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Abstract. Person re-identification (Re-ID) is crucial in intelligent surveillance, requiring
precise identification of individuals across multiple camera viewpoints. Traditional distance-
based methods, such as Euclidean and Cosine, struggle with challenges like posture variations
and occlusions, limiting their effectiveness. This study explores deep metric learning models,
specifically Siamese and Triplet networks, to improve Re-ID performance. We evaluate these
methods on the Market-1501 dataset using Cumulative Matching Characteristic (CMC) and
Cumulative Distribution Function (CDF) curves. Our findings reveal that the Triplet network
outperforms traditional approaches at higher ranks, achieving Rank-5 accuracy of 78.6% and
Rank-10 accuracy of 93%, while its Rank-1 accuracy remains low (0.06%). In contrast,
Euclidean and Cosine distances show poor Rank-1 performance (2% and 0.30%, respectively),
highlighting their limitations. Additionally, incorporating VGG16 enhances feature extraction,
improving recognition by capturing fine-grained spatial details. This comparative study
highlights the effectiveness of deep metric learning and underscores its potential for real-world
surveillance applications. However, the computational demands of deep networks present
challenges for real-time deployment. Future research should focus on optimizing model
efficiency, reducing computational costs, and extending evaluations to real-time scenarios.

Keywords: CMC/CDF metrics, convolutional neural networks (CNNs), deep learning,
person re-identification, VGG16, video surveillance systems.

1. Introduction. Video surveillance systems progress through four
fundamental stages: Detection, Tracking, Profile Analysis, and Re-
Identification (Re-ID). Detection acts as the base by recognizing humans or
things inside a monitored region, enabling additional analysis and
tracking [1]. Tracking tracks subjects across scenes or cameras, maintaining
continuity. Profile Analysis captures crucial aspects such as looks and
behavior for identification. Re-ID links humans across sites, which is
important for seamless surveillance. Together, these strategies increase
accuracy, especially in busy settings and complicated security setups [2].

Person re-identification (re-ID) is a crucial problem in video
surveillance systems, concentrating on identifying individuals across
different camera viewpoints. The ability to precisely re-identify someone
has important ramifications for security, forensic investigations, and
monitoring applications. Despite tremendous development in this sector,
achieving high accuracy remains a problem due to changes in appearance,
stance, lighting conditions, and occlusions [3].

Early person re-identification algorithms generally relied on
handcrafted feature representations and simple distance metrics such as
Euclidean distance, cosine similarity, and Mahalanobis distance. The
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Euclidean distance, one of the simplest metrics, calculates the straight-line
distance between feature vectors, making it computationally efficient but
ineffectual for complicated variations in surveillance scenarios [4].
Similarly, cosine similarity is widely used for high-dimensional feature
spaces, measuring the angular difference between feature vectors rather than
absolute distances. However, it struggles to provide correct matches at
Rank-1 and exhibits reduced accuracy at Rank-5 [5]. The Mahalanobis
distance contains covariance information to account for correlations
between features, exhibiting greater performance in some scenarios, such as
fluctuating lighting and background clutter [6, 7]. However, these methods
alone often fail to generalize well across different datasets and
environmental conditions.

To circumvent these constraints, deep learning algorithms,
particularly Convolutional Neural Networks (CNNs), have been widely
adopted due to their capacity to learn hierarchical and discriminative feature
representations directly from images [5, 8]. Prominent CNN architectures,
including VGG16, ResNet, and Inception, have significantly boosted person
re-identification performance. Specifically, VGG16 has exhibited
exceptional results in image classification, transfer learning, and capturing
detailed spatial characteristics beneficial for re-identification [6, 9, 10, 11].
However, its deep structure demands substantial computational resources,
prompting the investigation of more efficient architectures such as ResNet
and Inception [7, 12]. Additionally, deep learning advancements have
fostered the development of metric learning frameworks like Siamese and
Triplet networks, which have proven effective in distinguishing individuals
with similar appearances across different camera perspectives [8].

Beyond standard CNNs, metric learning-based techniques such as
Siamese networks and Triplet networks have significantly boosted re-
identification performance. Siamese networks leverage contrastive loss to
learn a feature space where related identities are clustered together while
distinct identities are pushed apart [13]. While they outperform traditional
distance metrics at higher ranks (e.g., Rank-5), they still struggle at Rank-1
[14]. Triplet networks improve this principle by including anchor-positive-
negative triplets, guaranteeing that positive samples are closer to the anchor
than negative samples. This strategy considerably improves accuracy at
Rank-5 and Rank-10 but involves complex training procedures and large-
scale labeled data [15].

For evaluation, the Market-1501 dataset has become a typical
benchmark for person re-identification, presenting realistic surveillance
scenarios with problems such as illumination fluctuations, occlusions, and
backdrop complexity [15, 16]. Performance assessment often depends on
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metrics such as the Cumulative Matching Characteristic (CMC) and the
Cumulative Distribution Function (CDF), which provide rank-based and
distributional insights into algorithm efficacy [17].

Despite breakthroughs in re-identification, problems exist, including
domain adaptability, occlusions, computing limits, and privacy issues [18].
This study rigorously assesses various re-identification techniques —
Euclidean, Cosine, Mahalanobis, Siamese, and Triplet networks — across
standard datasets and rank-based criteria. By assessing their strengths and
limits in diverse surveillance contexts, we propose modifications to deep
learning-based techniques to enhance accuracy while maintaining
efficiency.

In recent years, state-of-the-art person re-identification models
particularly those based on Vision Transformers and hybrid CNN-
ViT [15, 22] architectures have achieved over 95% Rank-1 accuracy on the
Market-1501 benchmark. Despite these advancements, many of these
models demand substantial computational resources, limiting their
applicability in lightweight or real-time systems. In contrast, our study
investigates a Triplet-based model leveraging VGGI16, which, while
achieving modest Rank-1 accuracy, demonstrates competitive performance
at higher ranks (Rank-5 and Rank-10), making it a candidate for scalable
and efficient re-identification pipelines (Table 1).

Table 1. Comparative Performance of Resent Person Re-ID Models on Market-1501

Model Dataset | Rank-1 | Rank-5 | Rank-10 Notes
Our Triplet Net | Market- o o o VGG16
2025 1501 0.06% 78.6% 93% based
Squeeze-Net + | Market- 0 0 o Hybred
DAE 2021 [20] 1501 86.2% 92.4% 96.1% CNN
TransRelD Market- o .
2003 [21] 1501 95.2% - - ViT-based
CNN-ViT-Loss | Market- N N o ViT and
2025 [15] 1501 93.5% 96.2% 07.4% Loss Based
UntransRelD Market- 95.7 ) ) Transformer
2024 [22] 1501 ) based

Our study demonstrates that Triplet networks significantly
outperform traditional distance metrics, achieving Rank-10 accuracy of
93%, thus contributing valuable insights into the practical deployment of
intelligent surveillance systems.

The findings contribute to the continuing discourse on intelligent
video surveillance, suggesting effective ways for robust and scalable human
re-identification.
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2. Method

2.1. Data Source. The evaluation in this work leverages the widely
famous Market-1501 dataset as the core dataset for individual re-
identification. Market-1501 is a benchmark dataset specifically created for
person re-identification tasks in video surveillance systems. It consists of
high-resolution photos acquired from six cameras in an outside location,
simulating real-world problems such as differences in lighting conditions,
occlusions, and varied views [15, 16].

Each individual in the collection appears in several photographs
under varied situations, offering a diversified and demanding re-
identification job. The dataset is separated into training and testing sets,
with ground truth annotations provided, including identification labels and
bounding boxes. These labels assist performance evaluation using common
metrics such as Cumulative Matching Characteristics (CMC) and
Cumulative Distribution Function (CDF).

2.2. Preprocessing and Feature Extraction. Before training our
deep learning models, rigorous preprocessing steps are applied to ensure
consistency and maximize model performance. Initially, all raw input
images are resized uniformly to dimensions of 224x224 pixels, compatible
with the input requirements of deep CNN architectures. To ensure effective
training, pixel values are then scaled through normalization to fall within
the range [0, 1], significantly enhancing the convergence stability and
effectiveness of the training process. Moreover, we apply various data
augmentation strategies — including random cropping, horizontal flipping,
and brightness adjustments — to simulate real-world variations and further
improve the robustness and generalization capabilities of our models.

For feature extraction, we leverage the well-established VGG16
architecture, pre-trained on the extensive ImageNet dataset [23]. This
choice is justified by VGG16's demonstrated capability to capture rich
hierarchical  representations, effectively encoding  discriminative
characteristics such as clothing patterns, textures, and body shapes, crucial
for distinguishing individuals. Specifically, we extract high-level feature
vectors from the fully connected (FC) layer preceding the final softmax
layer, thereby obtaining compact 128-dimensional embeddings suitable for
distance-based metric learning.

These extracted embeddings are then systematically integrated into
our deep learning-based re-identification frameworks, specifically Siamese
and Triplet Networks. The Siamese network uses these embeddings to
construct query-gallery image pairs, optimizing similarity predictions via
binary cross-entropy loss, while the Triplet network processes image triplets
(anchor-positive-negative), optimizing relative distances through the triplet

Informatics and Automation. 2025. Vol. 24 No. 3. ISSN 2713-3192 (print) 985
ISSN 2713-3206 (online) www.ia.spcras.ru



MATEMATHUYECKOE MOJEJIMPOBAHME U ITPUKJIATHA S MATEMATHKA

loss. Both networks utilize the Adam optimizer with a learning rate of
0.0001, batch normalization, dropout regularization, and a batch size of 16.
The learned representations are ultimately evaluated using Euclidean
distance metrics, with results visualized through Cumulative Matching
Characteristic (CMC) curves and Cumulative Distribution Function (CDF)
plots.

2.3. Distance Metrics. In the realm of people re-identification, the
choice of distance metric is pivotal for accurately quantifying the similarity
between feature vectors. We evaluate several widely used metrics in this
context:

- Euclidean distance between two feature vectors, X and Y, is
computed as follows:

Deuciidgean (X, Y) = (H

- Cosine distance measures the cosine of the angle 6 between
two feature vectors, X and Y, in a high-dimensional space:

Yis XY
VI X2, Y

Dcosine Xx,Y) = 2

—  Mahalanobis distance between feature vectors X and Y is
defined as:

DMahalanobis(X' Y) = \/(X - Y)T- C_l- (X - Y), (3)
where C is the covariance matrix.
- Siamese networks utilize a neural network architecture to learn

a similarity metric. The loss function for Siamese networks can be
expressed as:
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1 1
LSiamese(X' Y' S) = 5(1 - S)-DEuclidean(X' Y)z + ES .max(O,m -

“)
DEuclidean (X: Y)Z 5

where S is the binary similarity label, and m is the margin.

- Triplet networks optimize the embedding space by
minimizing the distance between similar images and maximizing the
distance between dissimilar ones. The triplet loss function is defined as:

LTriplet (A' P' N) = max(O, DEuclidean (A' P) - DEuclidean (A: N) +
a)’

6))

where A, P, and N represent anchor, positive, and negative samples,
respectively, and a is the margin.

These distance metrics serve as fundamental components in our
evaluation, contributing to the robustness and effectiveness of our
intelligent video surveillance system.

2.4.Deep Learning Models and Training. We integrate the
VGG16 architecture to extract high-level features from person images. The
deep learning model enhances the system's ability to capture intricate
patterns and representations, contributing to improved re-identification
accuracy [24].

We train deep learning-based person re-identification models using
both Siamese and Triplet Networks, each optimizing feature similarity
differently:

The Siamese Network is designed to compare pairs of images by
concatenating the feature vectors of a query and gallery image [25]. This
concatenated representation is passed through fully connected layers with
512 and 256 neurons, followed by a sigmoid activation function to predict
similarity. The network is trained using binary cross-entropy loss and
optimized with Adam at a learning rate of 0.0001. To improve
generalization and prevent overfitting, batch normalization and dropout are
applied. Training is conducted with a batch size of 16, and a data generator
is employed to efficiently construct query-gallery image pairs. Performance
is measured by Euclidean distance calculations and Cumulative Matching
Characteristic (CMC) curves.
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The Triplet Network expands the learning paradigm by processing
triplets consisting of an anchor, a positive, and a negative sample [26]. The
model is trained using triplet loss, guaranteeing that the distance between an
anchor and a positive sample (same identity) is minimized, while the
distance between an anchor and a negative sample (different identity) is
maximized. The architecture consists of fully connected layers with 512 and
256 neurons, followed by a sigmoid activation function. Similar to the
Siamese Network, Adam optimizer is used, with a batch size of 16. The
learned embeddings are evaluated using pairwise Euclidean distance
metrics, and performance is visualized through CMC curves and

Cumulative Distribution Function (CDF) plots.

VGG16 Feature Extractor (Shared)

Dense 512

Dense 256
Output

Fig. 1. Deep Learning Model based on Siamese Network

Anchor Positive Negative
Input Input Input

VGG16 Feature Extractor (Shared)

Dense 512
Dense 256
Triplet Loss

Fig. 2. Deep Learning Model based on Triplet Network
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2.5. Evaluation Metrics. We assess the performance using
Cumulative Matching Characteristics (CMC) and Cumulative Distribution
Function (CDF) metrics. CMC illustrates the probability of correct
identification within the top-k ranked matches, while CDF provides a
cumulative distribution of matching scores [17, 27].

- Cumulative Matching Characteristics (CMC): Measures the
probability of correctly identifying a person within the top-k matches, the
CMC curve is formulated as follows:

NumcCIRs<k
TNQ

CMC(k) = (6)

where: NumCIR — number of correct identifications at rank, 7TNQ — total
number of queries, k& — the rank of the match.

- Cumulative Distribution Function (CDF): Provides a
statistical overview of matching score distributions, the CDF curve is
formulated as follows:

NumQMS<s

CDF(s) = =2

(7

In this equation: NumQMS — number of queries with matching scores,
TNQ — total NumQMS, s — the matching score threshold.

- Combined Analysis: By jointly assessing the CMC and CDF
metrics, our evaluation provides a full overview of the proposed intelligent
video surveillance system. The CMC curve offers insights into the system's
ranking performance, while the CDF curve provides information on the
distribution of matching scores. Together, these measures contribute to a
thorough assessment of the system's capacity to accurately re-identify
humans in real-world scenarios, incorporating both top-ranked matches and
overall score distributions.

Our methodology directly addresses the difficulties indicated in the
Introduction by leveraging the Market-1501 dataset to examine real-world
performance. We utilize deep learning architectures, including VGG16 with
triplet loss, and evaluate several distance measures to increase re-
identification accuracy. The combination of CMC and CDF ensures a
thorough performance evaluation, bridging existing information gaps and
confirming our technique in the Results section.

3. Results and Discussion. In this chapter, we report the outcomes
of our research on people re-identification approaches applying deep
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learning algorithms. We investigate these data comprehensively, providing
insights into the strengths and limitations of each technique. The results are
presented utilizing figures, graphs, and tables for clarity and simplicity of
understanding.

3.1. Key Findings and Interpretation. Table 2 summarizes the
Rank-1, Rank-5, and Rank-10 accuracy rates for each technique. Figures 3
to 12 provide visual representations of the results through CMC and CDF
curves.

Table 2. Rank-1, Rank-5, and Rank-10 accuracy rates for each technique

Technique Rank-1 Rank-5 Rank-10
Euclidean 2% 5.5% 12.5%
Cosine 0.30% 4.73% 10.21%
Mabhalanobis 2% 5,88% 11.56%
Siamese 0% 8% 12.5%
Triplet 0.06% 78.6% 93%

Figure 3(a) illustrates the CMC curve for Euclidean Distance, which
shows a gradual increase in identification probability across different ranks
but exhibits poor Rank-1 accuracy (2%). While the identification rate
improves at Rank-5 (5.5%) and Rank-10 (12.5%), it remains ineffective for
real-world person re-identification applications. Figure 3(b) illustrates the
Cumulative Distribution Function (CDF) curve of Euclidean distances,
highlighting the distribution of matching scores obtained from our
experiments. Similarly, Figures 4(a) and Figure 5(a) depict the CMC curves
for Cosine and Mahalanobis distances, respectively. The Cosine distance
metric achieves the lowest Rank-1 accuracy (0.30%) and struggles to
distinguish individuals effectively at lower ranks, showing limited Rank-5
(4.73%) and Rank-10 (10.21%) accuracy. The Mahalanobis distance metric
slightly outperforms both Euclidean and Cosine, achieving 2% Rank-1
accuracy, but its performance remains moderate with 5.88% at Rank-5 and
11.56% at Rank-10. The corresponding CDF curves in Figures 4(b) and
Figure 5(b) further confirm these trends, demonstrating slow convergence
toward higher identification probabilities.

Rank-1 accuracy measures the percentage of queries where the
correct match appears as the first result, reflecting immediate recognition
accuracy. Rank-5 accuracy measures the percentage where the correct
match is within the top five results, indicating performance with a small
candidate set. These differ from traditional accuracy metrics, like precision,
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which measure correct predictions out of all predictions without considering
ranking.

In contrast, deep learning-based techniques show a notable
improvement over traditional methods. Figure 6(a) presents the CMC curve
for the Siamese network, which performs better than traditional distance
metrics at higher ranks but fails at Rank-1 (0%). However, the method
shows a significant improvement at Rank-5 (8%) and Rank-10 (12.5%),
indicating better feature representation than distance-based metrics.

Figure 7(a) illustrates the CMC curve for the Triplet network, which
outperforms all other techniques, achieving a Rank-1 accuracy of 0.06%.
Despite this low Rank-1 accuracy, the Triplet network shows a dramatic
increase at Rank-5 (78.6%) and Rank-10 (93%), demonstrating its superior
ability to rank correct matches in higher ranks. The CDF curves in Figures 6
(b) and Figure 7 (b) reinforce these findings, highlighting the robustness of
the Triplet network in learning discriminative embeddings for re-
identification.

Figure 8 illustrates the average precision, recall, and Fl-score for
each technique, providing a broader evaluation beyond rank-based
accuracy. The results highlight the Triplet network's superior performance
across all ranking levels, confirming its ability to learn highly
discriminative features and maximize correct match ranking at later ranks.
In contrast, traditional distance metrics, as well as the Siamese network,
exhibit significantly lower precision and recall, indicating their limited
effectiveness in person re-identification tasks.

3.2. Comparison with Previous Studies. Our findings align with
prior research emphasizing the superiority of deep metric learning
approaches over traditional distance metrics. Compared to state-of-the-art
results on Market-1501, studies such as [28] and [29] demonstrate that
triplet loss significantly enhances person re-identification performance by
optimizing the embedding space, particularly at higher rank levels (Rank-5
and Rank-10).

Our results confirm these observations, as the Triplet network
achieves the highest accuracy at Rank-5 (78.6%) and Rank-10 (93%),
demonstrating its effectiveness in ranking correct matches. However, the
Triplet network shows weak Rank-1 accuracy (0.06%), suggesting that
other deep learning approaches, such as Siamese networks, may still be
useful at lower ranks.

Additionally, the study by [30] emphasizes that while deep learning
methods significantly enhance identification accuracy, their effectiveness
varies depending on model design and training strategy. In our case, the
Triplet network demonstrates competitive performance at higher ranks
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(Rank-5 and Rank-10), confirming its ability to learn meaningful
embeddings for person re-identification. Although we utilized the VGG16
architecture — which is not the most recent development in CNN design —
this choice was intentional to establish a clear and reproducible baseline. In
future work, we plan to extend this framework by integrating more
advanced backbones such as ResNet and EfficientNet, and subsequently
applying transformer-based architectures to further enhance recognition
performance.

Compared to traditional distance-based methods such as Euclidean,
Cosine, and Mahalanobis metrics discussed in References [24, 25, 26], our
approach demonstrates a significant improvement in Rank-5 and Rank-10
accuracy. However, compared to recent state-of-the-art deep learning
methods listed in Table 1, our model offers competitive higher-rank
performance but still lags in Rank-1 accuracy and overall end-to-end
accuracy due to its reliance on an older backbone (VGG16).

3.3. Training Protocols. A summary of each technique’s strengths
and limitations is provided in Table 3.

Table 3. Summary of strengths and limitations for each technique based on
quantitative metrics

Technique Strengths Limitations
Simple to implement and Low accuracy at Rank-1 (2%)
Euclidean computationally efficient and Rank-5 (5.5%), slightly
better than Cosine
Very low Rank-1 accuracy
Cosine Effective for high- (0.3%), lower Rank-5
dimensional data accuracy (4.73%) than
Euclidean
Accounts for correlations in | 0% Rank-1 (2%) and Rank-5
Mabhalanobis (5.88%), similar to Euclidean
data . .
but computationally heavier
. Outperforms Euclidean and N(; correct maiches at Rank-1
Siamese Cosine at Rank-5 (8%) (0%), modest improvement at
Rank-10 (12.5%)
Significantly better Requires complex training,
Triplet accuracy at Rank-5 (78.6%) | very low Rank-1 accuracy
and Rank-10 (93%) (0.06%)

One unexpected result in our analysis was that the Cosine distance
metric exhibited a moderate improvement at Rank-10 compared to Rank-1
and Rank-5. Specifically, its accuracy increased from 0.30% (Rank-1) to
4.73% (Rank-5) and 10.21% (Rank-10). This suggests that while Cosine
distance struggles with immediate identification, it retains some useful
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feature representations that contribute to later-stage ranking improvements.
However, since its overall accuracy remains lower than other methods,
further investigation is needed to determine whether Cosine similarity can
be effectively integrated with deep learning models to enhance ranking
performance in re-identification tasks.

3.4. Impact of VGG16 Integration. Integrating VGG16 into the re-
identification model significantly enhanced feature extraction by leveraging
its deep hierarchical architecture. The convolutional layers of VGGI16
captured fine-grained spatial details, improving the model's ability to
distinguish individuals across different viewpoints, occlusions, and lighting
conditions. As a result, deep learning-based techniques, particularly the
Triplet network, achieved superior performance at Rank-5 (78.6%) and
Rank-10 (93%), demonstrating their advantage over traditional distance
metrics. However, the Triplet network exhibited low Rank-1 accuracy
(0.06%), suggesting further improvements in early-stage recognition.
Additionally, the increased computational complexity of VGG16 remains a
challenge for real-time applications, highlighting the need for optimization
techniques such as lighter architectures, model quantization, and feature
distillation to balance accuracy and efficiency.

The integration of VGG16 for feature extraction follows the widely
recognized approach by Simonyan and Zisserman (2014) [12], with our
novel contribution lying in its application to the specific task of person re-
identification, where we demonstrate its significant enhancement of
identification accuracy compared to traditional methods.
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Fig. 8. Bar graph illustrating the average precision, recall, and F1-score for each
technique

4. Conclusion and Future Directions. This paper provides a
comparative analysis of traditional distance metrics and deep learning
models for person re-identification, highlighting the advantages of deep
metric learning approaches. Our findings demonstrate that while standard
distance metrics such as Euclidean and Mahalanobis are computationally
efficient, they suffer from significantly lower accuracy compared to deep
learning-based techniques. The Triplet network, in particular, shows
substantial gains at Rank-5 (78.6%) and Rank-10 (93%), making it highly
effective for ranking-based retrieval tasks. However, its Rank-1 accuracy
(0.06%) remains low, indicating limitations in immediate identification.

These results emphasize the importance of feature learning and
embedding optimization in person re-identification. Deep learning models
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capture complex patterns and variations in appearance, making them more
robust than traditional methods. However, the increasing computational
complexity of deep networks, particularly Triplet loss-based models, poses
challenges for real-time deployment. This highlights the need for
optimization techniques, such as lightweight architectures, quantization, and
knowledge distillation, to balance accuracy and efficiency.

Beyond re-identification accuracy, our findings contribute to broader
discussions on the scalability and applicability of deep learning for
intelligent video surveillance. Future research should focus on:

- Constructing hybrid models that balance efficiency and
accuracy.

- Integrating domain adaptation techniques to improve cross-
dataset generalization.

- Studying privacy-preserving mechanisms (e.g., federated
learning, differential privacy) for ethical surveillance applications.

Ultimately, this study reinforces the growing role of deep learning in
person re-identification, providing valuable insights for researchers and
practitioners to develop scalable, efficient, and ethical surveillance systems.
The advancements in this field have far-reaching implications, from public
security and law enforcement to smart city applications, where accurate and
efficient identification is critical for real-world deployment.
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M. Upriccu ATTAMH, A. 93-3AXYT, @. OMAPU
CPABHUTEJIBHOE UCCJIEJOBAHUE METO/IOB IIOBTOPHOI
HAEHTUOUKALIMH JIUYHOCTU HA OCHOBE MO/IEJIEN
rJIYBOKOTI'O OBYUYEHUA

Hopuccu Anamu M., 33-3axym A., Omapu @. CpaBHHUTEJbHOE HMCCIEIOBAHUE METOI0B
MNOBTOPHOIi NIeHTH(GHKALHY THYHOCTH HA 0OCHOBE MojeJIeii ITy00Koro o0yueHus.
Annorauus. [ToBropHas uneHtudukanus auynoctu (Re-ID) mmeer kitodeByro poib B
CHCTeMaX HHTEUIEKTyalbHOTO BHACOHAOMIONCHNUS, TpeOysl TOUHOTO PACIIO3HABAHUS TIOAEH ¢
HECKOJIBKMX TO4YeK o0030pa KaMepbl. TpaauIMOHHBIE METOIbI, OCHOBAHHBIE HAa METPHKaxX
paccTosiHus (EBKIMAOBO M KOCHHYCHOE), CTAJIKUBAIOTCS C TPYAHOCTSAMH IpU 0OpaboTke
BapHallMil MO3 M CIIy4aeB OKKIIO3UM, YTO OrpaHHYMBAeT UX 3(hQeKkTHBHOCTb. B mannom
HCCJICIOBAHHN PacCMaTPUBAIOTCSL MOJIENH TIyOOKOIrO METPHYECKOro OOy4eHHs, B YaCTHOCTU
CHaMCKHe M TPHUIUICTHBIC CETH, JUISl MOBBILICHHS TOYHOCTH NMOBTOPHOW MACHTH(OHUKALMU. MBI
OLICHMBAaeM OTH MeToAbl Ha Habope maHHBIX Market-1501 ¢ wncromp3oBaHHEM KPHBBIX
KyMYJSITHBHOH — XapakTepucTuku cootBerctBus (CMC) u  KyMymsaTHBHOH — (yHKIHH
pacnpenenenust (CDF). Pe3ynbraTel IMOKa3plBalOT, YTO TPUIUIETHAsE CETh IPEBOCXOJIUT
TpaJHUIOHHBIC OJAXO0IbI Ha 00Jiee BHICOKHX paHrax, JO0CTHras ToO4HOCTH 78,6% Ha Rank-5 u
touHocTH 93% Ha Rank-10, mpu 3TOM IeMOHCTpUpYs HH3KYI0 TOYHOCTH Ha Rank-1 (0,06%).
Jlnsg cpaBHEHMs, METOJbl HAa OCHOBE E€BKJIMI0OBA M KOCHHYCHOIO PAacCTOSHMH MOKa3bIBarOT
HHI3KYIO0 IIPOH3BOAUTENBHOCTE HA Rank-1 (2% u 0,30% cOOTBETCTBEHHO), YTO MOAYEPKUBACT
ux orpanudeHus. Kpome Ttoro, BkitoueHue apxutektypbl VGG16 ynyumraer u3BiIeUEHUE
MPU3HAKOB, MOBBIIAs 3(P(EKTUBHOCTh PACIIO3HABAHMS 3a CYET YJABIMBAHHS MeJbYaiflmx
MPOCTPAaHCTBEHHBIX  Jeranedl. JlaHHoe CpaBHHTENbHOE  HCCICIOBAHHE  IOKa3bIBAeT
9 HEKTUBHOCTH METONOB TITyOOKOTO METPUIECKOTO 00yUEHHs X MOAYEPKUBACT €ro MOTEHIHAI
JUISL IPAKTUYECKOTrO NMPUMEHEHHUs B CHCTeMax BuIcoHaOuoneHus. OQHAKO BBIYHUCIHTEIbHbIC
TpeOOBaHU TIyOOKHMX CeTell CO3Jal0T CIOXKHOCTU M PabOTHl B pEanbHOM BpPEMEHH.
Bynymme uccienoBaHus JODKHBI OBITH COCPEJOTOYEHHI Ha ONTHMH3AIMHU 3((PEKTHBHOCTH
MOJIEJIH, CHI)KCHUH BBIYHUCIUTEIBHBIX 3aTPaT H TECTHPOBAHUH B PEAIbHOM BPEMEHH.
Kiouesblie ciioBa: merpuku CMC/CDF, cBeprounsie HeliponHbie cetu (CNN), rimy6okoe
obyuenue, NoBTopHas uaeHtiudukanus mmaHoctd, VGG16, cucteMbl BUACOHAOTIONCHUS.
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