysis, and developing collaborative
defense mechanisms where different systems share threat intelligence could
enhance the overall cybersecurity landscape. Addressing regulatory and ethical
considerations in the deployment of machine learning-based malware detection
systems is also essential. By pursuing these future research directions, we can
further advance the field of malware detection, creating more robust, efficient,
and interpretable solutions to protect against the ever-evolving landscape of
cyber threats.

Declaration of Generative AI and Al-assisted technologies in the
writing process. While preparing this work, the authors used ChatGPT for
language editing and refinement. After using this tool/service, the author

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 115
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

reviewed and edited the content as needed and took full responsibility for the
content of the publication.

10.

11.

12.

13.

14.

116

References

Baghirov E. Evaluating the performance of different machine learning algorithms
for Android malware detection. In 2023 5th International Conference on
Problems of Cybernetics and Informatics (PCI). IEEE, 2023. pp. 1-4.
DOI: 10.1109/PC160110.2023.10326006.

Baghirov E. Comprehensive framework for malware detection: Using ensemble methods,
feature selection, and hyperparameter optimization. In 2023 IEEE 17th International
Conference on Application of Information and Communication Technologies (AICT).
IEEE, 2023. pp. 1-5. DOI: 10.1109/AI1CT59525.2023.10313179.

Jeon J., Jeong B., Baek S., Jeong Y.-S. Static Multi Feature-Based Malware Detection
Using Multi SPP-net in Smart IoT Environments. IEEE Transactions on Information
Forensics and Security. 2024. vol. 19. pp. 2487-2500. DOI: 10.1109/TIFS.2024.3350379.
Ismail S.J.I., Hendrawan Rahardjo B., Juhana T., Musashi Y. MalSSL — Self-Supervised
Learning for Accurate and Label-Efficient Malware Classification. IEEE Access. 2024.
vol. 12. pp. 58823-58835. DOI: 10.1109/ACCESS.2024.3392251.

Baghirov E. Malware detection based on opcode frequency. Journal of Problems of
Information Technology, 2023. vol. 14(1). pp. 3—7. DOI: 10.25045/jpit.v14.i1.01.
Egitmen A., Yavuz A.G., Yavuz S. TRConv: Multi-Platform Malware Classification
via Target Regulated Convolutions. IEEE Access. 2024. vol. 12. pp. 71492-71504.
DOI: 10.1109/ACCESS.2024.3401627.

Gungor A., Dogru I.A., Barisci N., Toklu S. Malware detection using image-based features
and machine learning methods. Journal of the Faculty of Engineering and Architecture of
Gazi University. 2023. vol. 38. no. 3. pp. 1781-1792. DOI: 10.17341/gazimmfd.994289.
Mesbah A., Baddari I., Riahla M.A. LongCGDroid: Android malware detection through
longitudinal study for machine learning and deep learning. Jordanian Journal of Computers
and Information Technology. 2023. vol. 9. no. 4. pp. 328-346. DOI: 10.5455/jjcit.71-
1693392249.

Howard A., Hope B., Saltaformaggio B., Avena E., Ahmadi M., Duncan
M., McCann R., Cukierski W. Microsoft Malware Prediction. Kaggle,
2018. Available at: https://kaggle.com/competitions/microsoft-malware-prediction.
(accessed 26.10.2024).

Ahmed I.T., Hammad B.T., Jamil N.A Comparative Performance Analysis of Malware
Detection Algorithms Based on Various Texture Features and Classifiers. IEEE Access.
2024. vol. 12. pp. 11500-11519. DOI: 10.1109/ACCESS.2024.3354959.

Xie W., Zhang X. The Application of Machine Learning in Android Malware Detection.
2024 4th International Conference on Neural Networks, Information and Communication
Engineering (NNICE). 2024. pp. 1-4. DOI: 10.1109/NNICE61279.2024.10498936.
Bostani H.; Moonsamy V. EvadeDroid: A practical evasion attack on machine learning
for black-box Android malware detection. Computers and Security. 2024. vol. 139.
DOI: 10.1016/j.cose.2023.103676.

Rigaki M., Garcia S. The Power of MEME: Adversarial Malware Creation with Model-
Based Reinforcement Learning. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2024.
pp. 44-64. DOI: 10.1007/978-3-031-51482-1 _3.

Rudd E.M., Krisiloff D., Coull S., Olszewski D., Raff E., Holt J. Efficient Malware
Analysis Using Metric Embeddings. Digital Threats: Research and Practice. 2024.
vol. 5(1). pp. 1-20. DOI: 10.1145/3615669.

Wudopmaruka u aBromatuzams. 2025. Tom 24 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Zhan D., Zhang Y., Zhu L., Chen J., Xia S., Guo S., Pan Z. Enhancing reinforcement
learning based adversarial malware generation to evade static detection. Alexandria
Engineering Journal. 2024. vol. 98. pp. 32-43. DOI: 10.1016/j.aej.2024.04.024.
Aljabri M., Alhaidari F., Albuainain A., Alrashidi S., Alansari J., Algahtani W., Alshaya
J. Ransomware detection based on machine learning using memory features. Egyptian
Informatics Journal. 2024. vol. 25. DOIL: 10.1016/j.ij.2024.100445.
Ban Y., Kim M., Cho H. An Empirical Study on the Effectiveness of Adversarial Examples
in Malware Detection. CMES — Computer Modeling in Engineering and Sciences. 2024.
vol. 139(3). pp. 3535-3563. DOI: 10.32604/cmes.2023.046658.
Zhang Y., Jiang J., Yi C., Li H.,, Min S., Zuo R., An Z., Yu Y. A Robust CNN for Malware
Classification against Executable Adversarial Attack. Electronics. 2024. vol. 13(5).
DOI: 10.3390/electronics13050989.
Dam T.Q., Nguyen N.T., Le T.V., Le T.D., Uwizeyemungu S., Le-Dinh T. Visualizing
Portable Executable Headers for Ransomware Detection: A Deep Learning-Based
Approach. Journal of Universal Computer Science. 2024. vol. 30(2). pp. 262-286.
DOI: 10.3897/jucs.104901.
Gibert D., Zizzo G., Le Q. Towards a Practical Defense Against Adversarial Attacks on
Deep Learning-Based Malware Detectors via Randomized Smoothing. Lecture Notes in
Computer Science. 2024. vol. 14399. pp. 683-699. DOI: 10.1007/978-3-031-54129-2
40.
Zhang P, Wu C., Wang Z. BINCODEX: A comprehensive and multi-level
dataset for evaluating binary code similarity detection techniques. BenchCouncil
Transactions on Benchmarks, Standards and Evaluations. 2024. vol. 4(2).
DOI: 10.1016/j.tbench.2024.100163.
Gibert D., Zizzo G., Le Q., Planes J. Adversarial Robustness of Deep Learning-
Based Malware Detectors via (De)Randomized Smoothing. IEEE Access. 2024. vol. 12.
pp. 61152-61162. DOI: 10.1109/ACCESS.2024.3392391.
Louthanova P., Kozak M., Jurecek M., Stamp M., Di Troia F. A comparison of adversarial
malware generators. Journal of Computer Virology and Hacking Techniques. 2024. vol. 20.
pp. 623-639. DOI: 10.1007/511416-024-00519-z.
Qian L., Cong L. Channel Features and API Frequency-Based Transformer Model for
Malware Identification. Sensors. 2024. vol. 24(2). DOI: 10.3390/s24020580.
Surendran R., Uddin M.M., Thomas T., Pradeep G. Android Malware Detection
Based on Informative Syscall Subsequences. IEEE Access. 2023. vol. 11.
DOI: 10.1109/ACCESS.2024.3387475.
Kozak M., Jurecek M., Stamp M., Troia F.D. Creating valid adversarial examples
of malware. Journal of Computer Virology and Hacking Techniques. 2024. vol. 20.
pp. 607-621. DOI: 10.1007/511416-024-00516-2.
Imran M., Appice A., Malerba D. Evaluating Realistic Adversarial Attacks against
Machine Learning Models for Windows PE Malware Detection. Future Internet. 2024.
vol. 16(5). DOI: 10.3390/f116050168.
Saha S., Afroz S., Rahman A. H. MALIGN: Explainable static raw-byte based malware
family classification using sequence alignment. Computers and Security. 2024. vol. 139.
DOI: 10.1016/j.cose.2024.103714.
LiD., Cui S, Li Y., XuJ.,, Xiao F., Xu S. PAD: Towards Principled Adversarial Malware
Detection Against Evasion Attacks. IEEE Transactions on Dependable and Secure
Computing. 2024. vol. 21. no. 2. pp. 920-936. DOI: 10.1109/TDSC.2023.3265665.
Zhang F., Li K., Ren Z. Improving Adversarial Robustness of Ensemble Classifiers by
Diversified Feature Selection and Stochastic Aggregation. Mathematics. 2024. vol. 12(6).
DOI: 10.3390/math12060834.

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 117
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Alzaidy S., Binsalleeh H. Adversarial Attacks with Defense Mechanisms on Convolutional
Neural Networks and Recurrent Neural Networks for Malware Classification. Applied
Sciences. 2024. vol. 14(4). DOI: 10.3390/app14041673.

Zhou K., Wang P., He B. Comparative Study: Mouth Brooding Fish (MBF) as a Novel
Approach for Android Malware Detection. International Journal of Advanced Computer
Science and Applications. 2024. vol. 15(5). DOI: 10.14569/IJACSA.2024.0150521.
Rakib H., Dhakal S.M. Obfuscated Malware Detection: Investigating Real-
World Scenarios Through Memory Analysis. In 5th IEEE International
Conference on Telecommunications and Photonics (ICTP 2023). 2023.
DOI: 10.1109/ICTP60248.2023.10490701.

Carrier T., Victor P, Tekeoglu A., Lashkari A.H. Detecting Obfuscated Malware
using Memory Feature Engineering. Proceedings of the 8th International Conference
on Information Systems Security and Privacy (ICISSP). 2022. vol. 1. pp. 177-188.
DOI: 10.5220/0010908200003120.

Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining,
Inference, and prediction (2nd ed.). Springer, 2009. 745 p.

Friedman J.H. Greedy function approximation: A gradient boosting machine. Annals of
Statistics. 2001. vol. 29(5). pp. 189-1232. DOI: 10.1214/a0s/1013203451.

Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T. LightGBM:
A Highly Efficient Gradient Boosting Decision Tree. NIPS’17: Proceedings of
the 31st International Conference on Neural Information Processing Systems. 2017.
pp. 31496-3157. DOI: 10.5555/3294996.3295074.

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel
M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau
D., Brucher M., Perrot M., Duchesnay E. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research. 2011. vol. 12. pp. 2825-2830.
DOI: 10.5555/1953048.2078195.

Chen T., Guestrin C. XGBoost: A scalable tree boosting system. Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
2016. pp. 785-794. DOLI: 10.1145/2939672.2939785.

Lundberg S.M., Lee S.-1. A Unified Approach to Interpreting Model Predictions. 2017.
arXiv preprint arXiv:1705.07874. DOI: 10.48550/arXiv.1705.07874.

Ribeiro M.T., Singh S., Guestrin C. "Why Should I Trust You?": Explaining the
Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2016. pp. 1135-1144.
DOI: 10.1145/2939672.293977.

Cevallos-Salas D., Grijalva F., Estrada-Jimenez J., Bentez D., Andrade R. Obfuscated
Privacy Malware Classifiers Based on Memory Dumping Analysis. IEEE Access. 2024.
vol. 12. pp. 17481-17498. DOI: 10.1109/ACCESS.2024.3358840.

Roy K.S., Ahmed T., Udas PB. Karim M.E., Majumdar S. MalHyStack: A
hybrid stacked ensemble learning framework with feature engineering schemes for
obfuscated malware analysis. Intelligent Systems with Applications. 2023. vol. 20.
DOI: 10.1016/j.iswa.2023.200283.

Imamverdiyev Yadigar — Ph.D., Dr.Sci., Head of the department, Cyber security department,
Azerbaijan Technical University. Research interests: information security management systems,
malware analysis, security of smart systems, security of industrial control systems, web security,
cloud security, applied cryptography, biometrics, applications of Al in cyber security. The number
of publications — 50. yadigar.imamverdiyev@aztu.edu.az; 25, H. Javid Av., AZ 1073, Baku,
Azerbaijan; office phone: +994(50)540-7464.

118

Wudopmaruka u aBromatuzams. 2025. Tom 24 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

Baghirov Elshan — Ph.D. candidate, Institute of Information Technology of The Ministry of
Science and Education of the Azerbaijan Republic; Senior data scientist, Kapital Bank OJSC.
Research interests: malware analysis, data science, information security incident management.
The number of publications — 20. elsenbagirov1995@gmail.com; 5/13, A. Kunanbayev St.,
AZ 1009, Binagadi district, Baku, Azerbaijan; office phone: +994(51)444-1933.

Ikechukwu John Chukwu — Graduate student, Kadir Has University; Ss. Cyril and
Methodius University in Skopje (UKIM). Research interests: public-key and lightweight
cryptography, quantum optimization problems, malware analysis. The number of publications — 2.
cikechukwujohn @stu.khas.edu.tr; Fatih, 34083, Istanbul, Turkey; office phone: +90(212)533-
6532.

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 119
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

DOI 10.15622/ia.24.1.5

S1. UMAMBEPIMEB, . BAr1proB, [I. UKEUYYKBY
OBHAPYKEHUE Ob®YCIIMPOBAHHBIX BPE/IOHOCHBIX
IMPOI'PAMM B WINDOWS C ITIOMOIIbIO METOIOB
AHCAMBJIEBOI'O OBYUEHU A

Hmameepoues 4., bazupos 3., Hkeuykey /l. O6HapyxeHne 00(pyCHPOBAHHBIX BPeIOHOCHBIX
nporpamMm B Windows ¢ momMoIe10 MeTo10B aHCAMO,JIeBOT0 00y YeHus1.

AHHoTanus. B snoxy HTepHeTa M CMapT-yCTpPOHCTB OOHapy>KeHHE BpEJOHOCHBIX
NPOrpaMM CTaJIO0 BaXHBIM (pakTopoMm Iyisi Oe3omacHOcTH cucTeMbl. OOQycrupoBaHHbIE
BPEIOHOCHBIE MIPOrPaMMbl CO3AI0T 3HAUUTEIbHbIE PUCKHU UL PA3JIMIHBIX IUIaTHOPM, BKIIOYAs
KOMIIBIOTEPEI, MOOYJIBHBIE YCTPOICTBa U ycTpoiicTBa 10T, MOCKOBKY He MO3BOJISIOT HCIIONIB30BaTh
Hepe/IoBble peleHus 1isi odecriedeHus: GezonacHocTd. TpaJuIMOHHBIE BPUCTHYECKUE U
CHUTHATYpPHBIE METObI YaCTO He CIIPABJIIIOTCS C 9TUMU yrpo3amu. [TosToMy ObLIa mpeasioxkeHa
9KOHOMMYECKH 3 PeKTHBHAS CHCTEMa OOHAPYKEHHUS C UCTIONb30BAHMEM aHAJN32 JJaMIIa NaMATH
U MeToloB aHcambieBoro ooyyenus. Ha ocHoe HaGopa ganHbix CIC-MalMem-2022 Oblia
olieHeHa 3((EKTHBHOCTD IePEBbEB PEICHNIA, TPaJUEHTHOrO OYCTHHTA IEPEBbEB, JTIOTUCTUYESCKON
perpeccun, Metoma ciydaiHoro seca W LightGBM npu BbisiBieHHH 00QyCIHPOBAHHBIX
BPEJIOHOCHBIX Tporpamm. MccienoBaHue NpoaeMOHCTPHUPOBAIO NPEBOCXOJACTBO METOIOB
aHCcamO0JIeBOro 00y4eHHsl B MOBBIILIEHUH TOYHOCTH M HaJIe:)KHOCTH OOHapyskeHus. Kpome Toro,
SHAP (apautuBHble o0bsicHenus [llenmm) u LIME (JiokaabHO HHTepIIpeTUpyeMble O0bSICHEHU S,
He 3aBHCsILIME OT YCTPOHCTBA MOJEJIM) MCIO/b30BAINCh AJIsl BBISICHEHHS TIPOTHO30B MOJEIH,
HOBBIIIEHNSI IPO3PAYHOCTH U HAIEKHOCTH. AHAJIN3 BBISBIII BaKHBIE OCOOCHHOCTH, CYIIECTBEHHO
BIIUSIIOIIE HA OOHApY KeHHe BPEJOHOCHBIX IPOrpaMM, TaKye KakK CJTyKObl IPOLIECCOB, aK THBHbIE
cityx0bl, IeCKpUITOPHI (pailioB, Kimoun peectpa U (YHKIMH OOPATHOrO BbI30Ba. DTH HACH
UMeloT O0JIbIIoe 3HAYEHUE JJIsI COBEPLICHCTBOBAHMUS CTpATerHii OOHApY KEHHUsI U MOBBILICHUS
IPOU3BOAUTEILHOCTH MozIeM. TlomyueHHble pe3yabTaThl BHOCAT BKJIA[B YCUIIHSA IO 00ECIICUCHHIO
KnOepOe30acHOCTH IyTeM BCECTOPOHHEH OLIEHKU aJTOPUTMOB MAIIMHHOTO OOYYEHHsS IS
oGHapyxeHHs 00(yCIPOBAHHBIX BPEJOHOCHBIX IPOrPAMM C MOMOLIBIO aHAJIN3a MaMATH. B 3Toi
CTaThe MpeACTABJIeHB! LIEHHble ujen AT OyayLIMX HCCJIeJOBaHHil U JOCTHXEHUI B 00IacTu
0OHapy:KeH!s BPeJOHOCHBIX NPOrPaMM, HPOKJIabIBas Ty Th LIS Gosee HaJIeKHbIX U 3(peK TUBHBIX
peleHuit B 001acTH KHOepOe30MacHOCTH Nepe TULOM Pa3BUBAIOIINXCS U CIOKHBIX BPEIOHOCHBIX
yIrpos.

KuroueBbie cioBa: oOHapyxkeHue BpefoHocHoro 1O, mammHHOEe OOydeHHe, aHAIU3
BpenoHocHoro 10, kubepbe3onacHOCTb.

JIutepaTtypa

1. Baghirov E. Evaluating the performance of different machine learning algorithms
for Android malware detection. In 2023 5th International Conference on
Problems of Cybernetics and Informatics (PCI). IEEE, 2023. pp. 1-4.
DOI: 10.1109/PCI60110.2023.10326006.

2. Baghirov E. Comprehensive framework for malware detection: Using ensemble methods,
feature selection, and hyperparameter optimization. In 2023 IEEE 17th International
Conference on Application of Information and Communication Technologies (AICT).
IEEE, 2023. pp. 1-5. DOI: 10.1109/A1CT59525.2023.10313179.

120 Undopmaruka u asromarusauus. 2025. Tom 24 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

10.

11.

12.

13.

14.

16.

17.

Jeon J., Jeong B., Baek S., Jeong Y.-S. Static Multi Feature-Based Malware Detection
Using Multi SPP-net in Smart IoT Environments. IEEE Transactions on Information
Forensics and Security. 2024. vol. 19. pp. 2487-2500. DOI: 10.1109/TIFS.2024.3350379.
Ismail S.J.I., Hendrawan Rahardjo B., Juhana T., Musashi Y. MalSSL — Self-Supervised
Learning for Accurate and Label-Efficient Malware Classification. IEEE Access. 2024.
vol. 12. pp. 58823-58835. DOI: 10.1109/ACCESS.2024.3392251.

Baghirov E. Malware detection based on opcode frequency. Journal of Problems of
Information Technology, 2023. vol. 14(1). pp. 3-7. DOI: 10.25045/jpit.v14.i1.01.
Egitmen A., Yavuz A.G., Yavuz S. TRConv: Multi-Platform Malware Classification
via Target Regulated Convolutions. IEEE Access. 2024. vol. 12. pp. 71492-71504.
DOI: 10.1109/ACCESS.2024.3401627.

Gungor A., Dogru I.A., Barisci N., Toklu S. Malware detection using image-based
features and machine learning methods. Journal of the Faculty of Engineering
and Architecture of Gazi University. 2023. vol. 38. no. 3. pp. 1781-1792.
DOI: 10.17341/gazimmfd.994289.

Mesbah A., Baddari I., Riahla M.A. LongCGDroid: Android malware detection
through longitudinal study for machine learning and deep learning. Jordanian
Journal of Computers and Information Technology. 2023. vol. 9. no. 4. pp. 328-346.
DOI: 10.5455/jjcit.71-1693392249.

Howard A., Hope B., Saltaformaggio B., Avena E., Ahmadi M., Duncan
M., McCann R., Cukierski W. Microsoft Malware Prediction. Kaggle,
2018. Available at: https://kaggle.com/competitions/microsoft-malware-prediction.
(accessed 26.10.2024).

Ahmed I.T., Hammad B.T., Jamil N.A Comparative Performance Analysis of Malware
Detection Algorithms Based on Various Texture Features and Classifiers. IEEE Access.
2024. vol. 12. pp. 11500-11519. DOI: 10.1109/ACCESS.2024.3354959.

Xie W., Zhang X. The Application of Machine Learning in Android Malware Detection.
2024 4th International Conference on Neural Networks, Information and Communication
Engineering (NNICE). 2024. pp. 1-4. DOI: 10.1109/NNICE61279.2024.10498936.
Bostani H.; Moonsamy V. EvadeDroid: A practical evasion attack on machine learning
for black-box Android malware detection. Computers and Security. 2024. vol. 139.
DOI: 10.1016/j.cose.2023.103676.

Rigaki M., Garcia S. The Power of MEME: Adversarial Malware Creation with Model-
Based Reinforcement Learning. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2024.
pp. 44-64. DOI: 10.1007/978-3-031-51482-1 _3.

Rudd E.M., Krisiloff D., Coull S., Olszewski D., Raff E., Holt J. Efficient Malware
Analysis Using Metric Embeddings. Digital Threats: Research and Practice. 2024.
vol. 5(1). pp. 1-20. DOI: 10.1145/36156609.

Zhan D., Zhang Y., Zhu L., Chen J., Xia S., Guo S., Pan Z. Enhancing reinforcement
learning based adversarial malware generation to evade static detection. Alexandria
Engineering Journal. 2024. vol. 98. pp. 32-43. DOI: 10.1016/j.aej.2024.04.024.
Aljabri M., Alhaidari F., Albuainain A., Alrashidi S., Alansari J., Alqahtani W., Alshaya
J. Ransomware detection based on machine learning using memory features. Egyptian
Informatics Journal. 2024. vol. 25. DOI: 10.1016/j.€ij.2024.100445.

Ban Y., Kim M., Cho H. An Empirical Study on the Effectiveness of Adversarial
Examples in Malware Detection. CMES — Computer Modeling in Engineering and
Sciences. 2024. vol. 139(3). pp. 3535-3563. DOI: 10.32604/cmes.2023.046658.

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 121
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

122

Zhang Y., Jiang J., Yi C,, Li H., Min S., Zuo R., An Z., Yu Y. A Robust CNN
for Malware Classification against Executable Adversarial Attack. Electronics. 2024.
vol. 13(5). DOI: 10.3390/electronics13050989.
Dam T.Q., Nguyen N.T., Le T.V., Le T.D., Uwizeyemungu S., Le-Dinh T. Visualizing
Portable Executable Headers for Ransomware Detection: A Deep Learning-Based
Approach. Journal of Universal Computer Science. 2024. vol. 30(2). pp. 262-286.
DOI: 10.3897/jucs.104901.
Gibert D., Zizzo G., Le Q. Towards a Practical Defense Against Adversarial Attacks on
Deep Learning-Based Malware Detectors via Randomized Smoothing. Lecture Notes in
Computer Science. 2024. vol. 14399. pp. 683—-699. DOI: 10.1007/978-3-031-54129-2
40.
Zhang P., Wu C., Wang Z. BINCODEX: A comprehensive and multi-level
dataset for evaluating binary code similarity detection techniques. BenchCouncil
Transactions on Benchmarks, Standards and Evaluations. 2024. vol. 4(2).
DOI: 10.1016/j.tbench.2024.100163.
Gibert D., Zizzo G., Le Q., Planes J. Adversarial Robustness of Deep Learning-Based
Malware Detectors via (De)Randomized Smoothing. IEEE Access. 2024. vol. 12.
pp. 61152-61162. DOI: 10.1109/ACCESS.2024.3392391.
Louthanova P., Kozak M., Jurecek M., Stamp M., Di Troia F. A comparison of adversarial
malware generators. Journal of Computer Virology and Hacking Techniques. 2024.
vol. 20. pp. 623-639. DOI: 10.1007/s11416-024-00519-z.
Qian L., Cong L. Channel Features and API Frequency-Based Transformer Model for
Malware Identification. Sensors. 2024. vol. 24(2). DOI: 10.3390/s24020580.
Surendran R., Uddin M.M., Thomas T., Pradeep G. Android Malware Detection
Based on Informative Syscall Subsequences. IEEE Access. 2023. vol. 11.
DOI: 10.1109/ACCESS.2024.3387475.
Kozak M., Jurecek M., Stamp M., Troia F.D. Creating valid adversarial examples
of malware. Journal of Computer Virology and Hacking Techniques. 2024. vol. 20.
pp. 607-621. DOL: 10.1007/s11416-024-00516-2.
Imran M., Appice A., Malerba D. Evaluating Realistic Adversarial Attacks against
Machine Learning Models for Windows PE Malware Detection. Future Internet. 2024.
vol. 16(5). DOIL: 10.3390/f116050168.
Saha S., Afroz S., Rahman A. H. MALIGN: Explainable static raw-byte based malware
family classification using sequence alignment. Computers and Security. 2024. vol. 139.
DOI: 10.1016/j.cose.2024.103714.
LiD., Cui S, LiY., XulJ., Xiao F., Xu S. PAD: Towards Principled Adversarial Malware
Detection Against Evasion Attacks. IEEE Transactions on Dependable and Secure
Computing. 2024. vol. 21. no. 2. pp. 920-936. DOI: 10.1109/TDSC.2023.3265665.
Zhang F., Li K., Ren Z. Improving Adversarial Robustness of Ensemble Classifiers by
Diversified Feature Selection and Stochastic Aggregation. Mathematics. 2024. vol. 12(6).
DOI: 10.3390/math12060834.
Alzaidy S., Binsalleeh H. Adversarial Attacks with Defense Mechanisms on
Convolutional Neural Networks and Recurrent Neural Networks for Malware
Classification. Applied Sciences. 2024. vol. 14(4). DOI: 10.3390/app14041673.
Zhou K., Wang P., He B. Comparative Study: Mouth Brooding Fish (MBF) as a Novel
Approach for Android Malware Detection. International Journal of Advanced Computer
Science and Applications. 2024. vol. 15(5). DOI: 10.14569/1JACSA.2024.0150521.
Rakib H., Dhakal S.M. Obfuscated Malware Detection: Investigating Real-
World Scenarios Through Memory Analysis. In 5th IEEE International

Wudopmaruka u aBromatuzams. 2025. Tom 24 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

INFORMATION SECURITY

Conference on Telecommunications and Photonics (ICTP 2023). 2023.
DOI: 10.1109/ICTP60248.2023.10490701.

34, Carrier T., Victor P., Tekeoglu A., Lashkari A.H. Detecting Obfuscated Malware
using Memory Feature Engineering. Proceedings of the 8th International Conference
on Information Systems Security and Privacy (ICISSP). 2022. vol. 1. pp. 177-188.
DOI: 10.5220/0010908200003120.

35. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining,
Inference, and prediction (2nd ed.). Springer, 2009. 745 p.

36. Friedman J.H. Greedy function approximation: A gradient boosting machine. Annals of
Statistics. 2001. vol. 29(5). pp. 189-1232. DOI: 10.1214/a0s/1013203451.

37. Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T. LightGBM:

A Highly Efficient Gradient Boosting Decision Tree. NIPS’17: Proceedings of
the 31st International Conference on Neural Information Processing Systems. 2017.
pp. 31496-3157. DOI: 10.5555/3294996.3295074.

38. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel
M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau
D., Brucher M., Perrot M., Duchesnay E. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research. 2011. vol. 12. pp. 2825-2830.
DOI: 10.5555/1953048.2078195.

39. Chen T., Guestrin C. XGBoost: A scalable tree boosting system. Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
2016. pp. 785-794. DOI: 10.1145/2939672.2939785.

40. Lundberg S.M., Lee S.-1. A Unified Approach to Interpreting Model Predictions. 2017.
arXiv preprint arXiv:1705.07874. DOI: 10.48550/arXiv.1705.07874.
41. Ribeiro M.T., Singh S., Guestrin C. "Why Should I Trust You?": Explaining the

Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2016. pp. 1135-1144.
DOI: 10.1145/2939672.293977.

42. Cevallos-Salas D., Grijalva F., Estrada-Jimenez J., Bentez D., Andrade R. Obfuscated
Privacy Malware Classifiers Based on Memory Dumping Analysis. IEEE Access. 2024.
vol. 12. pp. 17481-17498. DOI: 10.1109/ACCESS.2024.3358840.

43, Roy K.S., Ahmed T., Udas P.B. Karim M.E., Majumdar S. MalHyStack: A
hybrid stacked ensemble learning framework with feature engineering schemes for
obfuscated malware analysis. Intelligent Systems with Applications. 2023. vol. 20.
DOI: 10.1016/j.iswa.2023.200283.

HNmameepaueB SAaurap — Ph.D., Dr.Sci., 3aBenyiommii kageapoii, 3aBenytonmii kagenpoi
KnbepOe3onmacHoCTH, A3epOailKaHCKMil TeXHWYecKuii yHuBepcuteT. OOnacTh HaydHBIX
MHTEPECOB: CHCTEMBbI YIPaBJIeHNs1 NH(OPMALIMOHHOW G€30IaCHOCTBIO, aHAIN3 BPEJOHOCHBIX
[porpamm, 6e301aCHOCTb MHTEJUIEKTYaIbHBIX CHCTEM, 6E30MaCHOCTh POMBILITICHHBIX CHCTEM
ympaBiieHusi, BeO-0e30macHOCTb, oOOsayHasi Oe30MacHOCTh, MPHKJIAAHAs Kpumnrorpaduio,
OGuoMeTpusi, IPUMEHEHNE NCKYCCTBEHHOTO HHTEJIEKTa B KnOepOe3onacHoCTH. YHCIIO HayYHBIX
my6ymkanmit — 50. yadigar.imamverdiyev @aztu.edu.az; npocnekt X. Ixkabunaa, 25, AZ 1073,
Baky, AzepOaitkan; p.T.: +994(50)540-7464.

Barupos Dubman — acnupaHT, MHCTUTYT MH(DOPMAIIMOHHBIX TEXHOJOTrMii MUHUCTEpCTBA
HayKy B oOpa3zoBaHusi AsepOaiiikaHckoil PecryOmiky; crapinmii crieuainucT 1mo oopadboTke
nauHbix, OAO "Kammrtan Bank". O61acTh HayIHBIX HHTEPECOB: AHAJN3 BPEJOHOCHBIX IPOrpamMMm,
00paboTKa JaHHbIX, yIIPaBICHIE MHIMACHTaMI MH(OPMALIMOHHOM Oe30macHoCTH. YNCII0 Hay YHBIX
nyOmukanmii — 20. elsenbagirov1995@gmail.com; yiuua A. Kynantaesa, 5/13, AZ 1009,
BunaraguHckuil paiioH, Baky, AzepOaitkan; p.1.: +994(51)444-1933.

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 123
ISSN 2713-3206 (online) www.ia.spcras.ru

NHP®OPMAILIMOHHA S BE3OITACHOCTb

Hxkeuyksy [I:xon UykBy — acriipant, YHusepcutet Kagup Xac; YHusepcuret catbix Kupuiuia u
Meonus B Cronbe (UKIM). O61acTh HayYHBIX HHTEPECOB: KPUNTOrpadus ¢ OTKPHITHIM KJIIOUOM
n obJerdeHHast Kpunrorpadus, IpodiaeMbl KBAaHTOBO ONTHMM3AIMK, aHAJN3 BPEIOHOCHBIX
nporpamm. Yuco HaydHbIX myOmukanuii — 2. cikechukwujohn @stu.khas.edu.tr; ®artux, 34083,
Cram6yu, Typuus; p.1.: +90(212)533-6532.

124 Undopmaruka u asromarusanus. 2025. Tom 24 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru

