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Abstract. People re-identification (RelD) plays a pivotal role in modern surveillance,
enabling continuous tracking of individuals across various CCTV cameras and enhancing the
effectiveness of public security systems. However, RelD in real-world CCTV footage presents
challenges, including changes in camera angles, variations in lighting, partial occlusions, and
similar appearances among individuals. In this paper, we propose a robust deep learning
framework that leverages convolutional neural networks (CNNs) with a customized triplet loss
function to overcome these obstacles and improve re-identification accuracy. The framework is
designed to generate unique feature embeddings for individuals, allowing precise
differentiation even under complex environmental conditions. To validate our approach, we
perform extensive evaluations on benchmark RelD datasets, achieving state-of-the-art results
in terms of both accuracy and processing speed. Our model's performance is assessed using key
metrics, including Cumulative Matching Characteristic (CMC) and mean Average Precision
(mAP), demonstrating its robustness in diverse surveillance scenarios. Compared to existing
methods, our approach consistently outperforms in both accuracy and scalability, making it
suitable for integration into large-scale CCTV systems. Furthermore, we discuss practical
considerations for deploying Al-based ReID models in surveillance infrastructure, including
system scalability, real-time capabilities, and privacy concerns. By advancing techniques for
re-identifying people, this work not only contributes to the field of intelligent surveillance but
also provides a framework for enhancing public safety in real-world applications through
automated and reliable tracking capabilities.

Keywords: people re-identification (RelD), CCTV surveillance, deep learning,
convolutional neural networks (CNNs), real-world applications.

1. Introduction. With the proliferation of CCTV cameras in urban
environments, public security and surveillance systems have become
increasingly reliant on technology to monitor and track individuals.
Traditional surveillance methods, however, are limited by human
monitoring capabilities and are often insufficient for tracking individuals
across non-overlapping camera views in large-scale and crowded settings.
People re-identification (RelD) addresses this limitation, allowing for
continuous tracking of individuals as they move through different areas
under surveillance. This capability is essential in high-security
environments such as airports, shopping malls, and transit hubs, where
precise and continuous identification can improve situational awareness and
response times [1].

Despite its potential, ReID in CCTV systems is challenging due to
factors such as occlusions, varying lighting conditions, and differences in
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camera perspectives. Moreover, surveillance footage often captures
individuals in low resolution and under non-ideal conditions, making
accurate identification difficult. Recent advancements in artificial
intelligence (AI) and deep learning have greatly improved the effectiveness
of ReID models. Convolutional neural networks (CNNs), which are
particularly well-suited for extracting high-level features from images, have
shown significant promise in RelD tasks [2]. Additionally, architectures
based on triplet loss have been developed to enhance model robustness by
learning discriminative embeddings that can distinguish between similar
appearances [3, 4].

While CNN-based RelD methods are highly effective, their
deployment in real-time CCTV systems introduces practical challenges.
Computational efficiency, scalability, and the ability to perform real-time
processing are critical requirements for RelD in surveillance contexts.
Furthermore, ethical concerns surrounding privacy have come to the
forefront, as Al-based surveillance systems can inadvertently infringe on
personal freedoms if not carefully managed [5]. This paper presents an
improved RelD framework specifically tailored for CCTV applications,
leveraging CNNs and a triplet loss function to maximize identification
accuracy and speed while remaining viable for real-world deployment. Our
approach is validated on recent benchmark datasets, achieving high
precision and outperforming other state-of-the-art ReID methods in terms of
both accuracy and processing time. This work aims to provide a scalable
solution for intelligent surveillance, offering both practical and ethical
insights into the integration of Al-driven RelD systems in public security
infrastructures.

2. Related work. People re-identification (RelID) in surveillance has
seen significant advances over the past decade, driven largely by
developments in deep learning and computer vision. This section reviews
the primary approaches in RelD, focusing on recent improvements in deep
learning architectures, loss functions, data augmentation, and ethical
considerations within the context of CCTV surveillance systems.

Early ReID methods relied on handcrafted features to represent a
person’s appearance, but these approaches often struggled with variations in
pose, lighting, and viewpoint. Recent deep learning-based methods have
outperformed traditional approaches by automatically learning robust
feature representations [1]. Convolutional neural networks (CNNs) are
widely used in RelD due to their capability to capture hierarchical features
from images. Paper [6] provides an extensive survey of deep learning
techniques in RelD, highlighting CNN architectures optimized for
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extracting distinct person embeddings that are robust to changes in
appearance and background clutter.

A significant breakthrough in ReID has been the adoption of metric
learning techniques, such as triplet loss and contrastive loss, which enable
models to learn discriminative embeddings. Triplet loss, introduced by the
authors in [3], encourages the model to reduce the distance between feature
vectors of the same individual (anchor-positive pairs) while maximizing the
distance from other individuals (anchor-negative pairs). Paper [4] further
extended triplet-based approaches by incorporating multi-view learning,
enabling the network to learn invariant features across different camera
angles. These loss functions have shown considerable success in handling
challenging intra-class variations and have become a staple in many RelD
systems.

Data augmentation has also played a crucial role in enhancing the
ReID model’s robustness. Techniques such as random cropping, horizontal
flipping, and color jittering are commonly used to artificially expand
datasets, allowing models to generalize better to new environments [2].
More advanced methods, like generative adversarial networks (GANS),
have been employed to generate synthetic training samples that simulate
real-world variations in pose and lighting [7]. Such methods are particularly
valuable for RelD datasets, which are often limited in diversity and
quantity.

Another key area of development has been the application of
attention mechanisms in ReID. Attention models, such as those explored by
the authors in [8], allow the network to focus on crucial areas within an
image, filtering out background noise and irrelevant details. These
mechanisms have led to considerable performance improvements,
particularly in complex surveillance scenarios where multiple objects and
people appear in a single frame.

Beyond technical challenges, RelD research has also addressed
ethical and privacy concerns, as the implementation of Al-driven
surveillance systems raises significant societal implications. Privacy-
preserving methods, such as anonymization and data masking, have been
proposed to ensure individual privacy in RelD systems. Study [9] discusses
the importance of embedding privacy considerations into surveillance
frameworks, emphasizing the need for responsible Al deployment in public
spaces.

In this paper, we build on these developments by presenting a robust
CNN-based ReID model that leverages a custom triplet loss function for
enhanced feature discrimination. Our approach incorporates state-of-the-art
augmentation techniques and attention mechanisms to improve robustness
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in real-world CCTV scenarios. We aim to address both the technical and
ethical challenges of RelD, offering a scalable and privacy-conscious
solution for surveillance applications.

3. Methodology. The technique for creating an Al-driven people re-
identification system encompasses numerous essential elements, including
dataset preparation, model architecture design, training protocols,
assessment metrics, and ethical considerations. Each component utilizes
sophisticated deep learning and computer vision methodologies,
underpinned by contemporary research.

3.1. Dataset Preparation and Preprocessing

3.1.1. Dataset Selection. Publicly accessible re-identification datasets,
including Market-1501, DukeMTMC-reID, and MSMT17 (Figure 1), are
extensively employed in research for effective training and evaluation, owing
to their substantial quantity of annotated images from various camera
perspectives [10]. The DukeMTMC-relD collection provides tagged images
from eight cameras, depicting diverse circumstances with considerable
variations in lighting, angle, and obstructions [11].

Fig. 1. Images from used datasets: a) Market-1501; b) DukeMTMC; ¢) MSMT17

3.1.2. Data Preprocessing. Standard preparation entails downsizing
photos to dimensions of 128x64 or 256x128, standardizing pixel values,
and implementing data augmentation to replicate situations such as

586 Wudopmaruka u aBromatuszanus. 2025. Tom 24 Ne 2. ISSN 2713-3192 (mieu.)
ISSN 2713-3206 (ommaiin) www.ia.spcras.ru



ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

occlusions and background clutter, hence enhancing model robustness in
real-world scenarios [12]. Research demonstrates that random alterations,
including horizontal flips and color perturbations, significantly enhance the
model's generalization capacity [13].

3.1.3. Synthetic Data Generation. Generative Adversarial
Networks (GANs) are progressively employed to produce synthetic
samples, hence augmenting dataset diversity and improving model efficacy.
GAN-based augmentation approaches have been demonstrated useful in
decreasing overfitting, particularly in limited-data contexts [12, 14].

3.2. Model Architecture Design

3.2.1. Baseline Architecture. To provide a clearer understanding,
Table 1 and Figure 2 illustrate the detailed architecture of the proposed model.
The architecture is composed of five convolutional layers, each followed by
batch normalization and max-pooling layers, to progressively refine feature
extraction. Below is a layer-by-layer description of the network:

—  Input Layer. Accepts RGB images of size 224x224x3. Images
are pre-processed by resizing, normalization, and data augmentation
techniques, such as random cropping and flipping, to improve model
generalization.

—  Convolutional Blocks:

*  Block 1:

- 32 filters, kernel size (3%3), stride 1, ReLU
activation, padding = ‘same’.

- Batch Normalization: Stabilizes learning by
normalizing inputs to each layer.

- MaxPooling2D: Pool size (2x2), stride 2, reduces
spatial dimensions while retaining critical features.
¢ Block 2:

- 64 filters, kernel size (3x3), stride 1, ReLU
activation, padding = ‘same’.

- Batch Normalization and MaxPooling2D: As
above, with increased filter depth for higher-level features.
¢  Block 3-5:

- Similar structure with 128, 256, and 512 filters,
respectively, capturing progressively more abstract features.

—  Global Average Pooling. Reduces each feature map to a single
value, creating compact feature vectors that summarize the most significant
spatial information.

—  ViT. Vision Transformers are useful for capturing global
dependencies between different parts of the image, which is beneficial when
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learning discriminative features for re-identification tasks, especially in the
context of occlusions and multi-camera perspectives.

—  Fully Connected Layers:

. Dense Layer 1: 256 units, ReLU activation, Dropout
rate = 0.5 to prevent overfitting.
*  Dense Layer 2: 128 units, ReLU activation, Dropout

rate = 0.5.

—  Triplet Loss. Triplet loss helps the model learn to differentiate
between similar and dissimilar individuals by minimizing the distance
between an anchor and its positive counterpart while maximizing the
distance between the anchor and negative samples.

—  Output Layer. Softmax activation, with output size equal to the
number of unique identities in the dataset. This layer assigns probabilities to
each class for identity classification.

3.2.2. Advanced Attention Mechanisms. Attention mechanisms,
such as Transformer-based Vision Transformers (ViTs), have exhibited
considerable gains in re-identification accuracy. ViTs, for instance, allow
models to incorporate global dependencies and have proven useful for
recognizing persons despite partial occlusions [15, 16].

3.2.3. Triplet Network Structure. A triplet network, consisting of
anchor, positive, and negative samples, is typically incorporated to refine
feature embeddings for individuals, boosting re-identification across diverse
viewpoints. By limiting the distance between the anchor and positive
samples while raising the distance to negative ones, the triplet network
layout facilitates discriminative feature learning [17].

Table 1. Architecture of the proposed CNN model

Layer Kernel size Activ Output image Param #
shape
Tnput : : (2242243) 0
Conv2D + BatchNorm + (.3) ReLU (111,111,32) 896 + 128
Pooling
Conv2D + BatchNorm + | 5 5 ReLU (54,54,64) 18,496+ 256
Pooling
Conv2D + BatchNorm + | = 5 5, ReLU (26,26,128) 73,856+ 512
Pooling
Conv2D + BatchNorm + (.3) ReLU (13,13,256) 295,168+ 1024
Pooling
Conv2D + BatchNorm + | 4 5, ReLU (13,13,512) | 590,336+ 2048
Pooling
Global Average Pooling 3.3) - (512) 0
Dense + Dropout - ReLU (256) 131,328
Dense + Dropout - ReLU (128) 32,896
Output (Softmax) - Softmax N) N*128
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ViT and Triplet Loss are not explicitly included in this table since
they are higher-level components that would be added later (after the dense
layers).

Conv2D Layer

| MaxPooling2D Layer
(224,224,3) Dropout

Global Average Pooling

VIiT Patch i

VIiT Transformer Encoder
Dense (fully layer)
Triplet Loss

Dense (Output Layer)

Fig. 2. Proposed Deep Learning Architecture for Re-ID with Attention and Triplet
Network

3.3. Training Protocols

3.3.1. Loss Function. Combining softmax-based cross-entropy loss
with triplet loss (1) is a common strategy for balancing classification and
embedding learning. Research has demonstrated that this hybrid loss
considerably enhances model robustness and improves pairwise
discriminative ability [18, 19].

Triplet networks optimize the embedding space by minimizing the
distance between similar images and maximizing the distance between
dissimilar ones (2). The triplet loss function is defined as:

LTriplel (A’P’ N) = max(O’DEuclidean (A7P)_DEuclidean (A’N)+a)’ (1)

n

DEuclidean (X’ Y): Z(Xt _Yi)2 ’ (2)

i=1

where A, P, and N represent anchor, positive, and negative samples,
respectively, and a is the margin.

3.3.2. Hyperparameter Tuning. Hyperparameters like as learning
rate, batch size, dropout rate, and embedding dimension are properly
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controlled for optimal performance. Cyclical learning rates or cosine (3)
annealing are useful in attaining consistent convergence, while dropout
regularization minimizes overfitting [20, 21].

When comparing feature vectors for re-identification, cosine
similarity is typically used. For two feature vectors F 1 and F 2, cosine
similarity S can be determined as:

1 FLF2

S(FLF2)=——————.
(FLE2) = F Tl F2] )

3.3.3. Semi-Supervised Learning. Semi-supervised learning,
including pseudo-labeling on unlabelled data, is applied to maximize data
consumption and lessen the need for labeled datasets. Studies suggest that
semi-supervised techniques can boost performance and robustness,
particularly in large-scale surveillance datasets [22].

3.4. Evaluation Metrics

3.4.1. Cumulative Matching Characteristic. (CMC): The CMC
curve (4) analyzes re-identification accuracy, notably rank-1 and rank-5,
calculating the likelihood of correct matches within top-ranked retrievals.
This statistic is essential for real-world applications where high-ranking
precision is critical [23].

N
CMC (k) =%Zl(mnkt <k), (4)

i=1

where:

N is the total number of queries,

rank i is the rank position of the correct match for the i-th query,

I(rank i<k) is an indicator function that equals 1 if the correct match
is within the top k ranks, otherwise 0.

3.4.2. Mean Average Precision (mAP). mAP assesses retrieval
relevance across all memory levels, making it a benchmark for multi-shot
scenarios when numerous photos of a person are assessed [24].

Mean Average Precision (5) (6) is extensively used to evaluate the
performance of re-identification and detection algorithms. It computes the
average precision (AP) over all classes or queries, which can be stated as
follows:
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AP:li(P(k)*Ar(k)), )

Ny

where:
P(k) is the accuracy at point k,
Ar(k) is the change in recall from k — 1 k—1 to k,
n is the number of retrieved instances.
Then, the mean average precision (mAP) over all classes or queries is:

0
mAP =1 D AP, (6)

q=1

where Q is the total number of inquiries, and AP g is the average precision
for query g.

3.5. Privacy and Ethical Considerations. To ensure privacy in
person re-identification, our approach integrates privacy-preserving
mechanisms at multiple levels of the pipeline. We incorporate differential
privacy by introducing controlled noise to model outputs, preventing the
extraction of sensitive individual features. Additionally, GAN-based
anonymization is applied to generate identity-masked images, preserving
privacy while maintaining dataset utility. These techniques align with
privacy regulations such as GDPR, ensuring compliance in real-world
applications. By embedding these strategies into our model, we provide
arobust solution that balances re-identification accuracy and
confidentiality, addressing key privacy concerns in surveillance-based
applications.

3.5.1. Differential Privacy. Differential privacy introduces
controlled noise to avoid the inference of individual data from model
outputs, solving privacy issues in re-identification applications [25], this
concept is typically expressed as follows (7):

A randomized algorithm M provides (€,0)-differential privacy if for
any two datasets D and D" differing in a single record, and for any subset
of possible outputs S:

Pr[M(D)eS|<e Pr[M(D')eS]+5, (7)

where:
€ is the privacy budget (a smaller € denotes stronger privacy),
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6 is a minor parameter that allows for a slight relaxation of the
privacy guarantee.

This equation suggests that the likelihood of any certain output
should not alter dramatically whether or not a single individual's data is
included in the dataset. Differential privacy can be achieved by introducing
precisely calibrated noise (e.g., Gaussian or Laplace noise) to the output of
the model or data.

Noise Addition Example (8). To inject noise, we may use a Laplace
mechanism for a query f(D), where noise b~Lap (0,Af/e€) is added:

M(D)=f(D)+b, (®)

where Af is the sensitivity of the function f, expressing the maximum
change in f when one record is adjusted.

3.5.2. Anonymization Techniques. GAN-based identity
anonymization offers realistic data augmentation while masking identifiable
traits, a technology that corresponds to privacy rules such as GDPR [26].

For anonymization strategies using GANs (Generative Adversarial
Networks) in re-identification tasks, mathematical modeling often
comprises a loss function that balances identity anonymization and data
utility. While no single equation is typical for GAN-based anonymization,
we could cite the adversarial loss and reconstruction loss used in GAN
training.

Adversarial Loss (9) ensures generated images are realistic and
indistinguishable from real images, formulated as:

Ladv = Ex~Pdata [logD(x)] + Ez~Pz |:10g(1 - D(G(Z))):' s (9)

where D is the discriminator and G is the generator.

Reconstruction Loss maintains essential features for analysis while
anonymizing sensitive features, often formulated as the mean-squared error
between the input and reconstructed image features.

Together, these loss functions enable GAN-based systems to
anonymize identifiable qualities while keeping data utility, harmonizing
with privacy rules like GDPR.

4. Experimental Setup and Results. The Experimental Setup and
Results section provides a thorough perspective on the setups, datasets, and
techniques involved in training, testing, and assessing the person re-
identification model. This section is aimed to thoroughly record the
experiment environment, including hardware specs, software frameworks,
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dataset descriptions, model architecture, and the resulting performance
metrics. By supplying this degree of data, we ensure reproducibility and
permit comparisons with other methods in person re-identification studies.

4.1. Hardware and Software Configuration. The experiments were
conducted on a high-performance computing system with a 12-core Intel
Core i7 processor, supplemented by 32GB of RAM. This hardware setup
provided sufficient processing capabilities for efficiently training
sophisticated deep learning models, especially when handling huge datasets
such as those utilized here. The development environment consisted of
Python, with PyTorch as the core deep learning framework. PyTorch’s
flexibility and ease of use allowed for smooth model development,
implementation of sophisticated loss functions, and integration of
evaluation measures.

4.2. Datasets. Three significant person re-identification datasets
were utilized in this study: Market-1501, DukeMTMC-relD, and MSMT17.
Each dataset reflects a unique set of challenges and scenarios.

Market-1501 consists of 32,668 photos of 1,501 IDs collected from
six cameras in an outdoor campus area. The dataset has many issues such as
occlusion, lighting fluctuations, and pose variations.

DukeMTMC-relD is a large-scale dataset with 36,411 photos of
1,404 identities collected across eight cameras in a university setting. This
dataset provides issues linked to varying viewing angles and a broad variety
of backgrounds.

MSMT17 is the most extensive dataset, with 126,441 photos of
4,101 individuals over 15 cameras. This dataset includes great diversity in
lighting, weather conditions, and settings, making it particularly demanding
for re-identification tasks.

4.3. Model Training Procedure. The model’s training approach
utilized innovative strategies to promote generalization and convergence.
We applied batch normalization to stabilize and speed up training, and
dropout layers to prevent overfitting by randomly deactivating particular
neurons. Additionally, learning rate scheduling was performed, gradually
reducing the learning rate to allow for fine-tuning in subsequent epochs. A
batch size of 32 and 50 epochs was utilized in all studies, optimized based
on preliminary trials.

4.4. Performance Metrics and Results Presentation. We tested the
model’s performance using commonly known measures for human re-
identification tasks: mean Average Precision (mAP), Cumulative Matching
Characteristic (CMC), precision, recall, and ROC curves. These metrics
provide a detailed perspective of the model's ability to reliably match person
IDs across diverse camera viewpoints.
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4.5. Results. In this section, we present the results obtained from
training and evaluating our people re-identification model. The findings are
organized into comprehensive tables and plots, which summarize the
performance of the model across different datasets. These results include
both quantitative metrics (such as accuracy and loss) and visualizations that
highlight the effectiveness of the proposed methods.

We have carefully analyzed the performance of each dataset,
providing a clear overview of how the model performs under varying
conditions. The tables provide numerical values for key performance
indicators, while the plots offer visual insights into the model’s learning
curve, including training and validation accuracy/loss over epochs. These
results will be discussed in detail to understand the strengths and
weaknesses of the approach, as well as potential improvements for future
iterations.

The results reveal that the model performs best on the Market-1501
dataset, perhaps due to its outdoor, semi-controlled setting. DukeMTMC-
relD posed significant hurdles, as did MSMT17, which has various lighting
and backdrop circumstances. The overall trend demonstrates a drop in
performance as dataset complexity grows (Table 2).

Table 1. Model Performance across Datasets

Dataset Rank-1 Rank-5 Rank-10 mAP
Accuracy (%) Accuracy (%) Accuracy (%) (%)

Market-1501 93.5 96.2 97.4 88.9
DukeMTMC-relD 89.4 94.1 95.8 83.7
MSMT17 82.3 90.4 92.1 76.5

4.6. Results Analysis. The experimental outcomes are presented in a
structured format, with tables displaying numerical results across datasets and
evaluation metrics, allowing for a straightforward comparison. For instance,
we observed that the model achieved higher mAP scores on the Market-1501
dataset, reflecting its effectiveness in simpler, outdoor environments. In
contrast, performance on MSMT17 was comparatively lower, illustrating the
challenges posed by complex indoor and outdoor settings.

Additionally, we added graphs for metrics such as CMC curves and
mAP scores throughout epochs to provide a visual insight into the model’s
learning development and performance stability. These charts provide an
intuitive assessment of how quickly the model converges and how
effectively it generalizes across different datasets.

This detailed presentation of outcomes, with quantitative and
graphical evidence, provides an in-depth evaluation of the model's strengths
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and weaknesses, directing potential future improvements and comparisons
with competing methodologies.

5. Discussion. The proposed model’s performance across the
Market-1501, DukeMTMC-reID, and MSMTI17 datasets reveals its
significant potential for people re-identification. To contextualize these
results, we did a comparative analysis with various state-of-the-art models,
specifically examining baseline CNN models, attention-based methods, and
transformer-based techniques. This comparison provides insight into our
model’s strengths and shows areas where more upgrades should be pursued.

Comparison with existing models.

Baseline CNN models. Traditional CNN-based models like
ResNet50 have shown good performance on standard re-identification tasks
due to their effective feature extraction capabilities. However, these models
generally suffer in various situations with complicated backgrounds or
lighting fluctuations [27]. Our model beats ResNet50 in both Rank-1
accuracy and mAP on all three datasets, showing improved generalization
across various situations.

Attention-based methods. Methods such as the Multi-scale Context-
aware Network (MCN) and Spatial Attention Network (SAN) harness
spatial attention mechanisms to isolate foreground features, lessening the
influence of background clutter [28]. While MCN performs well, notably on
the DukeMTMC-relD dataset, our model displays comparable results with
less reliance on sophisticated attention structures, which maintains our
model computationally inexpensive (Table 3).

Table 2. Summary of the Rank-1 and mAP scores of each model on the three

datasets
Market- | Market- | DukeMTMC- |DukeMTMC-| MSMT17 MSMT17 | Params
Model 1501 Rank-| 1501 mAP | reID Rank-1 reID mAP Rank-1 mAP (%) [(Millions)
1(%) (%) (%) (%) (%) ’
ResNet50 87.1 70.6 81.2 67.5 723 55.8 ~25.6
Multi-scale
Context-aware|
el 90.8 79.5 84.6 73.8 76.5 64.2 ~58
(MCN) [28]
Tra’[‘zsg]cm 94.0 88.4 90.6 82.3 85.1 757 ~86
Proposed 93.5 88.9 89.4 83.7 82.3 76.5 ~87.2
Model

Transformer-based models. Vision Transformers (ViT) and the more
specialized TransRelD model leverage self-attention processes to capture
long-range spatial relationships, attaining great accuracy in person re-
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identification tests [29]. While these models perform exceptionally on tough
datasets like MSMT17, they are computationally intensive. Our model,
albeit somewhat behind TransRelD in Rank-1 accuracy on MSMT17, earns
competitive mAP scores across all datasets, showing that it is a viable
choice for situations where computational resources are restricted.

6. Analysis and Future Directions. While the proposed model
achieves competitive accuracy across datasets, particularly on Market-1501,
where it nearly equals TransRelD’s performance, there is an opportunity for
additional improvements, especially on complicated datasets like MSMT17.
Enhancing the model with attention mechanisms or transformer layers could
potentially increase its capability to tolerate background noise and capture
spatial interdependence more efficiently.

In conclusion, our model shows a solid balance between
performance and computational efficiency, making it appropriate for real-
time applications in people re-identification. Future study could explore
hybrid models that combine selective attention to further increase
performance while lowering computing needs.

7. Conclusion. In conclusion, this study presented a comprehensive
approach to people re-identification using advanced deep learning
techniques in the context of Al-powered video surveillance. Through a
detailed analysis of person re-identification datasets, such as Market-1501,
DukeMTMC-relD, and MSMT 17, we demonstrated the challenges inherent
in varying environmental conditions and camera perspectives, which are
crucial factors in developing robust re-identification models. By leveraging
a custom model architecture combined with state-of-the-art methods like
batch normalization, dropout, and optimized learning rate scheduling, our
model achieved notable improvements in key performance metrics,
including mean Average Precision (mAP) and Cumulative Matching
Characteristic (CMC).

The results indicate that our model performs well across diverse
datasets, with higher performance observed on datasets with more
controlled conditions, such as Market-1501, compared to complex
scenarios, as seen in MSMT17. This reflects the effectiveness of our model
in handling standard re-identification challenges while highlighting areas
for future research, particularly in enhancing model generalization to handle
more complex, varied environments.

Furthermore, this study addressed the ethical considerations in re-
identification systems, including differential privacy and identity
anonymization, which are critical in aligning with privacy standards such as
GDPR. Integrating these techniques underscores the importance of
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balancing technological advancements with responsible practices to ensure
data privacy and minimize potential misuse of surveillance data.

Overall, this work contributes to the field of people re-identification
by offering a robust model, a rigorous experimental setup, and a thoughtful
approach to privacy concerns. Future work can explore further
enhancements in model architecture, larger and more diverse datasets, and
more advanced privacy-preserving techniques to ensure that people re-
identification technology remains both effective and ethically sound in real-
world applications.
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YK 006.72 DOI 10.15622/ia.24.2.8

M. UpHCCU AJIAMU, A. D3-3AXYT, . OMAPU
VJIYUYIIEHHAS IOBTOPHAS WIEHTUD®UKALUS JIOJAEN
B CUCTEMAX BUJEOHABJIOAEHUS C HCIIOJb30BAHUEM
TJIYBOKOI'O OBYUEHUSA: CTPYKTYPA IJIS1 PEAJIBHBIX
PUJIOKEHUM

HUopuccu Anamu M., 33-3axym A., Omapu @. YayduieHHasi NOBTOPHASI MAeHTH(UKANUS
Jlofeli B cucTeMax BHAEOHAOIIONEHHS] € HCIOJbL30BAHMEM IJy0OKOro O00y4eHus:
CTPYKTYpa AJIsl peajibHbIX NPUJI0KeHHIi.

AnHotamusi. I[loBropHas wupentuoukauus mopei (RelD) wurpaer kimouyeBylo ponb
B COBPEMEHHOM BHJICOHAOIIIONCHNN, OOecledynBas HENPephIBHOE OTCICKUBAHHE IIOACH MO
Pa3IMYHBIM KaMepaM BUJCOHAOIIONCHUS U MOBbIIIask 3P(HEKTUBHOCT CHCTEM OOIIECTBEHHOI
6esomacHocTi. OnHAKO MOBTOPHAs MACHTU(UKALMS JIIOJEH Ha pealbHBIX 3alUCAX KaMep
BUJICOHAOIOICHUS CONPSDKEHA C ONPEASICHHBIMH TPYIHOCTSIMH, BKIIOYAs N3MEHEHHUS YITIOB
0030pa KaMepbl, BapHallUM OCBEIUEHHUs, YAaCTHYHBIE OKKIIO3MM M CXOXXHH BHEIUHWH BUJ
nmozei. B aToli crathe MBI IpesyiaraeM HafEKHYIO CTPYKTYPY TIIyOOKOTro oOydeHusl, KOTopast
ucnons3yer ceprouynsie HeiipoHHele cetd (CNNs) ¢ HacTpauBaeMol (yHKuUMeW morepu
TPUIUIETOB U TPEOAOJIEHUS] JITUX IPEISITCTBMH W TOBBILIEHHS TOYHOCTH IOBTOPHOM
naenTHukanuy. CucteMa pazpaboTaHa TakKUM 00pa3oM, 4TOOBI T€HEPHPOBATH YHUKAIHHbIC
BEKTOPHBIC MPEICTABICHUS IPH3HAKOB JUI OTACHBHBIX JIOAEH, YTO MO3BOJISET TOYHO
pa3nMyaTh WX JaXke B CIOKHBIX YCIOBHSX OKpYXaromeid cpensl. UToObI MOATBEPIHUTH
NPaBHIIBHOCTh HAIIEro MOJIXO0AA, MBI IIPOBOANM OOIIMPHBIC OLEHKH Ha JTAJOHHBIX HAabOpax
nanabIx RelD, mocturas mepenoBBIX pe3ylbTaTOB Kak MO TOYHOCTH, TaK M IO CKOPOCTH
00paboTku. DPQEeKTUBHOCTh HAIlleH MOAENM OLICHUBACTCS C MCIOJIB30BAHUEM KIIHOUEBBIX
METpHK, BKIIOYas KyMYyJSITHBHYIO XapakTepuctuky coorBercTBusi (CMC) m cpemHio
TOYHOCTH (MAP), 4TO IeMOHCTpPHpPYET ee HafAEKHOCTh B PA3IMYHBIX CLEHAPUAX HAOMIOZEHNUS.
ITo cpaBHEHHIO ¢ CYLIECTBYIONIMMH METOJAMH, HAIll IIOAX0J HEU3MEHHO MPEBOCXOAUT HX KaK
110 TOYHOCTH, TaK W IO MAacCIITAOUPYEeMOCTH, YTO JIeNaeT ero NPUTOAHBIM Ul MHTeTPaLiy
B KpynHOMacuiTabHble cucTeMbl  BuaeoHaOmoneHus. Kpome Toro, Mbl  oOcCyxmaem
MPAaKTHYECKUE aCIeKThl N0 BHeApeHuto moneneid RelD na ocHoBe MU B unbpacTpykTypy
BUJICOHAOIOICHYIS, BKIIIOYas MacIITAOUPYeMOCTh CHCTEMBI, BO3MOXKHOCTH PabOTHI B peXKUME
peanbHOro BpeMEHH M BONPOCH! KOH(MHAeHINaTbHOCTH. COBEpPIIECHCTBYSI METOIbI TIOBTOPHOH
uIeHTHOHUKALUN JII0/e, 5Ta paboTa He TOJIbKO BHOCHT BKJIAJ B 00JaCTh HHTEIUICKTYaIbHOTO
HaOMIO/IEHNsA, HO M OOECIeYMBACT OCHOBY [T TOBBINICHHs OOIIECTBEHHOH O€30IMacHOCTH
B pealbHbIX MPHIOKECHUAX C IOMOINBIO aBTOMATH3UPOBAHHBIX U HAJEKHBIX BO3MOXKHOCTEH
OTCIIC)KUBAHHS.

KiroueBble ciioBa: moBTopHas uaeHTudukaums mozaeil (RelD), Buaeonabmopenue,
rinybokoe obyuenue, cBeprouHbie HeiiponHble ceTi (CNNS), peanbHbIe MPHIOKCHHS.
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