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Abstract. This paper presents the recent improvements in Serbian speech recognition that
were obtained by using contemporary deep neural networks based on sequence-discriminative
training to train robust acoustic models. More specifically, several variants of the new large
vocabulary continuous speech recognition (LVCSR) system are described, all based on the
lattice-free version of the maximum mutual information (LF-MMI) training criterion. The
parameters of the system were varied to achieve best possible word error rate (WER) and
character error rate (CER), using the largest speech database for Serbian in existence and the
best n-gram based language model made for general purposes. In addition to tuning the neural
network itself (its layers, complexity, layer splicing etc.) other language-specific optimizations
were explored, such as the usage of accent-specific vowel phoneme models, and its
combination with pitch features to produce the best possible results. Finally, speech database
tuning was tested as well. Artificial database expansion was made by modifying speech speed
in utterances, as well as volume scaling in an attempt to improve speech variability.

The results showed that 8-layer deep neural network with 625-neuron layers works best in
the given environment, without the need for speech database augmentation or volume
adjustments, and that pitch features in combination with the introduction of accented vowel
models provide the best performance out of all experiments.

Keywords: deep neural network, automatic speech recognition, chain training, LF-MMI,
accents, pitch, Serbian.

1. Introduction. This paper represents an overview of results and
improvements in automatic speech recognition with systems trained on the
largest Serbian speech database using an effective contemporary deep
neural network (DNN) architecture. Previously, there have been several
experiments with a few different neural network based, as well as Gaussian
mixture model (GMM) based architectures. These are mostly systems
trained on smaller speech databases consisting of telephone recordings with
limited spectral range, and they were tested on smaller vocabularies (up to
around 14000 words) accordingly [1-2]. They are based on the cross-
entropy classification criterion. On the other hand, the system in [3] was
trained on the same speech database used in this paper, so there is a
possibility of direct comparison. That system had input alignments from a
speaker adaptive training (SAT) stage [4], and used modified stochastic
gradient descent (SGD) optimization and parameter averaging [S] to
compute DNN parameter values in a given number of training epochs.

In contrast to the previous methods, recently there has been a lot of
talk about connectionist temporal classification (CTC) [6] in speech
recognition [7], especially when there is a greater amount of data available.
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CTC can also be used in the context of maximum mutual
information (MMI) based sequence training, as both of them maximize the
conditional likelihood of correct transcriptions. As seen in [8], and
implemented in the system from this paper, some of the ideas can be applied
to MMI, such as training from scratch (without initialization), a 3-fold
reduced frame rate [9] using a simpler hidden Markov model (HMM)
topology, and the usage of finite state acceptors (FSAs) to limit the range of
frames where supervision labels can appear [10]. The proposed method is
denominator-lattice-free, and the summations are done over all possible
label sequences — to accomplish such a task, it is run on the GPU with a
phoneme-level language model, while also using several regularization
techniques to prevent, or at least reduce the possibility of overfitting.

The rest of the article is organized as follows: Section 2 describes the
baseline system upon which the new system is built. Section 3 explains the
training method in detail. Section 4 describes the speech database used for
training, and Section 5 the language model used for decoding the test set.
Section 6 briefly overviews the experiments performed, and Section 7
presents all the results in details. The following Section 8 discusses possible
upgrades to the current system. Finally, Section 9 concludes the paper.

2. The baseline system. The baseline HMM-GMM speech
recognition system was trained using the Kaldi speech recognition
toolkit [11], which allows a long list of options for pre-DNN trainings, to
provide as good as possible input alignments for the neural network. These,
among others, include context-dependent triphone acoustic model training
and speaker adaptive training, which were used for the baseline system
here. After an initial monophone training with 1000 Gaussians as the goal,
two rounds of triphone training (#i/ and tri2a) were performed to
eventually create a system with 3000 clustered HMM states and 25000
Gaussians in total. Alignments of the training database obtained from this
system were used for SAT training (with unchanged number of states and
Gaussians). Finally, the SAT system created the input alignments for DNN
training. The results of decoding the test dataset (more on it in Section 4)
with pre-DNN acoustic models are given in Figure 1.

3. The training method. The so-called “chain” training method is
based on performing maximum mutual information (MMI) training [12-13]
directly on the GPU, for the sake of benefitting from synchronized memory
access across its cores, while not using lattices and implementing the
forward-backward training algorithm in both the numerator and the
denominator part of the objective function. Both the utterance-specific
numerator graph and the shared denominator graph (which encodes all
possible work sequences in the given setup) are stored as finite state
acceptors (FSAs), which can be viewed as an equivalent to HMMs, but with
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labels instead of states on their arcs. The obvious downside of this approach
is computational complexity and efficiency, so the graphs have to be
simplified, to be as small as possible for all the necessary computations.

pre-DNN phases
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Fig. 1. Baseline WER results

Firstly, the phoneme topology is very simplified — instead of the
standard left-to-right HMM topology with 3 states used in automatic speech
recognition for a given phoneme model, this topology can be traversed in a
single frame. Additionally, the first frame of a phoneme has a different
label (the so-called “pdf” identifier, the neural network output) than the
remaining ones, so the possible emitted sequences from one phoneme
HMM are something like a, ab, abb, abbb (where b is a label analogous to
the blank symbol in CTC) etc. A new context decision tree has to be built
particularly for this new topology and the three-fold reduced frame
rate (using the converted phoneme-level alignments). Furthermore,
transition probabilities of HMMs are set to a constant value (0.5) since they
are not that important when taking into account the presented topology.

Another simplification is in the language model used to create the
denominator graph. In this method, it is a 4-gram phoneme-level language
model, estimated directly from input phoneme-level alignments of the
training dataset. Conventional language models (even unigrams that are
often used in MMI and similar discriminative training methods) would be
way too slow to use here. Furthermore, this language model has no
smoothing or pruning below trigram level to limit the graph size increase
after adding context dependency, and there is a predefined total number of
4-gram history states, selected in such a way to maximize the likelihood of
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training data. Finally, there is no interpolation or backoff from existing
history states (test data perplexity would be infinite).

The creation of both graphs is performed in an unusual way. For
the denominator, after composing with C (context dependency) and then
H (HMM topology), and epsilon removal afterwards (so far like the usual
HCLG graph creation in Kaldi), instead of standard determinization and
minimization, a different procedure is implemented to even further reduce
the number of states and transitions in the output graph — this procedure
can be summarized as the sequence of operations {pushing weights;
minimization; reversing the FSA; pushing weights, minimization;
reversing} repeated 3 times, followed by a final epsilon removal, because
the reversals can create them. The denominator graph created this way
will cut down both memory consumption (less states) and time taken for
MMI training (less transitions).

Moreover, the initial and final probabilities in the graph are
modified. Instead of reflecting only the sentence starts’ and sentence
endings’ statistics (which does not work with parallel training on fixed size
chunks of utterances), initial probabilities are here obtained by averaging
the HMM state distribution for 100 subsampled frames from the initial state,
while the final probabilities are fixed to be 1.0.

As for the numerator, for a given utterance, input alignments are
converted into lattices representing all possible alternative utterance
pronunciations, which are then processed into phoneme graphs, and then
compiled into utterance FSAs. These are processed even further [8], until
each FSA state can be identified with a frame index (important for the
ability to separate FSA into chunks). The numerator FSA now contains a
subset of paths contained in the denominator FSA.

Like for the denominator, for processing fixed sized utterance chunks,
time constraints had to be added to alignments so that it can be possible to
split up the numerator FSA accordingly. Using an idea similar to one used in
CTC training [12], this FSA is composed with another FSA with
number_of subsampled_frames+1 states which has a transition from state ¢ to
state #+/ with a pdf identifier as a label, only if that pdf corresponds to a
phoneme that is allowed on the subsampled frame . Phoneme allowance on a
certain timestamp is determined based on a tolerance window (50ms), which
for each phoneme in the utterance lattice allows it to appear slightly before, or
slightly after from where it actually appeared.

Finally, the numerator FSA is also composed with the so-called
normalization FSA, which is identical to the denominator FSA, but with the
modified initial and final costs mentioned before. The new initial
probabilities are added into the original denominator FSA using epsilon
transitions from a new initial state (those epsilons are later removed).
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The simpler forward-backward computation — for the numerator, is
implemented on CPU, while denominator computations run on the more

powerful GPU.
To reduce the possibility of overfitting [14], three different
regularization methods are used — cross-entropy regularization (an

additional special output layer for training the cross-entropy objective, with
tweaks to the last hidden layer as well) and output ZA-norm
regularization (on the main output layer), as well as the so-called leaky
HMMs (allowing transitions from each HMM state into every other state,
with a small coefficient, which makes the system gradually forget context).

The chosen acoustic models are sub-sampled time-delay neural
networks (TDNNs), which are trained using cross-entropy training. A special
set of layer splicing indexes are in use. They are -1,0,/ for several initial
layers (they see 3 consecutive frames), and -3,0,3 for the remaining hidden
layers (they see 3 frames as well, but separated by 3 frames from each other).
In such a configuration, the most hidden layers need to be evaluated only on
every third frame. The number of layers, number of neurons in each hidden
layer, number of training epochs and other parameters, such as the coefficients
for speed perturbation and volume scaling, were varied from experiment to
experiment. Also, online-calculated i-vectors are used for the adaptation of the
deep neural network along the way (with updates on every tenth frame).

4. Serbian speech database. For all the experiments, the largest
Serbian speech database for LVCSR in existence up to this day was used. It is
comprised of two very distinct parts — a larger part containing audio book
recordings [15], read by professional speakers in a studio environment, which
produced generally very high quality audio, and a smaller part containing
mobile phone recordings of different people, mainly commands, inquiries and
similarly structured short utterances that can be expected in a conversation
with voice assistant type applications installed on mobile phones.

Naturally, the audio book part, which contains most of the material,
brings a lot of variability in terms of expressiveness and the number of
different sentence structures, even though the literary functional style
dominates all other styles — this style is nevertheless the one most
correlated with natural, everyday speech. The vast majority of the total of
121000 different words came from this part of the speech corpus. The
utterances are very long on average (around 15 words per utterance), and
the amount of material isn’t equally distributed per speaker — some
speakers have several hours of audio data, and others half an hour or even
less. In the future, an equalized version of this database is going to be
examined for acoustic model training. The equalization in this context
implies dividing speakers with more abundant audio material into more or
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less equally long segments, and then modifying tempo and pitch
characteristics in individual segments to create different “artificial”
speakers, equally represented in the speech database as a whole. There is
no significant background noise, and words and phonemes are generally
well pronounced throughout the database. Everything was manually
reviewed multiple times before these experiments. All in all, there is
around 154 hours of audio data, out of which around 129 hours is pure
speech, and the remaining 25 hours correspond to silence segments. The
data is divided into more than 87000 separate utterances. In total, there are
21 identified male speakers and 27 identified female speakers, with
another 10-15 different unidentified speakers (with possible overlaps).

On the other hand, the so-called “mobile” speech database consists
of mostly domain-oriented utterances, as mentioned above. These utterances
are much shorter (between 4 and 5 words on average), and most of them are
commands, questions, numbers, currencies, proper nouns (names, cities,
rivers and other topological data), different inquiries and similar sentence
structures, recorded using a specialized application which simulates a
conversation with the device, i.e., a helper application installed on it. There
are also some regular declarative sentences, as well as spellings of names,
organizations, brands, etc. People were instructed to try to talk as naturally
as possible (to be more spontaneous). A lot of different speakers contain a
similar amount of audio data, and all of them have all the given utterance
types. This set makes up around 61 hours of total audio data, out of which
42 hours is speech, and 19 hours is silence. In total, there are 170 male and
181 female speakers, which adds up to around 74000 utterances. Recording
quality is usually good, but several speakers have a significant amount of
background noise as well.

All audio data was sampled at 16 kHz, 16 bits per sample, mono
PCM. Both parts of the speech database were used in an attempt to train
more robust acoustic models, well-adjusted to both shorter commands
and longer, regular sentences. To summarize, around 160000 utterances
and 215 hours of audio data was obtained in total (170 hours of speech
without silences, see Table 1). Out of this, 18 hours of speech coming
from 26 speakers is selected for the test set. Test speakers do not
participate in any training, and each unique speaker is either completely
used for testing, or completely for training (never for both). The selection
of speakers was random, and the goal was to take around 10% of the
more varied audio books database (9 speakers, 15 hours, 9000 utterances,
140000 words), and around 5% of the more uniform (vocabulary-
and structure-wise) mobile database (17 speakers, 3 hours, 4000
utterances, 20000 words).
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Table 1. Serbian speech database breakdown

Audiole books Mobile phone recordings
total duration 154h 61h
speech duration 12%h 42h
# speakers 60+ 351
# utterances 87428 74137

# words 1314574 355396

# characters 6275495 1600390
# words per utterance 15.04 4.79

5. Language model. Language modeling is a very important
aspect of speech recognition systems, especially on large vocabularies.
For the purpose of the experiments in this article, a trigram language
model was trained on the training part of the database transcriptions —
which have over 1.5 million words in total by themselves (around 121000
different word forms), as well as on an additional part coming from the
Serbian journalistic corpus for more realistic estimation of
probabilities (this part consists of over 440000 additional sentences,
mostly from newspaper articles and similar sources, for a 40%-60% mix).
The journalistic corpus was only used to provide better estimates of n-
gram probabilities, with no new words coming from it, so in the end there
were still around 121000 different words (unigrams) in the final language
model, with 1.3 million bigrams and 358000 trigrams. The Kneser-Ney
smoothing method [16] with a pruning value of 107 was applied to obtain
the previously mentioned numbers, as it was proven to be optimal [3].
The language model was trained using the SRILM toolkit [17]. The
vocabulary included words from both train and test sets (there are no out-
of-vocabulary words). However, the test set was not included in the
language model training procedure, to simulate real situations where the
user says something not entirely expected by the speech recognizer. Test
data perplexity was calculated to be 768.8.

6. Experimental setup. Several training parameters for the proposed
training procedure have been examined in order to find the optimal
configuration:

—number of hidden layers (7-9);

—number of neurons per layer (512-1024);

—number of training epochs and iterations (3-5 epochs);

—layer splicing options (how many -1,0,1 vs. -3,0,3 layers);

—HMM structure complexity (3000 vs. 4000 states);
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—extending database using speed-perturbed data (Boolean);

—applying random volume adjustments to data (Boolean);

—using accent-specific vowel models (Boolean);

—using pitch as an additional feature (Boolean).

Other DNN parameters were the same everywhere. These included
the basic features — 40 high-resolution Mel-frequency cepstral
coefficients (MFCCs), calculated using 40 filter banks, on 30ms frames,
with 10ms shifts, the number of initial and final parallel jobs (3 and 16), as
well as the initial and final learning rates (0.001 and 0.0001).

Input alignments to the DNN training stage were provided via the
baseline HMM-GMM speaker-adaptive training system (section 2,
Figure 1), producing WER of around 22% on the described test set (without
any additional discriminative training at this stage).

7. Experimental results. Initial training parameters were the
following: 7 neural network layers, 625 neurons per each layer, 4 epochs (60
iterations) of training, two initial -7,0,/ layer splicings and four -3,0,3
splicings for the remaining hidden layers, no accent-specific vowel models,
3000-state HMM structure, no artificial database extension or adjustment,
without the additional pitch features.

Various number of neurons per each hidden layer were examined
for the fixed initial number of layers (7). All the produced word error
rates were slightly under 10%, but the experiments have shown that 512
seems to be too few, and 1024 too many. In between, 625 and 768 (the
midway between 512 and 1024) neurons per layer seem to produce very
similar WERs — 9.71% and 9.72% to be exact (Figure 2). In this
situation, it was reasonable to choose the less complex system — more
neurons take a lot more time to train and the resulting models take up a
significantly larger space on the disk, which can further result in much
slower decoding time (this can be crucial for some ASR applications, e.g.
on devices with limited memory resources and not so powerful
processors, such as mobile phones), that can severely affect user
experience when real time communication is to be expected. Specifically,
total training times were between 11 hours for 512 neurons per layer, and
18 hours for 1024 neurons per layer, using a minibatch size of 32 to
successfully complete the whole training on the concrete GPU. The
difference in the final model size was substantial, as it ranged from
29MB (least complex system), up to almost 100MB (most complex
system). The decoding time varied as well, even though it was very fast
on the given machine in general, as it took only about an hour (or slightly
more) to decode the whole 18 hours of test data. Compared to real time,
the decoding speed ranged from 5.4% to 8.2% of real time. This is likely
much more prominent on less powerful devices.
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7 layers, 60 epochs
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Fig. 2. WER results for different number of neurons per layer (7-layer DNN)

Character error rate mimicked the way WER behaved — it ranged
from 2.53% to 2.62%. Based on this, it can be assumed that most errors
occur in just a few letters (characters) of words, while most of the
word (basic form, i.e., the lemma) is often correctly recognized. This is an
observation that will be explained in more detail later in the article.
Presenting the most frequent mistakes (particularly substitution errors) the
decoder made proves the abovementioned considerations (Table 2). The
most prominent insertions and deletions contain a great majority of very
short one-syllable words (1-3 characters long), such as prepositions,
conjunctions, etc. There are also substitutions, such as changing one version
of a word pronunciation with another allowed pronunciation (which is often
just slightly acoustically different). These type of errors can be handled in
the pronunciation dictionary (lexicon) used for training and testing in future
iterations. On the other hand, the mentioned deletions and insertions can
probably only be solved with a more sophisticated language model.

Increasing the number of hidden layers in the network by one
improved WER by a significant amount — to 9.45%. Further increments
didn't seem to produce more improvement (Figure 3) — WER actually
started going in the wrong direction. Other combinations of layers and
neurons did not seem to be more successful either (8 layers and 768 neurons
per layer, 9 layers and 625 or 768 neurons per layer, etc. — all fell short).
So the 8-layer 625-neuron configuration seemed to be optimal one for the
given amount of data and variability. Here, the training was completed in 14
hours, and the final models occupied 45MB. The decoding speed was 6.3%
of real time. The character error rate also got better, from 2.53% to 2.47%.
Most frequent errors expectedly remained almost the same, but the number
of different errors was slightly reduced.
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Table 2. Most frequent word error examples (total words in test set: 158653)

substitutions insertions deletions
total 10889 952 3578

je —i(1.18%) i(7.98%) je (17.08%)

i— je (0.41%) u (6.09%) i(16.1%)

bilo — bila (0.29%) je (5.88%) u (5.14%)

peter — petar (0.26%) na (4.41%) a(2.91%)
u — 0 (0.26%) da (3.15%) da (1.98%)
koja — koje (0.25%) mu (2.94%) na (1.68%)

osamnaeste — osamneste (0.25%) ni (2.42%) 0 (1.57%)

examples iz — 1 (0.24%) ne (1.79%) se (1.43%)
sam — osam (0.21%) to (1.79%) on (1.34%)
me — mi (0.2%) od (1.58%) ona (1.09%)

je — nije (0.19%) a (1.47%) s (0.87%)

hiljadu — hijadu (0.17%) sa (1.47%) su (0.81%)
je — koje (0.17%) s (1.16%) j0j (0.75%)
koje — koji (0.17%) se (1.16%) mu (0.67%)
sa — se (0.16%) pre (1.05%) pa (0.67%)

revolucija — revolucije (0.15%) po (0.84%) bi (0.61%)

The number of training epochs seemed to be optimal right from the
start (Figure 4) — changing the number of training epochs in any direction
seemed to increase WER. More epochs and iterations are definitely not
suggested. If time was more relevant, the slightly shorter training (less
iterations) could be proposed. The system might benefit from a change in
learning rate or the number of parallel jobs (initial and/or final) alongside
the change in epochs and training iterations, but it was not tested in this
round of experiments, since the given learning rate was recommended for
systems of similar complexity, and the training and validation probabilities
did not show signs of overtraining.

625 neurons, 60 iterations

10,0
9,8
9,6

9,4 9,72
9,2
9,0

7 8 9
# hidden layers

Fig. 3. WER results for different number of layers (625 neurons per layer)
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7 layers, 625 neurons

10,0
9,8
9,6
9,4 9,77 9,72
9,2

9,0
3 (45) 4 (60) 5(74)

# training epochs (iterations)
Fig. 4. WER results for different training lengths (number of iterations)

Initially, in the 8-layer neural network architecture, the two layer
splicing variants were equally distributed among hidden layers (3 initial
layers had the -7,0,1 splicing with neighboring layers, while the 4 deepest
layers had the -3,0,3 splicing put in place, or 3+4 for short). Additional
adjustments did not produce better results. In the 9-layer system however,
an alternative 4+4 splice distribution managed to improve WER in relation
to the original 3+5 splicing variant, but it still did not reach the current best
result of 9.45% WER. All of these results can be seen in Figure 5.

layer splicing
10,0
9,8

9,6
9,4
9,2 9,48
9,0

9L-625N, 3+5 9L-625N, 4+4 8L-625N, 3+4 8L-625N, 4+3

test configuration

Fig. 5. WER results for different layer splicing

In all further experiments (unless explicitly mentioned), the best
architecture so far was used (8 layers, 625 neurons per layer, 3+4 splicing,
4 epochs, 9.45% WER).
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The next adjustment to be examined was artificial data expansion.
The speech data was expanded by using speed perturbance coefficients to
produce new versions of the database (on the fly), that contained either
faster or slower speech than the original database. These perturbed database
versions were added to the original in the training set. Several perturbance
coefficients have been examined, always in pair (one slower and one faster
database version plus the original). Unfortunately, no gain was made in
WER, at least with the given architecture (Figure 6). The more the
perturbed data was changed in comparison to the original, the worse the
results became. Features were probably too dispersed in this setup for the
previously optimized network to cover properly. An increase in the number
of layers and/or neurons could be tested (with caution to not cause
overfitting). Nevertheless, as stated before, smaller neural networks are
preferred, so those experiments were skipped for now. Not to mention that
the training was much longer (over 42 hours long), with a lot more
iterations (same number of epochs) due to the increased amount of data.

speed perturbance

10,0
9,8
9,6
9,4
9,2
9,0

9,57

none 0.9x & 1.1x 0.8x & 1.2x

speed change coefficients of added audio data

Fig. 6. WER results with added speed-perturbed data

Another interesting approach was to modify input audio data by
volume scaling using a random coefficient for each file in the speech
database. This was also performed on the fly in the training scripts.
Therefore, there is no extra training material, only the variability is
increased. This could compensate the fact that some speakers naturally speak
louder than others, so in a way this may produce a more equalized database
volume-wise, i.e., with more training data for much louder or much quieter
speech than normal (neutral loudness). More precisely, the volume
adjustment coefficient was randomly selected for each file between the
values of 0.125 and 2.0. At first, this approach did not improve the best
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result — in fact, it produced one of the worst ones so far. Luckily, increasing
the number of neurons per layer to 768 made a big difference — almost
reaching the best result. Because of that result, even a 9-layer architecture
was examined, and the new best result so far was obtained — 9.32% WER.
All the mentioned results are presented in Figure 7.

volume adjustment

10,0

9,8

9,6

9,4

;O B m

9,0
8L-625N 8L-625N 8L-768N 9L-768N
(referent)

test configuration

Fig. 7. WER results with volume-adjusted data

Unfortunately, this had a bit of a toll on training length and
decoding speed — 18.5 hours of training, 6.5% of real time decoding
speed. Yet, it has been shown that this kind of an approach can work
well, if not for anything else than for systems running on more powerful
machines which can perform in real time without issues. Of course, due
to randomness, the training is not exactly repeatable (unless producing
the same pseudorandom sequence of volume scaling coefficients using
the same seed), and sometimes you can be a bit luckier than at other
times. For the rest of the results in the paper, the 9.45% WER result is
still considered as the referent one.

A major change incorporated in the system was obtained using
separate models for vowels with different accents — five standard Serbian
accents, plus the unstressed version of the vowel, ignoring diphthongs. The
biggest change in this approach was creating a lexicon with word
pronunciations with accents, which was eventually performed using the
most comprehensive existing accentuation dictionary for Serbian. Other
appropriate changes were made to tree-based clustering of HMM states as
well. Of course, firstly the HMM-GMM models had to be retrained with the
described changes to produce new phoneme-level alignments for the neural
network. After everything has been performed, there was still no luck in
improving the existing WER. Increments in layers and neurons also
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produced no improvement (Figure 8). Increasing the number of HMM states
from 3000 to 4000 in the initial system to possibly cluster the now more
diverse set of phoneme states in a better way also didn't change much,
producing a WER of 9.68%. This was likely because speakers often
pronounced words in unexpected, incorrect ways, so that accented vowel
models were not trained in the best possible way — it can be said that there
was a lot of “noise” in the data. Unfortunately, manually labeling the whole
training set (specifically vowel accents) is not possible in practice,
especially for datasets this big or even larger. Maybe this approach can
work better on smaller databases, or where speakers were instructed to
speak exclusively in the linguistically correct way (and data was checked
thoroughly). Hopefully though, adding pitch features in the mix can help,
since pitch and accents are very correlated in the Serbian language.

Adding the fundamental frequency alone as an additional feature
helped a lot (Figure 9). Specifically, there were 3 new features —
weighted log-pitch, delta-log-pitch and the warped Normalized Cross
Correlation Function (NCCF) value (originally between -1 and 1, higher
for voiced frames). The whole system was retrained from the start for the
new feature set. Finally, a significant jump in WER was obtained, to
9.18%. At this point, the training procedure was moved to a machine with
a better GPU, but for later comparisons let's mention that the training
lasted around 10 hours. The final model was still around 45-46MB big,
and the decoding speed was 5.1% of real time. Character error rate
followed the WER improvement, and jumped from 2.47% to 2.40%. The
list of the most frequent errors was still unchanged, although their
frequency decreased, as the acoustic model actually helped distinguish
similar words a little bit better.

accented vowels
10,0
9,8
9,6
E 8 £
9.2 m 9,51
9,0
no accents 8L-625N 9L- 625N 8L-768N

(referent)

test configuration

Fig. 8. WER results with accented vowel models
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pitch features
10,0
9,8
9,6
9,4
9,2 019
00 |2
without pitch with pitch

with or without pitch

Fig. 9. WER results with added pitch features

The final TDNN-based experiment was the examination of pitch
features in combination with accented vowels, for the reasons stated above.
Fortunately, this produced the best result to date (Figure 10) — word error
rate of 9.06% and CER of 2.37%. The whole DNN part of the training took
9.5 hours and produced a model of 45SMB (just slightly smaller than without
accents). The decoding capabilities were calculated to be 5.6% of real time.

pitch features and/or accented vowels

9,9
9,7
9,5

9,3
9,1
8,9
8,7
8,5

no accents or accents pitch accents + pitch
pitch (referent)

test configuration

Fig. 10. WER results with added pitch features and/or accents

In order to create even better acoustic models for the given database
and a general purpose LVCSR system, speaker audio data equalization
could be analyzed. Purposefully adding noise to speech data to prepare
models for not-so-perfect environments (this could also produce more
variability to the features) might be another way. However, creating a
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sophisticated language model based on recurrent neural networks seems to
be the most promising direction.

Let us also mention that WER was mostly accumulated on the audio
books test dataset (10.21% WER, 2.63% CER), while the mobile database
test produces a much better WER of less than 1% (0.82% WER, 0.33%
CER for pitch-based models with accents).

Like mentioned before, overall CER is only at around 2.4%, which
is due to the high language inflectivity and most likely suboptimally
trained language models. High inflectivity means that small changes in
words are used to express different grammatical categories, e.g. case,
tense, gender, number. This creates a possibility of very similar but
completely different words (with the same basic word form, i.e., lemma)
to be substituted with each other in the recognition process. There is
another proposed ASR system evaluation method that was created for
languages like these — inflectional WER (IWER), which assigns a weight
between 0 and 1 to so-called “weak” substitutions, where the lemma of
the word is correctly recognized [18]. If the default weight of 0.5 is taken
here, for the best system the IWER value is calculated to be 7.23%. A lot
of small errors still persist — including alternative pronunciations of same
words (e.g. numbers) and some errors that are more due to the language
model in use, but these are not further explored in this paper.

The system also performed a lot better on the female speaker test
dataset than on its male counterpart — WER of 5.66% compared to 11.22%,
but this was likely a consequence of speaker choice (random selection) for
this particular test set (Figure 11). Some of the male speakers do have more
background noise and lower quality audio in general (e.g. mumbling).

database and speaker gender

12,0
10,0
8,0
6,0
4,0

i
0,0 - - _— —

books WER books CER mobile WER mobile CER
H Male Female ® Total

Fig. 11. WER breakdown for speech database parts and speaker genders
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Figure 12 shows a side-to-side comparison between this system (the
best variant that incorporates vowel accents and pitch features) with the
previous ASR systems for Serbian that use acoustic models trained on the
same speech database.

WER comparison between the chain system
and previous systems

30,0
25,0
20,0
15,0
10,0
14,68
5’0 m
0,0

GMM (SAT) EESEN nnet2 chain
type of algorithm

Fig. 12. WER comparison — baseline GMM, end-to-end, SGD system, chain system

As expected, the “chain” system more than halves the WER obtained
with the baseline HMM-GMM system, which is described in Section 2.

The next system is an end-to-end system for Serbian developed by the
Eesen framework [19]. In this system a LSTM-based deep neural network is
trained to directly model connections between speech and context-independent
lexicon units, which dramatically reduces the amount of expert knowledge
needed to successfully train a competitive LVCSR system. The training is
CTC-based, while allowing the usage of weighted finite state
transducers (WFSTs) in the decoding procedure. When using the Serbian
speech database from this article, as described in [20], a reasonably good WER
of 14.68% is obtained. Still, the 9.06% WER of the “chain” system is superior.

The final comparison is with the “nnet2” system, which is the system
based on modified SGD and parameter averaging, as detailed in [3]. The
acoustic models here were also TDNNSs, with such an architecture that more
efficiently models longer temporal contexts [21]. This system produced
another significant improvement, lowering the WER to 12.46%. It was
shown in [3] that WER can improve even further by introducing a
discriminative MMI training stage before the DNN phase to produce even
better input alignments for the neural network, but for fair comparison the
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12.46% WER was chosen. This is the second best system, right after
“chain”, but it is still almost 30% worse in relative word error rate.

It can be concluded that the new system is a lot better than any of the
previous ones. Not only in WER, but in speed (it uses frame subsampling)
as well, as well as efficient training.

8. Experiments with LSTM. After the TDNN experiments have been
completed and catalogued, several experiments using long short term memory
recurrent neural network architectures have been carried out. These tests used
deep LSTMs with a recurrent projection layer — unlike the regular LSTM
architecture, in which there are recurrent connections in LSTM layers from
cell output units to cell input units, input gates, output gates and forget gates,
here, another separate linear projection layer exists after a LSTM layer, with
recurrent connections attaching this new layer to the input of the LSTM layer,
as detailed in [22]. This architecture is often abbreviated as a LSTMP neural
network. Several versions of the neural network with different complexities
were examined (number of layers and neurons), while keeping the splicing
method the same throughout the experiments — the proposed -2:2 splicing
for the initial hidden layer, after which there are no spliced inputs for any of
the other layers, up to, and including the output layer.

Experiments were first concentrated on less complex architectures,
similar to tests in [22], but without much success (Figure 13). Only two
layers didn’t seem to be enough, and tweaking the recurrent vs. non-
recurrent projection dimensionality didn't produce any change at all. Also,
having more layers, but remaining with a very low number of neurons per
hidden layer produced the worst result by far (this configuration was tried
without any projections as well).

LSTM (less complex architectures)

10,0
8,0
6,0
4,0
T
0,0
WER CER
WTDNN ®2L-800N-P512 m 2L-800N-P256 M 5L-440N-PO

Fig. 13. LSTM results with less complex architectures
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Going back to more hidden layers with a reasonable number of
neurons, the results got a bit better (Figure 14). All in all, the more
complex the network got, the better the results were, especially related to
the number of neurons per layer. By far the best result was obtained from
the 3-layer 2048-neuron system (more layers with such a big number of
neurons were not examined due to very long training times). On the
whole test dataset, it produced a WER of 9.00%, which is even better
than the best TDNN system, with a gain on audio books, and a slight loss
on the mobile dataset. Unfortunately, these architectures are very slow,
compared to TDNN on the same machines, regarding both training and
decoding speeds. The best LSTM architecture was being trained for
almost a full week (4 epochs, 113 iterations, same learning rates as
before for TDNN), and even the minibatch size had to be lowered a
couple of times during training because of GPU memory errors. The final
model size was 89MB, with decoding speed of 23% of real time.

LSTM (more complex architectures)

10,0

8,0
6,0
4,0
: il
0,0
WER CER

TDNN m3L-512N m3L-1024N m3L-2048N 41-1024N

o

Fig. 14. LSTM results with more complex architectures

9. Conclusion. This paper describes all experiments and available
results on the Serbian LVCSR speech database in detail, using the “chain”
DNN models. It can be concluded that an 8-layer, 625-neuron-per-layer
structure works best, without the need for artificial database expansion
using speed perturbance or random volume adjustment, with the explained
splicing method, while also preventing the system from overtraining.
Accented vowel models in combination with additional pitch features
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prevailed as the best configuration until now, while even pitch features
alone produced a significant improvement. Various experiments have been
proposed to further polish the acoustic models. Nevertheless, finding the
optimal language model configuration (also based on neural networks) and
incorporating it in the final system seems to be the correct way to proceed.
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YIK 004 DOI 10.15622/sp.58.3

3. I1akolu, b. ITormoBuy, 1. ITEKAP
YCOBEPIIEHCTBOBAHUE PACIIO3HABAHUS CEPBECKOM
PEYH C IOMOIIBIO OBYYEHHBIX HA
MOCJEJOBATEJBHOCTSX I''TYBOKHUX HEMPOHHBIX CETEN

IHaxoyu 3., ITonosuy B., Ilexap /]. YcoBepuIeHCTBOBAHUE PACIO3HABAHMS cepOCKOIi peun ¢
MOMOIIbIO 00Y4YeHHBbIX HA MOC/1eI0BATEILHOCTAX INTy0OKHX HelPOHHBIX ceTeii.

AnHoTtanusi. IlpencraBneHsl MOCIEAHME YCOBEPIICHCTBOBAHHA B PacHO3HAaBaHHU
cepOCKOii pedn, JOCTUTHYTBIC C HCIIOIb30BAHUEM COBPEMEHHBIX I'TyOOKHX HEHPOHHEIX CETeH,
OCHOBAHHBIX Ha NPUMEHEHUH JHCKPHMHHATHBHOTO OOYUYCHUS Ha IIOCIICJOBATEIBHOCTSIX UL
AKyCTHYECKOro MojenupoBaHus. OIHCHIBAIOTCS HECKONBKO BAapUAHTOB HOBOW CHCTEMBI
pacrio3HaBaHus CiIuTHOW peun ¢ OonpumM cinoBapeM (LVCSR), koTopas ocHOBaHa Ha
Oo0y4eHHH 10 KPHTEPUIO MaKCUMalbHOH B3amMHOI wuHpopmanuu (LF-MMI) 0Ge3
HCTIONB30BaHMUs penieTku. IlapaMeTpbl CHCTEMBI BapbHPOBANIUCH TaKMM 00pa3oM, 4YTOOBI
JOCTHYh HAaUMEHBLIMX 3HayeHWi ommOku pacrno3HaBanus cinoB (WER) u  ommOku
pacrosHaBanus cumBonoB (CER) mpu wmcmonb3oBaHMHM caMod OONBINOH CyIIecTBYIOIein
pedeBoil 0a3bl NaHHBIX CEpOCKOro s3bIKa M HAWIYYIIeH N-rpaMMHOH SI3BIKOBOM MOJeNH
ofmiero HasHaueHus. B 1omonHeHWe K HacTpolike caMoll HEHpPOHHOW ceTH (Yuciia CIIOEB,
CIIOXKHOCTH, OOBEAUHEHUS IEMEHTOB CJIOS M T.J.) U1 HOJNy9eHUs HaWITy4IInX pe3yIbTaToB
ObUIM  HCCIENOBAaHBI W JPYrHe OPHEHTHPOBAaHHBIE HAa KOHKPETHBIH S3BIK CHOCOOBI
ONTHMHM3ALHUHY, TAKHe KaK HCIOIb30BaHNE aKIEHTO-3aBUCHMBIX MoOjIelell I1acHbIX GoHeM H ux
COYeTaHUE C TOHAIBHBIMU IpU3HaKaMH. Taxke ObLIa HcCIeIOBaHAa HACTPOIKa pedeBoil Oa3bl
JAaHHBIX, KOTOpas BKIIOYaeT B ce0s HCKYCCTBEHHOE pacIlMpeHHe O0a3bl NaHHBIX ITyTeM
HM3MEHEHHS! CKOPOCTH PEUEeBBIX BBHICKA3BIBAHMI M MAcIITaOMPOBAaHME YPOBHS I'POMKOCTH IS
ydeTa BApUaTHBHOCTH PEUH.

Pe3ynbTaThl 9KCIIEPHMEHTOB IOKa3ald, 4YTO 8-CiIOHHAs TiIyOOKas HEHWpOHHAs CeTb C
625 HelipoHaMU B KOXKAOM CJI0€ pabOTAeT B IAaHHBIX YCIOBHAX pabOoTaeT Jiyylle Ipyrux ceTer
6e3 He0OXOJUMOCTH yBEITHICHHUS PEUeBOH 0a3bl JAHHBIX HIIM PETYIHPOBKU rpoMKocTH. Kpome
TOr0, TOHAJBHBIE NPU3HAKH B COYCTAHHM C HCIIOIB30BAaHUEM aKICHTO-3aBHCHMBIX MOJelel
TJIACHBIX 00€CIeYnBalOT HAMIyUIlIHe TOKA3aTeIN TOYHOCTH BO BCEX DKCIEPUMEHTAX.

KiroueBble ciioBa: riyOokas HeHpOHHAs CeTh, aBTOMAaTHYECKOE PACIIO3HABAHUE DEUH,
o0y4ueHHe Ha MocIea0BaTeNbHOCTAX, LF-MMI, akiieHTsI, 0CHOBHO#! TOH, CepOCKUiA.

IMakoun DIBHH — MJIAIIINKA HAyYHBIH COTPYIHHUK JCNapTaMEHTa SHEPreTHKH, JIeKTPOHHKU
U TEICKOMMYHMKAI[MOHHOTO MH)XHHHUPHHra (akyibTeTa TexHuueckux Hayk, Hosu-Caxckuii
yHuBepcuTeT. O0NacTh Hay4YHBIX HHTEPECOB: YEIOBEKO-MANIMHHOE B3aUMOJEHCTBHE, PAcIIo-
3HaBaHUE M CHHTE3 PeuM, NICHTU(UKALMS JUKTOpa, LU(GPOBOE MOACIUPOBAHHE, CTATHCTUYE-
CKUIl aHalu3, MCKYCCTBEHHBIH WHTEJUIEKT. Yucino HayyHelX nyOnukaumi —  32.
edvin.pakoci@uns.ac.rs; yn. Tpr [Jocureita OOpanoBuya, 6, 21000, Hou Can, CepOus;
p.T.: +381214852521.

HonoBuy BpanuciaB — 1-p TeXH. HayK, HAYYHBIH COTPYIHHUK JeNapTaMeHTa YHEPIreTUKH,
JJIEKTPOHUKH M TEIEKOMMYHHKAIMOHHOTO WHXXHHUPHMHTA (aKylbTeTa TEXHHYECKHX HayK,
HoBu-Cazackuii yHHBEPCUTET, COTPYAHHUK LEHTPa BHOPOAKYCTHYECKHX CHCTEM M 00pabOTKU
curHanoB (CEVAS) dakynbrera TexHuyeckux Hayk, HoBu-Canckuil yHMBEPCHTET, TOLEHT
Axanemun uckycctB B benrpane, Anbga BK yHuBepcuter, ocHoBatens u Biagenen , Computer
Programming Agency Code85. O6nacTh HayYHBIX HHTEPECOB: YEIOBEKO-MAIIHHHOE B3aUMO-
JeiicTBHe, pacllO3HABAaHUE U CHHTE3 peud, HACHTU(UKAIMA AUKTOPA, PACIO3HABAHKUE dMONUH,
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00paboTka M300paXKeHWH, pacro3HaBaHME 00pa3a, aIrOPUTMBI KIIACTEpH3alMH, LU(pPOBOE
MOJICITUPOBAHNE, CTATUCTHYECKUH aHAIIN3, MPHK/IaJHas MaTeMaTHKa, UCKYCCTBEHHbIN HHTEI-
nekt.  Yumenmo  HayuHelx — myOmukamuii —  60.  branislav.popovic.gm@gmail.com,
http://www.branislavpopovic.com; yin. Tpr docureita O6paznosuua, 6, 21000, Hosu Cax, Cep-
oust; p.1.: +381214852521.

Texap Jlapko MoBan — Mimafummii HayqHEIH COTPYNHMK JeNapTaMeHTa YHEpPreTHKH, dJIeK-
TPOHUKU M TEICKOMMYHUKALIMOHHOTO MHXXHHHPUHTA (DaKysibTeTa TEXHHYECKHX Hayk, HoBu-
Cayickuil yHUBEpCHTET, TIIABHBII HCIIONHATENBHEIN qupekTop, AlfaNum Speech Technologies.
OO0nacTh HayYHBIX HHTEPECOB: YEJIOBEKO-MAIIHHOE B3aHMOJCHCTBHIE, PACIO3HABAHUE U CHH-
Te3 peuM, WACHTU(HKALKS JAUKTOPA, MOP(GUHT PeuM, CTATUCTUYCCKUI aHAJN3, MCKYCCTBEH-
HBIA HHTEIUIEKT. Ynuceno HayuHbIx myOmukaruit — 100. darko.pekar@alfanum.co.rs; yn. Boii-
Boze Crere, 40, 21000, Hou Can, Cepbus; p.t1.: +381-21-485-2521.

Hoanep:kka uccjenoBanmii. PaboTa BeINONHEHA NPH YacTUYHOM (uHaHCOBOI moanepxkke Mu-
HHCTEPCTBA 00pa30BaHNUs, HAYKH U TEXHOJIOTUYecKoro pa3BuThs Pecryommku CepOus B pamkax
mpoekta «Pa3BUTHE AMAOTOBBIX CHCTEM I CEPOCKHX M JIPYrHX HOKHOCIABSIHCKMX SI3BIKOBY,
npoekt EUREKA DANSPLAT, «Ilnatdpopma aias NpUIOKEHHIT PEUeBBIX TEXHOJIOTHII Ha
cMapTdoHax s A3bIKoB JlyHalickoro perroHay, ID E! 9944 n npoBHHIMANBEHOTrO ceKpeTapuara
BBICILIEr0 00pa3oBaHMA U Hay4HbIX HCCIENOBaHUMI B pamkax mnpoekrta «LleHTpanbHas aynauo-
oubmmorexa Yuusepcurera HoBu-Cany, Ne 114-451-2570 /2016-02.

Jlutepatypa

1. Popovié B., Pakoci E., Ostrogonac S., Pekar D. Large vocabulary continuous speech
recognition for Serbian using the Kaldi toolkit / Proceedings of 10th Conference on
Digital Speech and Image Processing (DOGS’2014). 2014. pp. 31-34.

2. Popovié B. et al. Deep neural network based continuous speech recognition for
Serbian using the Kaldi toolkit // Proceedings of 17th International Conference on
Speech and Computing (SPECOM’2015). 2015. LNCS 9319. pp. 186-192.

3. Pakoci E., Popovié¢ B., Pekar D. Language model optimization for a deep neural
network based speech recognition system for Serbian // Proceedings of 19th
International Conference on Speech and Computing (SPECOM’2017). 2017.
LNAI 10458. pp. 483—492.

4. Povey D., Kuo H-K.J., Soltau H. Fast speaker adaptive training for speech recognition
// Proceedings of 9th Annual Conference of the International Speech Communication
Association (INTERSPEECH2008). 2008. pp. 1245-1248.

5. Povey D., Zhang X., Khudanpur S. Parallel training of DNNs with natural gradient and
parameter averaging // Proceedings of 3rd International Conference on Learning
Representations Workshop (ICLR’2015). 2015. arXiv:1410.7455. 28 p.

6. Graves A., Fernandez S., Gomez F., Schmidhuber J. Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural networks // Proceedings of 23rd
International Conference on Machine Learning (ACM’2006). 2006. pp. 369-376.

7. Povey D. et al. Purely sequence-trained neural networks for ASR based on lattice-free
MMI // Proceedings of 17th Annual Conference of the International Speech
Communication Association INTERSPEECH’2016). 2016. pp. 2751-2755.

8. Sak H., Senior A., Rao K., Beaufays F. Fast and accurate recurrent neural network
acoustic models for speech recognition // Proceedings of 16th Annual Conference of the
International Speech Communication Association (INTERSPEECH’2015). 2015.
pp. 1468-1472.

9. Povey D. Discriminative Training for Large Vocabulary Speech Recognition // Ph.D.
thesis. Engineering Department. Cambridge University. 2003. 170 p.

SPIIRAS Proceedings. 2018. Issue 3(58). ISSN 2078-9181 (print), ISSN 2078-9599 (online) 75
www.proceedings.spiiras.nw.ru



WMCKYCCTBEHHbLIV UHTENNEKT, MHXXEHEPWA JAHHBIX 1 3HAHUIN

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

76

Sak H. et al. Learning acoustic frame labeling for speech recognition with recurrent
neural networks // Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’2015). 2015. pp. 4280—4284.

Povey D. et al. The Kaldi speech recognition toolkit // Proceedings of IEEE Workshop
on Automatic Speech Recognition and Understanding (ASRU’2011). 2011. pp. 1-4.
Senior A. et al. Acoustic modelling with CD-CTC-SMBR LSTM RNNs //
Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU’2015). 2015. pp. 604—609.

Povey D. et al. Boosted MMI for model and feature-space discriminative training //
Proceedings of 33rd International Conference on Acoustics, Speech and Signal
Processing (ICASSP’2008). 2008. pp. 4057-4060.

Su H., Li G, Yu D., Seide F. Error back propagation for sequence training of context-
dependent deep networks for conversational speech transcription // Proceedings of
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP’2013). 2013. pp. 6664—6668.

Suzi¢ S., Ostrogonac S., Pakoci E., Bojani¢ M. Building a Speech Repository for a
Serbian LVCSR System // Telfor Journal. 2014. vol. 6. no. 2. pp. 109-114.

Kneser R., Ney H. Improved backing-off for M-gram language modeling //
Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP’1995). 1995. pp. 181-184.

Stolcke A., Zheng J., Wang W., Abrash V. SRILM at sixteen: Update and outlook //
Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU2011). 2011. vol. 5. 5 p.

Bhanuprasad K., Svenson D. Errgrams - a way to improving ASR for highly inflected
Dravidian languages // Proceedings of 3rd International Joint Conference on Natural
Language Processing (IJCNLP’2008). 2008. pp. 805-810.

Miao Y., Gowayyed M., Metze F. EESEN: End-to-end speech recognition using deep
RNN models and WFST-based decoding // Proceedings of IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU’2015). 2015. pp. 167-174.
Popovié B., Pakoci E., Pekar D. End-to-end large vocabulary speech recognition for
the Serbian language // Proceedings of 19th International Conference on Speech and
Computing (SPECOM’2017). 2017. LNAI 10458. pp. 343-352.

Peddinti V., Povey D., Khudanpur S. A time delay neural network architecture for efficient
modeling of long temporal contexts / Proceedings of 16th Annual Conference of the
International Speech Communication Association (INTERSPEECH 2015). 2015. pp. 2-6.
Sak H., Senior A.W., Beaufays F. Long short-term memory recurrent neural network
architectures for large scale acoustic modeling // Proceedings of 16th Annual
Conference of the International Speech = Communication  Association
(INTERSPEECH’2015). 2015. pp. 338-342.

Tpyabl CMIMNPAH. 2018. Bein. 3(58). ISSN 2078-9181 (ney.), ISSN 2078-9599 (oHnaiiH)
www.proceedings.spiiras.nw.ru





