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Abstract. An extremely simple and high-performance genome-wide association
study (GWAS) algorithm for estimating the main and epistatic effects of markers or single
nucleotide polymorphisms (SNPs) is proposed. The main idea underlying the algorithm is
based on comparison of genotypes of pairs of individuals and comparison of the corresponding
phenotype values. It is used the intuitive assumption that changes of alleles corresponding to
important SNPs in a pair of individuals lead to a large difference of phenotype values of these
individuals. In other words, the algorithm is based on considering pairs of individuals instead
of SNPs or pairs of SNPs. The main advantage of the algorithm is that it weakly depends on
the number of SNPs in a genotype matrix. It mainly depends on the number of individuals,
which is typically very small in comparison with the number of SNPs. Another important
advantage of the algorithm is that it can detect the epistatic effect viewed as gene-gene
interaction without additional computations. The algorithm can also be used when the
phenotype takes only two values (the case-control study). Moreover, it can be simply extended
from the analysis of binary genotype matrices to the microarray gene expression data analysis.
Numerical experiments with real data sets consisting of populations of double haploid lines of
barley illustrate the outperformance of the proposed algorithm in comparison with standard
GWAS algorithms from the computation point of view especially for detecting the gene-gene
interactions. The ways for improving the proposed algorithm are discussed in the paper.

Keywords: GWAS, ANOVA, machine learning, epistasis, SNP, quantitative trait,
distance metric.

1. Introduction. A genome-wide association study (GWAS) aims to
discover genetic factors underlying phenotypic traits, i.e., GWAS examines
the association between phenotypes and genetic variants or genotypes
across the entire genome. It can be regarded as one of the methods for the
well-known feature selection problem where features are the so-called sin-
gle nucleotide polymorphisms (SNPs). SNPs are typically used as markers
of a genomic region and can be defined as a DNA sequence variation where
a single nucleotide (A, T, C, G) in the genomic sequence differs among the
individuals of a biological species. It should be noted that most SNPs have
no effect on the phenotype values or their effect is very insignificant. How-
ever, there are SNPs which might be very important in associations between
SNPs and the phenotypes. Therefore, another formulation of the main aim
of GWAS is to identify or select the most relevant SNPs which differentiate
one group of individuals from another or which contribute to the phenotypic
differences among the individuals.

From the machine learning point of view, a GWAS is one of the su-
pervised classification or regression problems, where each individual can be
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regarded as an example in terms of machine learning. It is defined by many
SNPs which can be viewed as features in terms of machine learning. There-
fore, many machine learning methods, including Lasso and ridge regres-
sions, support vector machines, random forests, neural networks, have been
used for GWAS. It should be noted that GWAS problem can be referred to
as the well-known feature selection methods which are an important part of
the machine learning approaches. In contrast to many standard statistical
approaches underlying GWAS, machine learning models allows us to get a
solution by taking into account the information of the whole genotype, and
thus implicitly consider all possible correlations. Moreover, several variable
importance measures can be derived from the machine learning models [1].
We point out some difficulties of solving the GWAS problem men-
tioned by many authors. First of all, the number of SNPs p is usually very

large. It is typically 10-100 times the number of individuals » in the train-
ing sample. This is the so called p >n (or large p small »n ) problem. Sec-

ond, genetic mechanisms might involve complex interactions among genes
and between genes and environmental conditions which are not fully cap-
tured by additive models [2, 3]. SNPs may interact in their effects on pheno-
type, i.e., there is the so-called epistatic effect. Third, many genetic variants
are not genotyped, i.c., there are missing data in the genotype information.
Fourth, GWAS is applied to find the association between SNPs and differ-
ent kinds of the trait. It is mentioned by Korte and Farlow [4] in their inter-
esting review of the GWAS methods that the successful GWAS methods
applied to identifying SNPs contributing a disease (the two-valued or case-
control phenotype) may have problems in finding SNPs associated with
complex traits (quantitative or continuous phenotype).

A huge amount of the statistical procedures and methods solving the
GWAS problem have been developed the last decades. A part of methods
can be referred to as filter methods [5] which use statistical properties of
SNPs to filter out poorly informative ones. The Fisher criterion, Pearson

7y -test, Cochran-Armitage test are the well-known statistical methods for

detecting differential SNPs between two samples. These methods can be
joined as the so-called single-locus association tests because the tests are
performed separately for each SNP when the case-control phenotypes are
analyzed. For quantitative phenotypes, a standard tool is the one-way
ANOVA [6]. Another part of methods uses various kinds of regression
models which can be referred to as embedded methods [7-10]. One of the
pioneering papers devoted to the use of regression models in SNP selection
has been written by Lander and Botstein [11]. The regression models main-
ly include the Ridge regression and Lasso techniques, their combination
called the elastic nets [12]. Comprehensive reviews of the methods and al-
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gorithms using the regression models and their various modifications for
solving the GWAS problems are provided by Wray et al. [13], Hayes [14],
Visscher et al. [15], Biihlmann [16].

It has been mentioned that the standard GWAS analyzes each SNP sepa-
rately in order to identify a set of significant SNPs showing genetic variations
associated with the trait. However, an important challenge in the analysis of
genome-wide data sets is taking into account the so-called epistatic effect when
different epistatic loci interact in their association with phenotype. The epistatic
effect can be viewed as gene-gene interaction when the action of one locus de-
pends on the genotype of another locus. At the same time, there are different
interpretations of the epistatic effect. A fundamental critical review of different
definitions and interpretations of epistasis is provided in [17]. From the statisti-
cal point of view, the epistatic effect is the statistical deviation from the joined
effects of two loci on the phenotype [18]. There is a series of interesting meth-
ods which use the statistical tests at their first step in order to reduce the set of
SNPs. These are FastANOVA [19], FastChi [20], COE [21], TEAM [22]. We
can also point out methods which differs from the filter methods, for example,
the Bayesian epistasis association mapping method (BEAM) proposed by
Zhang and Liu [23], tree-based methods like the random forests [24], the multi-
factor dimensionality reduction [25], modifications of the Lasso tech-
niques [26], the ant colony optimization [27]. Comparative analyses of methods
devoted to the epistatic interaction effect were provided by several authors [28,
29]. Analyzing these methods, we have to conclude that most of them have two
steps (except for the methods with exhaustive consideration of all SNP pairs)
such that the first step is for reducing the set of all SNPs to the most important
ones, and the second step solves the SNP-SNP interaction problem.

From many approaches for solving the GWAS taking into account
the epistatic effect, we would like to mark out a very interesting and effi-
cient algorithm [30] that is subquadratic in the number of SNPs {0,1,2}.

The authors [30] propose an algorithm for efficiently retrieving some prede-
fined number of top scoring pairs among all pairs of SNPs, assuming binary
phenotypes and the difference-in-correlation as the association criterion.
Some implicit ideas of the algorithm will be used below.

In the present study, we propose a computationally extremely simple
GWAS algorithm. It is based on the intuitive assumption that changes of
alleles corresponding to important SNPs in a pair of individuals lead to
large difference of phenotype values of these individuals. The main ad-
vantage of the algorithm is that it weakly depends on the number of SNPs in
a genotype matrix. It mainly depends on the number of individuals, which is
typically very small in comparison with the number of SNPs. We called the
algorithm FAPI-GWAS (Fast Analysis of Pairs of Individuals for GWAS).

A preprint of the paper is given in https://arxiv.org/abs/1708.01746.
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2. The proposed algorithm. We start with the following general defi-
nition of the association mapping problem. Let X =[X,..,X ] be a geno-

type matrix for » individuals and p SNPs. From a statistical point of view, the
genotype matrix can be treated as a predictor matrix and the marker genotypes

as qualitative explanatory variables, i.e., X; =(x;;,..,x,; T is a predictor rep-
resenting the j-th SNP, j=1,..., p. For bi-allelic SNPs, every X is an allele
of the i-th individual at the j-th SNP locus. It can be represented by the set
{0,1} , where 0 and 1 stand for majority and minority alleles, respectively. A
genotype may also be represented with numbers {0,1,2} to represent the ho-
mozygous major allele 44 =0, heterozygous allele 4a/aAd =1, and homo-
zygous minor allele aa =2, respectively. A vector of alleles corresponding
to the i-th individual will be denoted as x? = (xil,..,xip , i=1,..,n. A quanti-
tative trait of interest or a set of the phenotype values y, eR, i=1,...,n, can

be viewed as a response vector ¥ = (y,,..,y,)" . A goal of GWAS is to find
SNPs in X, that are highly associated with ¥, which will be called as im-
portant or significant SNPs.

In order to explain the introduced notation by means of an example,
we provide Figure 1, where the genotype matrix X and the phenotype vector
Y are illustrated. It can be seen from Figure 1 that n =12 individuals with

different plant height values ¥ =(50,15,...,10,60)" (phenotype values) are
defined by p =10 SNPs with alleles x; taking the values 0 and 1. We have

to develop an algorithm which selects the most important SNPs or their com-
binations from the point of view of their impact on the plant height.

; 15 % l l 10 ; % § l % I =Y = ()/'1,.“,)/'”)
SNP, 001 1 0 1 1 @ 010 0 1
SNP, 001 1 1 1 101 1 0 0 1
SNP; 001 0 1 1 1|11 1 1 0 1
SNP, 0 0 1 1 0 1[1[1 0 1 0 0
SNPg [0 1 1 0 1t 1]0[1 1 1 0 0)]<==X=(xy,....xn)
SN, 001 1 1 1 1/0f1 1 1 0 1
SN, 001 0 1 1 100[0 1 1 10
SNPg 001 0 1 1 0{0|1 1 1 1 0
SNPp 001 1 1 1 011 1 1 1 1
SNP,, 0 1 1 0 0 O @ 0110 1

\

X; = (xil,---,xim) X

Fig. 1. An example of the genotype matrix X and the phenotype vector ¥
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The main idea underlying the FAPI-GWAS is based on compari-
son of genotypes of pairs of individuals and comparison of the corre-
sponding phenotype values. At that, we use the following intuitive as-
sumption. If genotypes of two individuals are close to each other and the
corresponding phenotype values of these two individuals are far from
each other, then the SNP-markers which correspond to different elements
of the considered two genotypes might be important or contribute to the
phenotype values. Indeed, if two individuals differ by some small num-
ber of genotype elements, then it is naturally to expect that their pheno-
types are similar. However, if the corresponding phenotypes are substan-
tially different, then it is naturally to suppose that this small number of
distinguishing genotype elements define this large difference of pheno-
types values. Of course, the large difference of the phenotype values may
be caused by the noise or other random factors. Therefore, we cannot
make any conclusions only on the basis of one pair of individuals. That is
why the word combination might be used above means that this assump-
tion may be wrong due to random character of the phenotype values. But
we can make the conclusion by analyzing all pairs of individuals or
a part of all pairs.

Informally, the FAPI-GWAS can be written as follows. First of all,

we find all pairs (x,, xj) of vectors of alleles. Then, we select some prede-

fined number of the pairs which have largest differences of phenotype val-
ues and smallest distances between the vectors of alleles for every pair in
accordance with some combined measure jointly characterizing the differ-
ences and the distances. The next step is to make a decision which SNPs
contribute to the difference between the vectors of alleles for the best pairs.
The use of the predefined number of pairs allows us to smooth possible out-
liers of the phenotype values due to random factors.

The above is illustrated in Figure 2, where three pairs of individu-
als are analyzed. The first pair does not show a large difference between
the phenotype values. It is 5. Therefore, this pair is not interesting for us.
The second and the third pairs have the difference 50 between the pheno-
type values. However, this difference for the third pair is caused by
many (5) transitions between genotype values, which are underlined.
Therefore, the third pair is also not interesting for us. At the same time,
the second pair has only one transition. This implies that the large differ-
ence between phenotypes is caused by the 7-th SNP. Hence, we can con-
clude that this SNP is important.
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TSI

15 10 60 10 60 10
SNP;, 0 0 11 1 1
SNP, 10 1 1 11
SNP; 1 1 11 1 0
SNP, 1 1 00 o0 1
SNP, 1 1 11 11
SNPg 1 1 1 1 11
S\e, 0 1 100 10
SNPg 1 1 11 10
SNPy 1 1 11 11
SNP,, 1 1 00 0 1

Fig. 2. An example of three different pairs of individuals

Formally, the proposed algorithm FAPI-GWAS can be represented
as follows.

Step 1. All vectors of alleles X,...,X,, are sorted in descending order of
the corresponding phenotypes, i.e., y; =...2 y, . This step simplifies compari-
son of phenotypes because the condition y, —y; >0 forall y, # y; is valid.

Step 2. All different pairs of individuals are composed. The number
of pairs is n(n—1)/2 . Only pairs (x,,x ;) such that i < j are studied.

Step 3.For every pair (x;,x ), the distance p(x;,x;) between vec-
tors X; and x;, i,j=L..,n, i</, is computed. A type of the distance de-

pends on data. It can be the standard Hamming distance for binary variables
x; - The standard Euclidean distance metric can be also used here.

Step 4.For every pair (i, /), the difference d(y,,y;) between phe-
notype values y; and a, (1) =2 ;e r:om(i,j)l(zii(k) =t),t=-10,1,
i,j=1..,n,i<j, is computed. The condition d(y;,y;)>0 is valid be-

cause phenotypes are sorted in descending order (see Step 1).
Step 5. For every pair (i, j), the ratio

r(i, J) =d(yiayj)/p(xiaxj)

is computed. The larger the difference d and the smaller the distance p are,
the larger ratio 7 is. The ratio 7 is a measure of target pairs.
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Step 6. N largest values of r(i, j) are selected. Denote these values as

r*(i, j) and the set of their indices (i, j) as J". The value N can be regarded

as a tuned parameter later. Another way is to compute the value N by con-
structing a cumulative probability distribution of the random variable » whose
sample values are 7(i, j) . It was observed by many numerical experiments that

values 7(i, j) have a unimodal distribution. Moreover, if we assume that ran-
dom variables taking values d(y;,y;) and p(x;,x;) have some distributions,

for example, normal distributions, then » has one of the so-called ratio distribu-
tions, for example, the Cauchy distribution, the t-distribution, the F-distribution.
Therefore, we take a predefined value of g% quantile of the random variable

r and find all values of the ratio such that their empirical distribution function
is larger than ¢ /100 . In this case, we derive some value of N from the above

procedure, and g can be viewed as a tuned parameter of the algorithm.

Step 7. For every pair (i, j) from J*, we find a subset of elements of
vectors X; and x ; which differentiate these vectors. In particular, if x;; € {0,1},
then z; = x; —x; . The vector z,; has element -1 at the k-th position if there is
the transition from 0 in X; to 1 in x; at the A-th position, element 1 if there is
the transition from 1 in X; to 0 in x; at the same position, and element 0 by
transitions from 0 to 0 or from 1 to 1 at the same position, i.c., there holds

1, ifx,(k)=0, x,(k) =1,
z,(k)=1 1, ifx,(k)=1 x,(k)=0,
0, ifx,(k)=x,(k).

Only elements of z; with values —1 and 1 are interesting for us be-
cause they indicate positions where vectors X; and x; are different, which,
in turn, indicate possible important SNPs. In the case x;; € {0,1,2} , we have
six transitions 0 >1,0—>2,1-0,152,2—->0, X; enumerated as
-3,-2,-1,1,2,3, and three transitions 0 > 0,1 —1,2 — 2 denoted as 0.

Step 8. For the k-th SNP under condition x; € {0,1} , we use the ratio
r*(i, j) for computing summed weights of elements —1, 0, 1 at the k-th
position in z(7, j) denoted as a,(-1), a,(0), a,(1), i.e., we compute

a, ()= re i, DUz, (k) =1), t=-1,0,1.
(i, ))et”
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Here 1(z;(k)=1¢) is the indicator function taking the value 1 if

Lk
> rnorm

z,,(k) =1, and the value 0 otherwise is the normalized ratio. We can also

take 7. (i, 7) =1 for all values (i, j) € J*. In this simplified case, we find the

norm
numbers of elements -1, 0, 1 at the A-th position in vectors z,;, (i, /) € J *If

x; €10,1,2}, then ¢ takes values from 7' = {-3,-2,-1,0,1,2,3}.
Step 9.For the k-th SNP, we compare two numbers a,(f=0) and

20 9 (1) with a decision threshold 4, i.e., we compare the summed
weights of transitions which do not contribute to the difference of vectors of
alleles and which correspond to transitions 0 — 0, 1 —1, and the weights
of transitions with different values of alleles. If the inequality

Z a, () a,(t=0)=h
t#0
is valid, then the corresponding 4-th SNP is important, otherwise it does not
belong to the subset of important SNPs. The decision threshold is typically
equal to 1.
Step 10. For every target SNP, we write the value

S, =arg max a,(?).
tef-1,1}

Values S, =—1 or 1 mean that the allele, corresponding to the k-th

SNP and having values 1 or 0, respectively, contributes to decreasing of the
phenotype.

Let us illustrate the above algorithm by means of a toy example.
Suppose we have n =3 individuals whose genotype matrix for 5 bi-allelic
SNPs is represented by symbols 0 and 1 which stand for major and minor
alleles, respectively. The sorted phenotype values are 45, 15, 10. The initial
data are shown in Table 1. We have three pairs of vectors of alleles such
that the phenotype differences d(y;,y,), the genotype transitions, the cor-

responding Hamming distances between vectors of alleles in every pair and
the ratios 7(i, j) are given in Table 2.

Table 1. Genotypes and phenotypes of three individuals

Phenotypes 45 15 10
1 0 0 1

2 0 0 1

SNPs 3 1 0 0

4 1 1 0

5 1 1 1
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Table 2. The genotype transitions and the values p and r
d(yi.y)) 30 | 35 5

1 {0>0|0>1]0—>1
2 10>0[0>1]0—>>1
SNPs 3 (120120020
4 |[1>1 12010
5112112111

p(X;,X ) 1 4 3
r(i, j) 30 8.75 | 1.667

Suppose that the threshold N for selecting the largest values of 7(i, j)
is 2. Table 3 shows individuals satisfying this condition and the values z(i, j)
of transitions taking the values —1,0,1 (see Step 7). It can be seen from Table 3
that only the third SNP has two non-zero elements z(i, j). This implies that

only the third SNP is important. Indeed, it is obviously from Table 3 that the
largest difference is observed between phenotypes of the first and the second
individuals. Moreover, only the third SNP separates the first and the second
vectors of alleles. Intuitively, we can conclude that this SNP is a reason for the
large difference between phenotypes of the first and the second individuals.

Table 3. Vectors z; and decision making about the important SNP

(i, J) 30 | 8.75
1 0 -1
2 0 -1
SNPs | 3 1 ]
4 0 1
5 0 1

The FAPI-GWAS for determining important SNPs is given as Algo-
rithm 1.

Algorithm 1. A simple FAPI-GWAS algorithm

Require: X, , =(X,,...,x,) (binary genotype matrix), ¥ (phenotype
vector), N, h (parameters)

Ensure: S, (imported SNPs)

1. Order (X,,...,X,)) suchthat y, 2.2y

2.foreach i<n u j>i do

n
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3. Build a pair (x;,x)

4. Compute p(x;,X ;)= "x, —xj||§

5. Compute r(i, /)= (v, — ;) p(X;,X;)
6. Compute z; =x, —x;
7. end for

8. J"={(i,j): N largest values of r(i, j)}

9. for each k< p do

10. Compute @, (£) = X jer* Toom (> Nz (k) =1), £ =~1,0,1.
11. If Z#O a,(t)zh-a,(t=0) then the k-th SNP is important,
12. Compute S, =argt£n{ff(l} a,(t)

13. end if
14. end for

The Euclidean distance p(x;,x ;) is taken in Algorithm 1. However,

other distance metrics depending on the analyzed dataset can be used. These
distance metrics can be regarded as tuning elements of the model.

3. Properties of the algorithm. Let us point out some properties and
advantages of the FAPI-GWAS.

1) The epistatic effect which is viewed as gene-gene interaction should
not be separately analyzed. It is implicitly included into the proposed algo-
rithm. Indeed, we do not consider single SNPs. For every pair of vectors of
alleles, the difference of the vectors is computed for all SNPs simultaneously.
So, if there is a combination of alleles which significantly impact on the pheno-
type, it produces a large difference between the corresponding phenotype val-
ues. This is a very important property which allows us to significantly reduce
the computational burden needed for consideration of many SNP pairs.

2) The FAPI-GWAS is very simple. Its computational complexity is

O(p +n*), i.e. the complexity is linear with the number of SNPs p. This is a
very important property of the algorithm because the number of SNPs p is

typically 10-100 times the number of individuals » in the training sample for
many problems. Moreover, the algorithm does not require special procedures
like Lasso, etc. For comparison purposes, a very interesting algorithm for 2-

locus genome-wide association studies [30] has the complexity O(p*?).
Algorithms FastANOVA [19] and TEAM [22] have the complexity O(p*n) .
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3) The FAPI-GWAS does not depend on the set of allele values. For
example, a few trivial changes are needed to consider the case x; € {0,1,2} .

Moreover, the important feature of the algorithm is that the values {0,1,2}

or {0,1} are viewed as categorical numbers without order, for example,
0<1<2. The FAPI-GWAS can be modified for the case x; €R which

takes place in the microarray gene expression data analysis.

4) Another advantage of the FAPI-GWAS is handling missing data
in the genotype matrix. We do not need to apply special procedures for pre-
processing missing data and their imputation. The missing data just extend
the set of values of every x; . We use the conservative strategy. For exam-

ple, suppose x; € {0,1} and the missing value is denoted as 2 . If we have
two missing values at the same k-th position in vectors X; and x, then

2z, (k) =0 . This value means that we do not consider the k-th position in
vectors X; and x; as a candidate for getting an important SNP. At the same

time, when we have a single missing value at the k-th position in vectors X;
and x, then z,(k) # 0 in accordance with the strategy that a larger num-

ber of important SNPs is preferable because the second selection from a
small subset of important SNPs should be carried out by means of the well-
known standard procedures.

5) The FAPI-GWAS can be used when the phenotype takes only
two values (the case-control study). It is obvious in this case that only a set
composed from pairs of individuals taken from the case and control groups,

respectively, is analyzed. Indeed, d(y;,y;)=0, r(i,j)=0if y, =y,, and
d(y;,y)=1, r(i,j)=1/ p(x;,x;) if y; #y, (we assume that the vectors
of alleles are sorted in descending order of the corresponding phenotypes).

6) For many available algorithms of GWAS using filter methods for
selection of the most important SNPs like the Fisher exact test, the one-way
ANOVA, etc. we have to predefine a limit number of the important SNPs.
The FAPI-GWAS determines this number itself.

7) The FAPI-GWAS can be tuned by means of the parameter N (the
number of largest values of the rate r) or parameter ¢ . On the one hand, too

small values of the parameter N may lead to a large number of target SNPs.
As a result, we have to use some additional procedures for restricting the num-
ber of SNPs. On the other hand, large values of N may lead to possible miss-
ing SNPs which actually may be very important. There is a compromise choice
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of N which can be carried out by considering all possible values of N in a
predefined grid. Another parameter for tuning is the decision threshold 4 .

8) The FAPI-GWAS is flexible. This means that many its elements
can be changed. For example, there are many metrics for computing distances
between vectors of alleles such that the choice of an appropriate metric might
improve the algorithm. Similarity S(x;,x;) and dissimilarity p(x;,x;)

measures of two vectors X; and x; can be applied. If we use similarity
measures, then (i, j) = d(y;,y;)- S(x;,X ;) . Another element which could be

changed is the choice of the ratio 7. The proposed ratio is one of the possible
measures for the target pair localization. It is just a simplest way for defining
the measure. Perhaps, other measures might also improve the algorithm.

4. Numerical experiments. Numerical experiments are carried out
on three populations of double haploid (DH) lines of barley:

1) The first dataset consists of 175 DH lines of barley [31, 32]. The da-
ta are available at Oregon Wolfe Barley Data (OWBD) and GrainGenes Tools
(http://wheat.pw.usda.gov/ggpages/maps/OWB/). The lines are analyzed with
respect to the heading date trait. The linkage map consists of 1328 SNPs.

2) The second dataset consists of 92 DH lines of barley from the
Dicktoo x Morex cross and described in [33, 34, 35]. The data are available at
http://wheat.pw.usda.gov/ggpages/DxM/. We analyze the lines with respect to
two phenotypic traits: heading date with and without vernalization with an 8-h
light/16-h dark photoperiod regime. The linkage map consists of 117 SNPs.

3) The third population dataset includes 150 DH lines of barley
from the Steptoe x Morex cross [36]. The corresponing data are available at
http://wheat.pw.usda.gov/ggpages/SxM. The linkage map consists of 223
SNPs. The lines are analyzed with respect to the heading date trait measured
in 16 environments and grain yield trait measured in 6 environments.

The missing data are handled by means of extending the set of values
of every x; , i.e., the set of values {0,1} is extended on the set {0,1,2} .

First, we investigate DH lines of barley from OWBD. The parameter
q is 97% . In order to compare the proposed algorithm, we apply the

standard tool ANOVA to testing the association between a single marker
and a continuous outcome. The F-test is used to assess whether the expected
values of a quantitative variable within several predefined groups differ
from each other. From this, we can retrieve a p-value for the significance of
association between each SNP and the phenotype. Then we correct for mul-
tiple testing using the Holm-Bonferroni method. The Manhattan plot gener-
ated from the obtained p-values is shown in Figure 3 (the left plot). One can
see from the Figure 3 that the significant SNPs have numbers close to 139,
725, 1100. SNPs with these numbers have the smallest p-values.
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Let us look at Figure 3 (the right plot) now. It shows a similar
Manhattan plot, but significant SNPs are obtained by using the FAPI-
GWAS, and p-values are computed for this set again using the Holm-
Bonferroni correction. However, the first step of the FAPI-GWAS pro-
vides not only the significant SNPs which coincide with the SNPs derived
by the standard tool ANOVA. It provides SNPs with numbers 1169 and
1302, which do not belong to the set of significant SNPs obtained by
means of the ANOVA. It turns out that the p-values of these single SNPs
are larger than 0.05, i.e., they cannot be viewed as significant ones. In
contrast to the single-locus approach applied before, we perform the
ANOVA test in order to identify interacting SNP-pairs that have strong
association with the phenotype. It is important to note that the two-locus
ANOVA test is performed on a small number of candidate SNP-pairs
which have been obtained by means of the FAPI-GWAS. It turns out that
SNPs with numbers 1169 and 1302 interact with SNPs 729 and 725, re-
spectively, such that the corresponding p-values (0.021 and 0.047) after
the Holm-Bonferroni correction are smaller than 0.05 . In other words, the
FAPI-GWAS allows us to implement the efficient epistasis detection.

Manhattan plot: ANOVA test Manhattan plot: ANOVA test
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Fig. 3. The Manhattan plot for the OWBD using standard method (left) and the
FAPI-GWAS (right)

Let us study the dataset obtained from the Dicktoo x Morex cross.
According to Pan et al. [35] (Page 905), top ranked SNPs for heading date
with and without vernalization are ABC170-CD064 and Dhnl-BCD265b
which correspond to the following numbers of SNPs 22-24 and 111-113, re-
spectively. The ANOVA is applied here again. We get two SNPs with numbers

22 and 112 having the smallest p-values 1.32x10™ and 2.66x107 respec-
tively. The corresponding Manhattan plot is shown in Figure 4 (the left plot).
Numerical experiments with using the FAPI-GWAS provide quite the same
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results. They are shown in Figure 4 (the right plot). However, the FAPI-GWAS
indicates that there is the 49-th SNP (saflp35) which has a large p-values, but its
interaction with SNPs 112 and 22 gives the p-values 0.0135 and 0.0144, respec-
tively. All p-values are computed by using the Holm-Bonferroni correction.

We get similar results for the unvernalized treatment (the second
phenotypic trait). In addition, we obtain SNPs with numbers 36, 59, 76,
which are called as saflp219, SOLPRO, HorB, respectively, and which are
located on different chromosomes. These SNPs interact with the SNP 22
with the corresponding p-values 0.0034, 0.038, 0.045, respectively.

Manhattan plot: ANOVA test Manhattan plot: ANOVA test

-log10(p-value)

’?
-log10(p-value)

T
0

T T T T T T
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SNPs

T T T T T
40 60 80 100 120

SNPs

Fig. 4. The Manhattan plots for the Dicktoo x Morex data set using standard method
(left) and the FAPI-GWAS (right)

The third dataset obtained from the Steptoe x Morex cross. First,
we analyze lines with respect to the heading date trait. According to the
standard ANOVA test, the 47-th SNP has the smallest p-value which is

8.5x107" . Other significant SNPs have numbers 68, 82, 205. However,

they have larger p-values, namely, 1.48x107, 1.37x107, 8.12x107.
The Manhattan plot generated from the obtained p-values is shown in
Figure 5 (the left plot). By using the FAPI-GWAS, we get quite the same
results. The Manhattan plot generated from the p-values obtained by
means of the FAPI-GWAS is shown in Figure 5 (the right plot). Moreo-
ver, we obtain the strong interactions of SNPs 47x82 (p-value is

1.7x1072% ), 47x205 (p-value is 7.66x1072* ), 47x68 (p-value is
2.07x107%"), 47x165 (p-value is 4.65x10™%), 47x102 (p-value is
1.07x107'%), 47x134 (p-value is 2.26x107'%).
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Manhattan plot: ANOVA test

Manhattan plot: ANOVA test
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Fig. 5. The Manhattan plots for the Steptoe x Morex data set (the heading date
trait) using standard method (left) and the FAPI-GWAS (right)

The standard analysis with respect to the grain yield trait gives the
following significant SNPs and their p-values in parentheses:

82 (2.69x107'"), 20 (1.03x1072), 68 (3.02x1072), 129 (4.04x107").
The FAPI-GWAS provides the same significant SNPs. Additionally, we
get the 82x112  ( 1.8x107'" ),
82x151 (5.56x10™), 82x135 (5.12x107%), 82x195 (1.22x107°). The

corresponding Manhattan plots generated from the p-values for the grain
yield trait are shown in Figure 6.

following interacting SNPs:

Manhattan plot: ANOVA test Manhattan plot: ANOVA test
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Fig. 6. The Manhattan plots for the Steptoe x Morex data set (the grain yield trait)
using standard method (left) and the FAPI-GWAS (right)
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5. Discussion how to improve the algorithm. Let us point out
shortcomings of the FAPI-GWAS and discuss possible ways to overcome
them and to improve the algorithm.

First, numerous experiments with real data illustrate that the FAPI-
GWAS selects groups of adjacent strongly correlated SNPs in the same
chromosomal region which are not inherited randomly. This effect is similar
to those taking a place in the ridge regression algorithm which tends to se-
lect all of the correlated SNPs and make their importance coefficients to be
equal. In contrast to the ridge regression, the Lasso method tends to select
only one SNP from the group of correlated ones. Therefore, the problem of
correlated SNPs can be solved by using a two-step procedure. The first step
is based on the FAPI-GWAS. The result of this step is a small set of im-
portant SNPs. The second step uses the Lasso method or its modification,
for example, the adaptive Lasso, in order to remove the correlated SNPs
from the available small set. Moreover, we can use a modification of the
Lasso which takes into account the epistatic effect because the number of
possible pairs of SNPs after the first step is rather small.

Another way to treat with the correlated SNPs is to use the standard
tools for testing the association between single SNPs and a continuous phe-
notype, including for example, one-way ANOVA. In order to identify two-
locus epistatic effect or interacting SNP-pairs that have strong association
with the phenotype, an algorithm for the two-locus ANOVA test can be
used. There are many approximated methods for reducing the computational
burden. They are reviewed in detail for a case-control study when the phe-
notype can be represented as a binary variable with 0 representing controls
and 1 representing cases as well as for the quantitative trait locus analysis
when the phenotype is quantitative [4]. Most methods are reduced to two
steps. The first step is reduction of a set of SNPs in order to apply standard
statistical procedures to this reduced set of SNPs. The standard statistical
procedures make up the second step. The reduction of the set of correlated
SNPs can be successfully implemented by means of the FAPI-GWAS as the
first step. As a result, we get a small subset of important SNPs which can be
processed by statistical tests, for instance, ANOVA test, in order to remove
the correlated SNPs located on the same chromosome.

We point out another shortcoming which has been observed in nu-
merical experiments. Since the number of SNPs is much larger than the
number of individuals, then we observe only a very small number of vec-
tors X; among all possible vectors. This implies that contributions of some

important SNPs in a pair of vectors of alleles (x,,x;) may be hidden

when there are many transitions in this pair, for example, from 0 to 1 and
from 1 to 0. In this case, the distance between vectors is large, and this
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pair does not get to a set of N best pairs with the largest ratios (i, j) .

One of the ways to overcome the difficulty is to apply the combination of
the bagging method [37] and the random subspace method [38]. The
FAPI-GWAS can be improved by using a combination of the bagging
method for individuals and the random subspace method for SNPs. The
random sampling of individuals in the proposed method allows us to
smooth some outliers of the phenotype caused by random factors. By
means of the random sampling of SNPs, we try to reduce the effect of
SNPs which mask the effect of subsets of important SNPs.

6. Conclusion. In this paper, a very fast and simple algorithm for
GWAS, including SNP interaction detection, has been presented. In spite of
its simplicity, the FAPI-GWAS can be applied to various GWAS problems
and cases from the analysis of binary genotype matrices to the microarray
gene expression data analysis. Moreover, the algorithm can be simply ex-
tended, for example, on the bagging method.

At the same time, it is important to note that the algorithm should be
used jointly with another algorithm, for example, with the ANOVA tests to
identify the association between a single marker or interacting SNP-pairs
and a continuous outcome. At that, the second stage uses a set of significant
SNPs which is obtained at the first stage by means of the FAPI-GWAS.

The results of numerical experiments and the logic underlying the FAPI-
GWAS have demonstrated that it outperforms the standard algorithms from the
computational point of view for many real data sets. Moreover, it takes into
account the epistatic effect or the SNP-SNP interaction. We have analyzed DH
populations of barley for purposes of numerical experiments. The experiments
have illustrated the FAPI-GWAS efficiency. The obtained sets of significant
SNPs have coincided with similar sets obtained by means of standard algo-
rithms. Moreover, we could see that SNP-SNP interactions detected by means
of the FAPI-GWAS were successfully validated by performing the two-locus
ANOVA test. However, we have investigated only rather small data sets and
only a simplest implementation of the FAPI-GWAS. It has been done because
we aimed to compare results of the FAPI-GWAS with the well-known standard
technique. We aimed to get added evidence that the algorithm copes with tasks
of the GWAS. It should be noted that a lot of experiments have to be performed
in order to evaluate how the FAPI-GWAS handles various types of data set,
large data sets, how its modifications and extensions outperform the available
algorithms. These questions are directions for further research.
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JI.B. YTKUH, N.JI. YTKUHA
BBICTPOJAEVCTBYIONAMN AJITOPUTM HOJTHOT'EHOMHOI'O
MOUCKA ACCOIIUAIINIM HA OCHOBE AHAJIM3A IIAP
OBBEKTOB

Ymkun JI.B., Ymkuna U.JI. BbicTpoAeiicTBYIOIIHH aJrOPpUTM NOJTHOTCHOMHOIO NMOMCKA
accOUMANMIA HAa OCHOBE AHAJIN3A Nap 00bEeKTOB.

AunHoTtaums. [IpennokeH mNpoOcTOif OBICTPOACHCTBYIOUIMI aIrOPUTM  IMOJIHOTEHOMHOTO
TIOHCKA aCCOLMAIMH JUIS OLIEHKH OCHOBHOTO ¥ SIHCTATHIECKOro d((heKTa BIHIHHUSI MapKEPOB WK
€IMHUYHBIX HYKJICOTUOHBIX monumophu3moB (SNP). OcHoBHas wuzes, Jexaias B OCHOBE
aTOpUTMa, 3aKIIOYaeTCss B CPABHCHHH TGHOTUIIOB Iap OOBEKTOB IOMYJIIHH M CPAaBHEHUH
COOTBETICTBYIOIMX 3HAUCHWIl (eHOTMNIA. B  amropuTMe HCHIONB3yeTcss HHTYHTUBHOE
MPEATIONOKEHHE, YTO U3MCHEHHUS ajUlelieil, COOTBETCTBYIOIMX BaXHBIM SNP y mapbl 00BEKTOB,
TPUBOJIAT K OOJIBIIOMY Pa3IMUMIO 3HAYCHNH (PEHOTUIIA STUX HHIMBHIYYMOB. AJTOPHTM OCHOBAaH
Ha paccMOTpeHHH Iap HHAuBUAYyMoB BMecTo SNP mm map SNP. OCHOBHEIM IpEHMyIIECTBOM
ITOPUTMA SIBJIETCSI TO, YTO OH C1a00 3aBHCHT oT KommuectBa SNP B Martpune reHorumos. B
OCHOBHOM OH 3aBUCHT OT KOJMYECTBa OOBEKTOB, KOTOPOE, KaK IIPaBHIO, OYEHb Majo IO
cpaBHEHHIO ¢ konmdecTBoM SNP. JIpyroe BaxxHOe MPEHMYIIECTBO AITOPUTMA 3aKII0UAeTCS B TOM,
YTO OH II03BOJISICT Oe3 JOIOITHUTEIBHBIX BBIMUCIICHNH OOHApY)KMBATh JMUCTATHIECKUH d(deKT,
paccMarpuBaeMblii KaK B3aMMOJCHCTBUE I'€HOB. AJITOPUTM TAKKE MOXKET HCIOJIb30BaThCS B
clydae, Korza (peHOTHII IpUHIMAET TOJIBKO J(Ba 3HAUEeHUs (cXeMa clydait-koHTpois). Kpome Toro,
AITOPUTM MOXKET OBITH JOCTATOYHO IPOCTO PACIIMPEH C aHAJIN3a ABOMYHOIN MAaTPUIBI TEHOTHIIOB
Ha CIy4ail KOJMYECTBEHHOTO aHalu3a SKCIPECCUM TIeHOB. YHMCIEHHBIE SKCIEPUMEHTHI C
pealbHBIME HabOpaMM JAHHBIX, COCTOSIIUMH U3 TONYJSIMIl yJBOSHHBIX TAIUIOUJHBIX JIMHUM
SUMEHsI, WUIFOCTPUPYIOT IPEUMYLIECTBO HPEAIaraeéMoro ajiropurMa IO CpPaBHEHUIO CO
CTaH/APTHBIMK AJITOPUTMAMH TIOJTHOT€HOMHOIO TIOMCKA aCCOLMAIMH ¢ BBIYMCIUTEIBHOH TOUKH
3peHHs, OCOOCHHO I OOHapyKeHus oSmucTatHieckoro s¢dexra. IlyTm mmd moBbIIIeHUS
9 (HEeKTHBHOCTH NPEITAraeMOro aIrOPHTMA TAKXKE 00CYKIAIOTCS B CTAThE.

KiroueBble cjioBa: MOJHOrCHOMHBIH Touck accoumarmii; ANOVA; mammHHOE
oOyuenue; smucras; SNP; MeTpuka pacCTOSIHUSL.

YTkun JleB BragumMupoBud — 1-p TeXH. Hayk, npodeccop, npodeccop kadenps! TereMari-
ku (mpu LIHWMW PTK) wuHcTMTyTa DpUKIAJHONH MareMaTMKH M MexaHukd, CaHKT-
IerepOyprekuit nonurexaudeckuii yausepcuteT Ilerpa Benukoro (CIIGITY). Obnacts Hayd-
HBIX HMHTEPECOB: MHTEIUICKTYaJbHbIH aHaIM3 JAHHBIX, HPEICTABICHHE HEOIPEIEICHHOCTH,
MPUHATHE PEIICHHH NPH HEMONHOH HH(OpPMALuH, TEOpHs HAICKHOCTH, OHOHMH(pOpPMATHKA.
Uncno HayuHsIx myOmukanuii — 344. lev.utkin@gmail.com, http://levvu.narod.ru; ITonurex-
Huveckas, 29, Caukr-IlerepOypr, 195251; p.1.: +7(812)552-6521.
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(Cxonrex), 1abopaHT-HUCCIE0BATENIb HAYYHO-HCCIIEI0BATENbCKOro KoMIuiekca «Hanoduorex-
Homorum», Cankr-IlerepOyprekuii  monmTexHudeckuii  yHuBepcuter Iletpa Bemmkoro
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