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Abstract. One of the most important aspects of contemporary educational systems is
student engagement detection, which involves determining how involved, attentive, and active
students are in class activities. For educators, this approach is essential as it provides insights
into students' learning experiences, enabling tailored interventions and instructional
enhancements. Traditional techniques for evaluating student engagement are often time-
consuming and subjective. This study proposes a novel real-time detection framework that
leverages Transformer-enhanced Feature Pyramid Networks (FPN) with Channel-Spatial
Attention (CSA), referred to as BiusFPN_CSA. The proposed approach automatically analyses
student engagement patterns, such as body posture, eye contact, and head position, from visual
data streams by integrating cutting-edge deep learning and computer vision techniques. By
integrating the attention mechanism of CSA with the hierarchical feature representation
capabilities of FPN, the model can accurately detect student engagement levels by capturing
contextual and spatial information in the input data. Additionally, by incorporating the
Transformer architecture, the model achieves better overall performance by effectively
capturing long-range dependencies and semantic relationships within the input sequences.
Evaluation using the WACV dataset demonstrates that the proposed model outperforms
baseline techniques in terms of accuracy. Specifically, in terms of accuracy, the
FPN_CSA_Trans_EH variant of the proposed model outperforms FPN_CSA by 3.28% and
4.98%, respectively. These findings underscore the efficacy of the BiusFPN_CSA framework
in real-time student engagement detection, offering educators a valuable tool for enhancing
instructional quality, fostering active learning environments, and ultimately improving student
outcomes.

Keywords: Feature Pyramid Network (FPN), Channel-Spatial Attention (CSA), student
engagement detection, Transformer.

1. Introduction. When students are actively involved in their
educational assignments and activities, this is referred to as student
engagement. This involvement not only directly impacts on school
improvements, such as enhancing teachers' professional identities and
fostering a welcoming school environment [1], but it also appears to boost
the academic performance of underperforming students, reduce dropout
rates, and decrease dissatisfaction. Because of this, scholars have remained
highly interested in student engagement and its various implications over
the past 20 years. Academic success has always been considered a crucial
result of student engagement. With the rise of network technology,
computer technology, and other advancements, online learning has
emerged. It emphasises communication between students and the
accessibility of the learning resources. A significant number of students
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now participate in online learning, which has become a predominant
learning method. However, due to limited interaction between teachers and
students, communication is often insufficient, student participation in online
learning tends to be suboptimal, inconsistent, and inefficient. Student
engagement is essential for learning and significantly impacts online
learning as well.

As the phrase "student engagement" can have different meanings for
different people, the method of assessing student engagement utilised by
researchers in their studies is akin to selecting a specific conceptualization
of the construct. Prior to choosing a method for assessing student
engagement, it is important to define the term precisely. Early researchers
frequently operationalized student engagement in terms of observable
behaviours, such as the level of participation in various tasks and the time
required to complete them. Various aspects, such as facial expression
recognition, head pose detection, and body language analysis, can be used
to assess student attention in class. Facial expressions have been used in
studies to analyse student participation in both in-person and online classes,
and results have demonstrated that this method is effective for determining
student engagement levels. This method has been used in studies to evaluate
student participation in face-to-face and online classes, and it has proven
effective in determining levels of engagement. For instance, the authors
in[19] proposed a system that employs facial expression recognition
to measure engagement levels in real time, and they demonstrated its
effectiveness in a classroom setting.

In order to support timely intervention, it is essential to assess and
study student engagement in online learning, help teachers understand
student engagement, enable students to reflect on their learning, and
encourage participation in the learning process. The quantification of
student behaviour, cognitive engagement, and emotional engagement are all
aspects of measuring student engagement. Currently, research has focused
on studying student participation through theoretical models, explicit
behavioural data, influencing factors, effect analysis, and the lack of
accurate measurement of student engagement. As a result, the research
developed a reliable and quantifiable model of student engagement,
examining students' cognitive engagement, emotional engagement, and
engagement patterns. Researchers are exploring ways to incorporate
transformers into computer vision applications due to their powerful
representational  capabilities. Transformer-based models outperform
convolutional and recurrent neural networks across various visual
benchmarks, with some models achieving superior performance. The
computer vision community is increasingly focusing on transformers due to
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their strong performance and reduced need for inductive bias tailored to
specific types of vision. Transformer, a type of deep neural network
primarily based on the self-attention mechanism, was first applied in natural
language processing. In this study, an enhanced transformer is presented to
identify student engagement. The transformer is applied for the first time in
engagement recognition. The findings reveal a positive correlation between
the final exam scores and the level of student participation in the online
class sessions.

The main contributions of this work are summarized as follows:

1.  We propose a Feature Pyramid Network model with a location
and channel-aware attention module to effectively learn facial
representations during online class sessions.

2. The transformer module is also integrated with this model to
analyse the global context features along with local convolutional features.

3. The encoded FPN-based significant features are combined with
the eye and head movement-based features to enhance the performance of
the framework.

4.  The performance of the proposed FPN_CSA Trans is analyzed
with the help of DAISEE and WACYV datasets.

2. Related Work. Facial expression analysis requires more advanced
expertise in the field of computer vision. In recent years, there has been
growing interest in using technology to track and assess students' facial
expressions in order to better understand and enhance their engagement in
class. The emotions of students can be inferred from their facial expressions,
which are a nonverbal form of communication [1]. Analysis of body language
was employed by some researchers to gauge levels of engagement. This
method has been used in studies to assess student participation in both
traditional and online classroom settings, demonstrating its usefulness in
determining levels of engagement. This may involve analysing a student's
body in various positions, such as sitting or standing, as well as their head and
gaze. According to research in this field, body position evaluation may be
employed to determine levels of engagement.

For example, the authors in [2] used body posture and movement
analysis to assess engagement levels in real time, proving its efficacy in a
classroom context, but it lacked facial-based features. Numerous other
publications [3, 4] also proposed using body language analysis to gauge
student engagement during lectures. According to the authors in [3], who
used a sample of 800 students, the accuracy rate for identifying engagement
levels was 89.3%. Keystroke dynamics, or the analysis of typing habits,
such as speed and errors, has been widely used by researchers to identify
levels of engagement. According to research, keystroke dynamics can be
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used to gauge student interest levels and enhance the effectiveness of
instruction. Keystroke dynamics may vary depending on the scenario.
Another method for determining engagement levels involves analysing
body language and head position. This may involve analysing body posture,
eye contact, and head position. According to research in this field, head
posture and body language can be used to gauge student engagement levels
and improve instructional efficacy. The use of head and body posture alone
lacks the ability to extract features from the facial region.

The authors in [5, 6] proposed a real-time student engagement
detection method. Students' eye tracking and head movements were
recorded using a depth camera, and machine learning techniques were used
to classify their engagement levels. They used a depth camera to capture
students' eye tracking and head movements, and applied machine learning
algorithms to classify engagement levels.

Another approach involves using head pose and body movements to
detect engagement levels. This may include analysing the position of head,
eye gaze, and body posture [20]. Research in this area has shown that head
pose and body movements can be used to detect engagement levels and
improve the effectiveness of teaching. To address occlusion, researchers
in[7—10] used texture features or reconstructed geometric features. To
recover a lost or drifted facial point, an improved Kanade-Lucas tracker [7]
was proposed. PCA-based approaches were used for missing point
reconstruction [8, 9]. Another method for identifying facial expressions,
known as the modified transferable belief model, was proposed in [10]. The
performance of the facial expression analysis mechanism can be affected by
facial poses. To address pose variations, the authors recommended training
with a single classifier [11]. Adversarial feature learning [12] was used by
researchers for the same purpose. Study [13] proposed using the k-means
algorithm to group students based on 12 engagement measures divided into
two categories: interaction-related and effort-related. Quantitative analysis
is used to identify students who are not engaged and may require assistance.
In order to identify student participation in a classroom setting, the authors
in [14] proposed a real-time facial expression detection system. They
recorded students' faces using a camera and then applied machine learning
algorithms to classify their facial expressions into different levels of
engagement. The authors in [15] proposed a deep learning-based method for
identifying student interest in video-based online classes, using aspects of
facial expression, head pose, and gaze. They found that their approach
achieved high accuracy in determining engagement levels. Using a
Histogram of Oriented Gradients, further trained by a CNN, the authors
in [16] were able to extract facial features. Since the histogram of oriented
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gradients extracts information from spatial gradients, this study achieved
better performance. Studies [17, 18] also used variables alongside facial
expression to determine student interest in the classroom. The authors
in [19] used this method to analyse student participation in online classes,
demonstrating its effectiveness in determining engagement levels.
According to another study [20], engagement levels can be determined
using a combination of head pose, facial expression, and gaze analysis. The
study found that different modalities are used for student engagement
analysis. Each modality has its own strengths. Therefore, in this paper,
features learned from face, eye, and head movements are used for training
and testing.

The analysis of various studies shows that student engagement
through modalities, such as facial expressions, head movements, gaze
tracking, body posture, and keystroke dynamics, has yielded promising
results in both traditional and online classrooms. Each modality has its
strengths but also presents limitations. For example, methods focusing on
body posture or keystroke dynamics often overlook finer details of facial
expressions, while facial expression analysis may struggle with variations
caused by occlusion, lighting conditions, and pose differences.

3. Methodology

3.1. The proposed FPN_CSA model for Engagement Analysis.
The current study aims to investigate three approaches to applying facial
recognition technology in classroom engagement analysis. By leveraging
the Transformer mechanism and the BiusFPN with Inter-Cross Coordinate
Self-Attention model, a person's engagement based on facial expression
during online sessions can be recognised. Frames are extracted from the
real-time video stream and used for face detection. Eye tracking is
performed after face detection, and head rotation is also analysed. These
three metrics are used to determine the engagement level. The outcome is
classified as disengaged, partially engaged, and fully engaged. This method
effectively identifies specific facial expressions associated with varying
degrees of engagement. The overall architecture of the proposed model is
depicted in Figure 1.

Using Resnet-18 as the backbone, the Feature Pyramid Network
(FPN) is employed in the design of the proposed framework for engagement
analysis. For a single flow-down sampling process, this bi-directional
Feature Pyramid Network (FPN) manages two upsampling operations.

This model integrates traditional channel and spatial attention at the
second level of the upsampling process, along with an Inter-Cross
Coordinate Self-Attention model. Figure 2 illustrates the general
architecture of the proposed framework.
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3.1.1. Resnet-18. The term "ResNet" refers to the 18-layer
Convolutional Neural Network introduced by [21]. Designed to facilitate
the effective operation of multiple convolutional layers, ResNet-18 is a 72-
layer architecture with 18 deep layers, including residual blocks, as
described in [22]. However, as a network is expanded with multiple deep
layers, the output performance usually deteriorates. The vanishing gradient
problem is addressed by neural networks using gradient descent to
determine the weights that minimise the loss function during
backpropagation training. The gradient "vanishes," leading to network
saturation or even performance loss due to repeated multiplication across
multiple layers. Residual Blocks in ResNet-18 utilise skip connections to
address the vanishing gradient issue. The skip connection bypasses a few
intermediate levels in order to connect layer activations to subsequent
layers. As a result, the residual block remains intact. The approach used in
this system allows the residual mapping to fit the system, rather than
requiring the layers to learn the underlying mapping directly. Figure 3
illustrates the skip connection mechanism within a residual block.

X Relu F&) X

; Relu
Y

X identity
Fig. 3. Skip connections

The benefit of skip connections is that they prevent any layer from
degrading the network's performance. Thus, vanishing or exploding
gradients do not pose problems when training very deep neural networks.
The backbone network for the proposed model is the Resnet-18.

3.1.2. Transformer with Multi-Head Attention. Numerous advances
in deep learning tasks have resulted from Transformers [Vaswani et al.,
2017; Devlin et al., 2019; Velickovic et al., 2018b]. The Transformer stands
out due to its ability to combine all computations in the same layer and its
lack of recurrent connections, which improves scalability, effectiveness, and
efficiency. The Transformer only uses the attention mechanism to determine
the dependencies between input tokens, eliminating the need for recurrent
connections. To be more precise, the Transformer utilises a novel multi-
head attention module designed to more -effectively recognise the
dependencies between input tokens.
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It has been noted that a key factor in the Transformer's success is its
multi-head attention module. Recurrent neural networks (RNNs) have been
shown to outperform Transformers on machine translation benchmarks
when both utilise multi-head encoder-decoder attention. In contrast,
Transformers perform worse when not utilising multi-head attention [5]. In
addition to the Transformer, multi-head attention has been implemented in
RNNs [5], Graph Attention Networks [Velickovic et al., 2018a],
Convolutional Neural Networks [Xiao et al., 2020; Fang et al., 2019], and
other architectures.

The overarching belief is that multi-head attention distinguishes
itself by attending to multiple positions concurrently, whereas a
conventional attention module can only focus on one position in a single
layer. Multi-head attention specifically performs multiple attention
computations in parallel and projects the input data into multiple distinct
subspaces (Figure 4).

The combination of ResNet-18, FPN, and Transformers leverages
the strengths of each architecture, making it a powerful choice for analysing
visual data where both spatial and sequential information must be
effectively captured, such as in assessing student engagement levels from
video feeds. This setup addresses both the efficiency and depth of feature
extraction required for accurate and real-time predictions, outperforming the
narrower focus and limitations of RNNs or standalone CNNs in such
applications.
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Multi-Head Transformer
Fig. 4. Multi-Head Transformer
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3.1.3. Feature Pyramid. An essential component of recognition
algorithms is the feature pyramid, which is used to detect objects at
different scales. An FPN is a multi-scale deep learning framework that
builds feature pyramids with minimal additional computational cost. The
design is widely integrated to create high-level semantic maps at all scales.
In various applications, this performs significantly better as a general
feature extractor. In recognition tasks, convolutional networks (ConvNets)
have largely replaced handcrafted features. ConvNets are more robust in
representing higher-level semantics with scale invariance that can identify
computed features from a single input scale. Multi-scale feature extraction
is achieved by characterising the high-resolution features at each pyramid
level. Feature pyramids are constructed using top-down, bottom-up, and
lateral connections [23].

The semantically stronger features, which are subsampled fewer
times and thus have more accurate localisation information, are combined
with features from earlier levels in the architecture developed by the Feature
Pyramid Network (FPN). When the FPN, which serves as a feature
extractor, was developed, the precision and speed of the pyramid concept
were key considerations. Unlike detectors such as the extractor for object
recognition in Faster R-CNN, the FPN generates multiple feature map
layers with higher-quality data compared to conventional feature pyramids.
The use of multi-scale feature maps from multiple layers computed during
the forward pass makes it computationally efficient. Given its numerous
advantages, our proposed model, which uses ResNet-18 as the backbone,
incorporates the feature pyramid.

We used a 100x100 grayscale input image containing only
detectable faces in our model. Initially, a convolutional layer with 64 filters
and a 3x3 kernel size was applied to the input image. The convolutional
layer produces an output of size 100x100x64. Subsequently, these feature
maps are passed to the ResNet-18. In ResNet-18, we utilised four different
types of convolutional layers. Four feature maps, designated as F1, F2, F3,
and F4, were produced. The first convolutional layer in ResNet-18,
corresponding to F4, has 64 filters, a kernel size of 3%3, and a stride of 1.
As a result, the F4 feature map retains the original size of 100 x 100 with 64
filters. The second convolutional layer in ResNet-18, corresponding to F3,
has 128 filters, a kernel size of 3x3, and a stride of 2. As a result, the F3
feature map has dimensions of 50x50%64. The third convolutional layer in
ResNet-18, corresponding to F2, uses 256 filters, a kernel size of 3x3, and a
stride of 2. Consequently, the F2 feature map has dimensions of
25%25x256. The final convolutional layer in ResNet-18, corresponding to
F1, has 512 filters, a kernel size of 3%3, and a stride of 2. As a result, the F1
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feature map has dimensions of 13x13x512. The ResNet-18 processing is
now complete. Next, we proceed to the pyramidal structures in the Feature
Pyramid Network (FPN) using upsampling and addition.

Subsequent processing is applied to each of the feature maps: F1, F2,
F3, and F4. Following the F1 feature map, a 2D convolutional layer with
256 filters, a kernel size of 1x1, a stride of 1, dilation of 1, groups of 1, and
ReLU activation is applied. It is then passed through a transformer layer and
upsampled before being merged with F2. The result of the first addition,
addl, has dimensions of 25x25%256. The output of addl is then passed
through a convolutional layer with 128 filters. After passing through a
transformer layer, it is upsampled and merged with F3. The result of the
second addition, add2, has dimensions of 50x50x128. The output of add? is
then passed through a convolutional layer with 64 filters. After that, it is
upsampled and merged with F4. The result of the third addition, add3, has
dimensions of 100x100x64. To provide input for the second stage of
upsampling, the output from the first upsampling in the FPN is passed
through three distinct attention mechanisms: Channel Attention, Spatial
Attention, and the proposed ICCSA.

3.1.4. Channel and Spatial Attention. A channel attention
module [24] is utilised in convolutional neural networks to provide channel-
based attention. Figure 5 illustrates the channel attention architecture. An
attention mechanism is introduced to create a channel attention map by
leveraging the relationships between features across channels. Given an
input image, the channels of a feature map act as feature detectors, and thus,
channel attention focuses on "what" is important. Effective channel
attention computation requires a reduction of the spatial dimension of the
input feature map. Using both average-pooling and max-pooling processes,
the spatial information of a feature map is aggregated to produce two unique
spatial context descriptors, Fg,, and E£,.. representing average-pooled
features and max-pooled features, respectively. Subsequently, both
descriptors are passed through a shared network, which generates the
channel attention map M, € R°***1, Here, C represents the number of
channels. The shared network consists of multi-layer perceptrons (MLPs)
with a single hidden layer. To minimise parameter overhead, the hidden
activation size is set to RS/™¥1X1 where r is the reduction ratio. After
processing each descriptor through the shared network, the output feature
vectors are combined element-wise. In summary, channel attention is
computed as follows: here, F represents the input feature, where AvgPool
and MaxPool denote the average and max pooling operations, as shown in
Figure 5. Equation (1) represents the overall process of channel attention, as
illustrated in Figure 5, with the corresponding module notations.
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M (F) = a(MLP(AvgPool(F) + MLP(MaxPool(F))),

M(F) = oWy (Wo(Eag) ) + Wi (Wo (B, M
where W, € RE/™X¢, W, € R°*°/" and c denotes the sigmoid function. Note
that the MLP weights W, and W, for both inputs are followed by the ReLU
activation function.

The spatial attention module is another component in convolutional
neural networks [24]. It generates a spatial attention map by leveraging the
spatial relationships among features. Spatial attention focuses on "where"
information is located, in contrast to channel attention, which focuses on
"what" is informative. Before computing spatial attention, average-pooling
and max-pooling operations are performed along the channel axis, and the

results are concatenated to produce an effective feature descriptor. The

H.
eRXW

spatial attention map M (F) , which encodes where to emphasise

or suppress, is generated by applying a convolution layer to the
concatenated feature descriptor. Two 2D maps, Fy,, € R™*HXW and
ES 4 € RYHXW " are generated by pooling the channel information in a
feature map using two different methods. Each map represents the max-
pooled and average-pooled features of the channel, respectively. These
maps are concatenated and convolved using a standard convolution layer to
generate the 2D spatial attention map. In summary, the computation of
spatial attention is described in Equation 2, with the corresponding module
notations and mathematical representations.

M(F) = o (7" ([AvgPool(F); MaxPool(F)])),

My(F) = o (F77 ([Fivgi Fan])) @
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where the convolution operation with a 7 x 7 filter size is denoted by f7*7,
and o represents the sigmoid function. Figure 6 illustrates the spatial
attention architecture.

f Spatial Attention | \

Inpul Feature

\&

Cnm Layer
Max pool, Avg Pool Spﬂtlﬂl Attention

Fig. 6. Spatial Attention

In the decoding upsampling flow, the input is first processed by the
transformer block, as shown in Figure 2. After processing through the
transformer block, the output is upsampled and combined with the
corresponding next-level encoded output. In the second level, the process is
repeated, but channel attention features are added to extract more channel-
oriented information. In the third level of FPN decoding, the transformer is
incorporated, followed by upsampling and addition with the spatial attention
module. The final third-level addition block produces a feature map of size
100x100x64. After the fully connected layer, the output is passed to a final
fully connected layer with four classes and a filter size of 1,086. The
classification layer classifies the input image into one of the categories:
Disengaged, Partially Engaged, or Engaged.

4. Experimental Results. The proposed FPN CSA Trans EH
method achieved an accuracy of 71.02% on the DAISEE dataset and
88.57% on the WACYV dataset.

4.1. Dataset Description

4.1.1. DAISEE dataset. The DAISEE dataset [25] is publicly
available. It consists of video recordings of participants in an e-learning
environment, annotated with publicly sourced labels for engagement,
frustration, confusion, and boredom. The dataset, made publicly available
along with unique crowd-sourced annotations, captures real-world "in the
wild" environments. The methodologies for data collection, annotation, and
vote aggregation are described below. The DAISEE dataset includes 9,068
clips from 112 students taking online courses. The four states of people
watching online courses — boredom, confusion, frustration, and engagement
— were annotated on the videos. Each state is assigned one of four ordinal
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levels: 0 (very low), 1 (low), 2 (high), and 3 (very high). This work focuses
solely on the classification of engagement levels. The clips are 10 seconds
long, recorded at 30 frames per second (fps), with a resolution of 640x480
pixels (Figure 7).

Fig. 7. Samples of the DAISEE dataset:
Engagement (first row), Boredom (second row), Confusion (third row),
and Frustration (bottom row)

4.1.2. WACV dataset. This section describes the evaluation of
student engagement levels using the WACV dataset. We used the open-
source WACV dataset [28] for our research. The dataset contains three
distinct classes: disengaged, partially engaged, and engaged. The dataset
consists of 4,424 RGB images of varying sizes. All images were resized to a
uniform shape of 100x100x3. The dataset is not balanced, with 412 images
in the "disengaged" class, 2,247 images in the "partially engaged" class, and
1,765 images in the "engaged" class. To create a balanced set of 412 photos
for each class, we randomly selected 412 images from the "partially
engaged" class and 412 images from the "engaged" class.
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We divided this data into training and testing sets (80% and 20%,
respectively). The figures below show class-wise examples from the
WACYV and the DAISEE datasets.

Figure 8 illustrates the Disengaged, Partially Engaged, and Engaged
samples of the WACV dataset; and Figure 7 illustrates the Boredom,
Confusion, Frustration, and Engagement samples of the DAISEE dataset.

Fig. 8. Engaged (top) artially engaged (rmddle) and disengaged (bottom) samples
of the WACYV dataset

4.2. Evaluation metrics.

A. Accuracy. Accuracy measures the overall performance of the
classifier. The model's performance is evaluated by comparing the
percentage of accurate predictions to all cases. Accuracy is calculated using
the following formula:

TP+TN
Accuracy = . 3
TP+TN + FP+ FN

B.  AUC. The ROC curve's summary, Area Under the Curve
(AUC), measures how successfully a classifier can distinguish between
classes. A higher AUC indicates better performance in distinguishing
between positive and negative classes.

C.  Gini Index. The Gini Index is calculated by subtracting the sum
of the squared probabilities of each class from one. It is simple to compute
and tends to favour larger segments. In simple terms, it measures the
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probability that a randomly selected feature is misclassified. The Gini index
is calculated as follows:

GI=1-Y",(P)> 4)

D. AGF. The AGF metric is an enhanced version of the F1 score
that can accurately assess the performance of our algorithm even with
imbalanced data. A high AGF value indicates that class imbalance had
minimal or no impact on the results. The AGF is calculated using the

following formula:
AGF = /inVFO_S X F,. (5)

5. Results and Discussion

5.1. WACYV Dataset. The graphical representation of the accuracy
comparison between the WACV dataset and existing methods is provided in
Table 1. In terms of Accuracy, FPN CSA Trans EH outperforms
FPN_CSA Trans by 3.28%, FPN_CSA by 4.98%, ResNet-18 [28] by
8.57%, DenseNet-121 [28] by 10.57%, MobileNetV1 [28] by 22.57%,
HOG+SVM [28] by 30.57%, and CNN [27] by 51.57%.

Table 1. Accuracy of different methods for the WACV dataset

WACV Accuracy(%)
CNNJ[27] 37
HOG+SVM[28] 58
MobileNetV1[28] 66
DenseNet-121[28] 78
ResNet-18[28] 80
FPN_CSA 83.59
FPN _CSA Trans 85.29
FPN_CSA_Trans_EH 88.57

Figure 9 illustrates the class-wise accuracy comparison between
ResNet-18 and FPN _CSA Trans EH (Table 2). In terms of accuracy,
FPN_CSA_Trans EH outperforms ResNet-18 by 6.1% for the disengaged
class, 9.58% for the partially engaged class, and 7.37% for the engaged
class.
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Table 2. Comparison of metrics for ResNet-18 and FPN_CSA Trans EH

Engaged l:::g:glllg Disengaged Classes
83.56% 76.83% 84.14% Accuracy
90.09% 84.3% 90.03% AUC
i ResNet18[28
80.18% 68.6% 80.07% | 9im (28]
Index
88.49% 83.31% 87.08% AGF
86.11% 81.73% 82.92% Accuracy
88.35% 86.73% 87.78% AUC
ini FPN_CSA
767% | 7346% | 75.57% | Om -
Index
88.36% 84% 85.13% AGF
87.53% 83.07% 87.8% Accuracy
89.24% 88.77% 90.28% AUC
Gini FPN_CSA_Trans
78.49% 77.55% 80.52%
Index
89.4% 85.63% 87.51% AGF
90.93% 86.41% 90.24% Accuracy
92.17% 91.25% 92.06% AUC
) ) Gini FPN_CSA_Trans_EH
84.34% 82.5% 84.13%
Index
92.29% 88.51% 89.61% AGF

95

90.93 90.24
90 7 86.41
85
= B ResNet1®
g
3 80 1 mFPN_CSA
[ I
75 17 M FPN_CSA_Trans
B FPN_CSA_Trans_EH
70
65
Engaged Partially Disengaged
engaged
Fig. 9. Class-wise accuracy comparison of ResNet-18 and FPN_CSA_EH Trans
on the WACYV dataset
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Class-wise ~ AUC  comparison between  ResNet-18 and
FPN CSA Trans EH. In terms of AUC, FPN _CSA Trans EH
outperforms ResNet-18 by 2.03% for the disengaged class, 6.95% for the
partially engaged class, and 2.08% for the engaged class.

Class-wise Gini Index comparison between ResNet-18 and
FPN CSA Trans EH. In terms of the Gini Index, FPN_CSA Trans EH
outperforms ResNet-18 by 4.06% for the disengaged class, 13.9% for the
partially engaged class, and 4.16% for the engaged class.

Class-wise ~ AGF  comparison  between  ResNet-18  and
FPN CSA Trans EH. In terms of AGF, FPN CSA Trans EH outperforms
ResNet-18 by 2.53% for the disengaged class, 5.2% for the partially
engaged class, and 3.8% for the engaged class.

5.2. DAIiSEE Dataset. A graphical comparison of accuracy between
the proposed method and existing methods on the DAISEE dataset
is provided in Table 3. In terms of accuracy, FPN CSA Trans EH
outperforms FPN_CSA Trans by 2.19%, FPN_CSA by 4.55%, ResNet-18
[28] by 4.38%, Neural Turing Machine [32] by 9.72%, DERN [31] by
11.02%, DFSTN [30] by 12.22%, C3D+LSTM [29] by 14.42%, 13D [27]
by 18.62%, and C3D [25] by 22.92%.

Table 3. Accuracy comparison of different methods on the DAISEE dataset

DAISEE Accuracy(%)

C3D [25] 48.1

13D [27] 524
C3D + LSTM [29] 56.6
DFSTN [30] 58.8
DERN [31] 60

Neural Turing Machine [32] 61.3
ResNet-18[28] 66.64
FPN_CSA 66.47
FPN CSA Trans 68.83
FPN_CSA_Trans_EH 71.02

Figure 10 illustrates the class-wise accuracy comparison between
ResNet-18 and FPN _CSA Trans EH (Table 4). For the boredom class,
ResNet-18 and FPN CSA Trans EH achieve similar accuracy.
FPN_CSA Trans EH outperforms ResNet-18 by 14.28% for the confusion
class, 3.51% for the frustration class, and 4.3% for the engagement class.
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Table 4. Comparison of metrics for ResNet-18 and FPN_CSA

Engagement | Frustration |Confusion | Boredom Classes
70.76% 61.45% 80.95% 75% Accuracy
70.07% 69.69% 88.09% 86.99% AUC
ResNet-18 [28
40.14% 3938% | 76.18% | 73.98% | Gini Index esNet-18 [28]
71.32% 66.31% 82.98% 63.59% AGF
71.86% 60.09% 82.14% 50% Accuracy
0, 0, 0, 0,
70.21% 69.29% 88.51% 87.19% .A'UC FPN CSA
40.42% 38.58% 77.02% 74.38% Gini Index -
71.83% 65.5% 82.98% 70.65% AGF
72.72% 63.37% 86.9% 75% Accuracy
0, 0, 0, 0,
71.67% 71.26% 91.33% 87.21% .A'UC FPN CSA Trans
43.34% 42.53% 82.66% 74.43% Gini Index - -
73.03% 68.03% 86.49% 71.86% AGF
75.06% 64.96% 95.23% 75% Accuracy
73.61% 72.83% 95.73% 87.24% AUC FPN_CSA Trans_
73.61% 45.67% 91.47% 74.49% Gini Index EH
75.1% 69.5% 90.84% 73.13% AGF
100 85.23

20

B0
70

&0 W Reshetls [28]

50 B FPN_CSA

Accuracy

a0 EFPMN_CSA_Trans

B FPN_CSA_Trans_EH
30
20

10

Engagement Frustration Confusion Boredom
Fig. 10. Class-wise accuracy comparison of ResNet-18 and FPN_CSA on the
DAISEE dataset

Class-wise =~ AUC  comparison  between  ResNet-18  and
FPN CSA Trans EH. In terms of AUC, FPN CSA Trans EH
outperforms ResNet-18 by 0.25% for the boredom class, 7.64% for the
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confusion class, 3.14% for the frustration class, and 3.54% for the
engagement class.

Class-wise Gini Index comparison between ResNet-18 and
FPN_CSA Trans EH. In terms of the Gini Index, FPN_CSA Trans EH
outperforms ResNet-18 by 0.51% for the boredom class, 15.29% for the
confusion class, 6.29% for the frustration class, and 2.29% for the
engagement class.

Class-wise ~ AGF  comparison  between  ResNet-18  and
FPN CSA Trans EH. In terms of AGF, FPN CSA Trans EH outperforms
ResNet-18 by 9.54% for the boredom class, 7.86% for the confusion class,
3.19% for the frustration class, and 3.78% for the engagement class.

The performance of FPN CSA Trans EH on the DAISEE and
WACYV datasets underscores the model's strengths and identifies areas for
improvement. While the model achieves exceptional performance on the
WACV dataset, the challenges with the DAIiSEE dataset offer valuable
insights for further improvement.

5. Conclusion and Future Work. This study introduces
FPN _CSA Trans EH, a novel framework for real-time identification of
student engagement in educational environments. The proposed approach
integrates Channel-Spatial Attention (CSA) with Transformer-enhanced
Feature Pyramid Networks (FPN), offering a robust method for automatically
detecting patterns of student engagement in visual data streams. By
combining attention mechanisms with hierarchical feature representation,
FPN_CSA Trans EH efficiently captures spatial and contextual information,
enabling accurate determination of student engagement levels. The
Transformer architecture enhances the model's ability to recognise long-range
dependencies and semantic relationships within input sequences. The
proposed framework outperforms baseline methods on the WACV dataset,
demonstrating its potential for practical applications in educational settings.
Future research will explore multiple avenues for enhancement and
expansion. Initial efforts will focus on improving the model's efficiency and
scalability to handle larger datasets and real-world implementation scenarios.
Additionally, incorporating multimodal data sources, such as text and audio,
could enhance the model's understanding of student interactions and
behaviour. Finally, field tests and longitudinal studies will be conducted to
evaluate the model's effectiveness in real educational settings and its impact
on teaching and learning outcomes. Our goal is to advance student
engagement detection techniques and contribute to the development of
inclusive and effective educational technologies. Future work could extend
this model by integrating audio modalities alongside visual features to predict
student engagement in online settings.
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A. HABUH, W. JKEIKOB, A. MAHJIABA
OIMNPEAEJEHUE BOBJIEYEHHOCTU YYAIIUXCS
Cc noMouibIO CETEN MUPAMUIAJIBHBIX ITPU3HAKOB,
YIYYIHIEHHBIX TPAHC®OPMEPOM, C KAHAJIBHO-
IIPOCTPAHCTBEHHBIM BHUMAHUEM

Hasun A., Joceiikod U., Manoasa A. OnpepejieHne BOBJIEYEHHOCTH Y4AUINXCH ¢ NOMOIIbIO
ceTeli NHMPaMHAAJIBHBIX NPH3HAKOB, YJYYIIEHHBIX TpaHcdoOpMepoM, € KaHAJIbHO-
NPOCTPAHCTBEHHBIM BHUMAHHEM.

Annotamusi. OHUM M3 Ba)XHEHIIMX acIIeKTOB COBPEMEHHBIX 00pa30BaTENbHBIX CHCTEM
SIBIICTCSI OIpPEIENCHIE BOBICUYEHHOCTH YYAIIUXCS, KOTOPOE BKIIOYACT BEHIABICHHE TOTO,
HACKOJIPKO BOBJICUEHBI, BHUMATENbHbl M AKTHBHBI ydallluecs Ha 3aHATUAX B Kiacce. Jlms
npernojaBareseil 9TOT MOAX0A UMEET Ba)KHOE 3HAUYEHHE, NOCKOJbKY OH JAeT NpEe/CTaBlIEHHE
00 ombITe O0Y4YEHHs yYalUXcsl, HO3BOLIL afalTHPOBATh IOAXOABl B OOy4YeHUH U yIydIIaTh
KauyecTBO 0OydeHus. TpaauIMOHHBIE METOJbl OLIEHKH BOBJIEYEHHOCTH Y4YaIlMXCS 4YacTo
SIBJISFOTCSL TPYJOEMKHUMH M CyOBCKTMBHBIMH. B 3TOM HCClienOBaHMHM Npeularacrcs HOBas
CHCTEMa ONpEeNeHUs] CTCHEHH BOBICUCHHOCTH YYAIIUXCA B PeadbHOM BPEMEHH, KOTOpas
HCTIONB3YeT CeTH NMupaMuIaibHbIX npusHakoB (FPN), ynydiieHHbIe ¢ TOMOIIBbIO apXUTEKTYPBI
Tpancdopmepa, ¢  KaHaJIbHO-POCTPAHCTBEHHbIM BHMMaHWeM (CSA), Ha3eiBacMas
BiusFPN_CSA. IIpennaraemplid OAX0/1 aBTOMAaTUYECKH aHATU3UPYET MOJEIHA BOBJICYEHHOCTH
y4Jamuxcs, Takue Kak 1103a Tena, 3pUTENbHbIH KOHTAKT U ITOJI0KEHHE TOJOBbI, U3 BH3yaJIbHBIX
IIOTOKOB ~ JAHHBIX IYT€M HHTETPalldd IIEPEOBBIX METOJOB ITyOOKOro 0oOydeHHs
U KOMIIBIOTEPHOTO ~ 3peHHs. 3a cueT UuHTerpanud  MexaHu3ma BHuManusi CSA
C BO3MOXKHOCTSIMH HEpapXU4ecKoro npejactapicHus npusHakoB FPN, mozmens MoXKeT TOYHO
OIIpeNeNsATh YPOBHHU BOBJICYCHHOCTH y4Jamuxcs, yJIaBIIUBas KOHTEKCTHYIO
U MIPOCTPAHCTBEHHYI0 HMH(OPMAIMI0 BO BXOAHBIX JaHHbIX. Kpome Toro, Omaromaps
BHEJIPEHHIO  apXUTEKTyphl  Tpancdopmepa, Mopaens  JOCTHraer Jy4iueid — oOrei
IIPOU3BOIUTEIBHOCTH 32 CcYeT OI(P(EKTHBHOrO ydera [JOJTOCPOYHBIX 3aBHCHMOCTEH
U CeMaHTHYECKUX CBsI3ell BO BXOIHBIX IOCIEIOBATENbHOCTAX. OIEHKAa C HCIOIb30BaHUEM
HaOopa nmaHHeix WACV mokasblBaeT, 4YTO HpemiaraeMas MOJeib HPEBOCXOAUT 0a30Bble
METOZBl C TOYKM 3peHHs TouHocTH. B uactHoctn, Bapuant FPN_CSA_Trans EH
npeanaraemoit monenu npeocxonut FPN_CSA na 3,28% u 4,98% coOTBETCTBEHHO. DTH
pe3yabTaThl MOAYEPKHBAIOT 3(dekTHBHOCTS CTpyKTYpsl BiusFPN CSA B ompenenenun
BOBJICUCHHOCTH YYalIUXCs B pPEaJbHOM BpPEMEHH, Ipeiaras IIpernoJaBaTellsiM LeHHBIH
HHCTPYMEHT s NOBBILICHHS KauecTBa OOYUCHHs, CO3JAHUS aKTHBHOH cpeibl OOydeHHs H,
B KOHEUHOM HTOTE, YIIy4IlIeHHUs Pe3yIbTaTOB YUalIUXCs.

KoaroueBble cioBa: cerp  nupamuganbHbix  npusHakoB  (FPN),  kaHambHO-
npocTpaHcTBeHHOE BHIMaHue (CSA), onpejieneHre BOBICUCHHOCTH YYaIUXCsl, TpaHCc(hopMep.
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