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Abstract. Modern text-to-speech systems generally achieve good intelligibility. The
one of the main drawbacks of these systems is the lack of expressiveness in comparison to
natural human speech. It is very unpleasant when automated system conveys positive and
negative message in completely the same way. The introduction of parametric methods in
speech synthesis gave possibility to easily change speaker characteristics and speaking
styles. In this paper a simple method for incorporating styles into synthesized speech by
using style codes is presented.

The proposed method requires just a couple of minutes of target style and moderate
amount of neutral speech. It is successfully applied to both hidden Markov models and deep
neural networks-based synthesis, giving style code as additional input to the model. Listening
tests confirmed that better style expressiveness is achieved by deep neural networks synthesis
compared to hidden Markov model synthesis. It is also proved that quality of speech
synthesized by deep neural networks in a certain style is comparable with the speech
synthesized in neutral style, although the neutral-speech-database is about 10 times bigger.
DNN based TTS with style codes are further investigated by comparing the quality of speech
produced by single-style modeling and multi-style modeling systems. Objective and subjective
measures confirmed that there is no significant difference between these two approaches.

Keywords: text-to-speech synthesis, expressive speech synthesis, deep neural networks,
speech style, style code, one-hot vector.

1. Introduction. Text-to-speech (TTS) synthesis, a set of
techniques that enable computers to convert text to human voice, has
been a popular research area during the last few decades. This technology
has a wide range of possible usage scenarios. Initially, it was used as a
reading aid for blind people. It was also successfully applied in call
centers for reading different types of information to the customers.
Nowadays, audiobooks are generated by TTS systems and personal
assistant applications use this technology to deliver information to its
users. There are few different approaches to converting text to speech.
Concatenative synthesis [1], a method based on concatenation of
authentic speech segments from some prerecorded database, produces
high-quality speech, the naturalness of which is still considered to be
state-of-the-art. However, in some cases, audible glitches appear, usually
in contexts that are not covered by the speech database. Furthermore,
creating a new synthetic voice can only be done by obtaining a whole
new speech database and spending a significant amount of resources on
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the database preparation. A first technique in which some of these
drawbacks where overcome is parametric synthesis based on hidden
Markov models (HMM) [2]. It produces speech of constant quality, and
even smaller speech databases can be used for getting a voice of decent
quality. However, because of some drawbacks in modeling approach the
speech synthesized by HMM system sounds muffled [3].

In recent years, prevalent research methods for text-to-speech
synthesis have been based on deep neural networks (DNN). Reason for
this prevalence is considered to be related to immanent characteristics of
DNNs that are so-called deep structures, in contrast with the already
mentioned HMMs that are so-called shallow structures [4]. As deep
structures are proven to be more appropriate for modeling complex
relations between input and output data [5], it was expected that DNNs
would be suitable for modeling relations between linguistic features and
acoustic parameters. Different papers examined this approach [6-7] and
concluded that DNNs are appropriate for usage in TTS, since they
provide synthesized speech of high quality. Furthermore, it has been
proven that DNNs are better than HMMs in this context, since
synthesized voice has even higher quality, comparable to that of
concatenative synthesis [4].

The two most important requirements that synthesized speech
should fulfill are intelligibility and naturalness. The research community
mostly agrees that modern TTS systems achieve good performance
regarding these two requirements [8]. The major critique of TTS systems
is the uniformity of synthesized speech. Namely, most of the speech is
generated in same speaking style and yet modern applications require not
only high-quality naturally sounding speech, but also the possibility of
changing speaking style, thus allowing users to exchange subtext
information. For example, the style in which some news is generated
should be different from the style in which commercials or warnings are
synthesized, as explained in [9]. In [10] it is stated that some aircraft
accidents investigators think that neutral voice, in which warnings in
critical situation are generated, are the reason why the passengers do not
perceive these situations as potentially dangerous.

Although different speaking styles can be associated with some
emotional states, the term speaking style is more general. Emotional state is
usually associated with speaker’s inner state which affects speech
characteristics. The term speaking style in this paper is used to mark any
deviation in speech characteristics compared to neutral speech and does not
consider the cause or intention for this change.
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This paper presents an expansion of [11], the goal of which was to
make a multi-style model using style codes in order to enable speech
synthesis in different speaking styles, both for HMM and DNN synthesis.
Although it is already proven that DNN synthesis achieves better results
than HMM [12-14], it is yet to be tested if proposed approach can be used
in both synthesis technics and if there is difference in their performance.
Since it is assumed that only a small amount of speech material with new
speaking style is available, the aim is to test if the speech synthesized in
target style has similar quality as the speech synthesized in neutral style,
for which much more training material is used. The main contribution of
this paper is extensive analysis of the performance of the style code
approach in DNN synthesis framework.

The rest of the paper is organized as follows. In section II,
parametric approaches to speech synthesis are explained. The review of
methods used in style modeling is given in section III, which is followed
by an explanation of technic used for creation of multi-style DNN
model in section IV. In the section V, the results are presented
and discussed. Finally, conclusions are drawn and directions of further
research are mentioned.

2. Parametric text-to-speech synthesis. Parametric speech
synthesis consists of two phases. First, in training phase, acoustic features
are extracted with a vocoder and models are trained on the extracted
features. In synthesis phase, models are used to generate acoustic
parameters which are converted to the speech samples by a vocoder.

HMM based TTS.

In order to overcome some of the shortcomings of concatenative
synthesis (complicated implementation of a new voice, occasional
glitches in speech, memory space requirements), statistical parametric
methods emerged as the best solution. [15]. These systems model the
parameters extracted from the speech by using some generative modeling
approaches. The most widely used systems are based on hidden Markov
models (HMM). Actually, the terms HMM synthesis and statistical
speech synthesis are being used as synonyms in literature. However, one
of the parameters that need to be modeled is fundamental frequency,
which is not defined in unvoiced regions and therefore usage of standard
HMM modeling is not fully applicable. Bearing that in mind,
an extended HMM model called multi-space distribution hidden
Markov model (MSD-HMM) is proposed and successfully applied in
speech synthesis [16].
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In the field of automatic speech recognition (ASR) based on HMM,
the speech units that are modeled are the triphones, phonemes with known
preceding and succeeding phoneme identities. For the purposes of speech
synthesis, modeling unit takes a much wider context. Besides the
preceding and succeeding phoneme identity, the context factors that are
taken into account are different phonetic, linguistic and prosodic
information. Since there is not enough training data to adequately model
all the contexts, tree-based context clustering is used, meaning that similar
contexts share distribution parameters [17]. This, naturally, introduces
some unwanted smoothing of the parameters and influences naturalness of
synthesized speech. Various techniques have been developed in order to
address this problem [18].

In the synthesis stage, the most probable parameter sequence should
be generated based on input text and known models’ parameters, 4. If the
HMM state sequence, ¢, is known, the solution to this problem can be found
by solving the following optimization equation:

0 = argmax P(O|g, 1) (1)
o

The solution to the optimization problem from Equation 1, as well as
some other algorithms for generating speech parameters, can be found
in [19]. It is proven that inclusion of dynamic features (first and second
derivatives) improve overall quality of synthesized speech.

DNN based TTS.

In order to improve modeling of a layered, hierarchical structure of a
human speech production system, deep neural networks (DNNs) are
becoming dominant in speech synthesis. DNNs manage to achieve better
generalization and thus synthesized speech is less smoothed compared to
the one synthesized using HMM based approach.

When neural networks are applied to speech synthesis linguistic
features are used as inputs. Extraction of linguistic features is carried out
on the phoneme level. Therefore, linguistic features most often contain
information on phoneme identity, as well as the identity of phoneme’s
contexts, phoneme’s accent, etc. Those features are extracted
by a separate front-end module and delivered into two neural
networks (Figure 1). The first one is trained to predict phonemes’ states
durations. In order to get durations on a state level, as targets during the
training, initial alignment has to be performed. This procedure is usually
done by using monophone models and a couple of rounds of Baum-Welch
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algorithm [20]. Inputs and targets of the duration network are phoneme-
aligned. The second network is trained independently from the first one,
and its task is to predict the acoustic features. Beside the features used as
inputs of the duration network, it requires additional inputs specifying
within-phone positional information (including state-level durations).
Target features for this network are extracted from the training dataset by
the vocoder. Inputs and targets are frame-aligned. Networks are trained
using back-propagation algorithm.

TEXT
{

LINGUISTIf FEATURES :l

DURATIONS ACOUSTIC FEATURES
L | i

-

Fig. 1. DNN based TTS model

In the stage of synthesis, state-level durations predicted from the first
network are used to extract additional features for the second network,
which predicts acoustic features required by vocoder to produce waveforms.
It was found that better results are achieved when dynamic acoustic features
are used along with the static ones. For this reason, first and second
derivatives of acoustic features are also used as targets during the training of
the second network. In the synthesis stage, after those are predicted, they
are only used by MLPG algorithm [19] in order to slightly correct static
acoustic features trajectories. Those static features are smoothed this way
and after that propagated to the vocoder.

3. Style modeling in TTS. In [21] approaches to an expressive
speech synthesis are categorized in three different groups: implicit
control, explicit control and playback approach. As it was mentioned
before, expressive speech can be considered as an example of using
different styles in speech.
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Explicit control approaches are based on using some
transformation rules to the prosody of a sentence synthesized in neutral
style in order to get speech in some other style. These transformation
rules are learned on a database of expressive speech. The examples of
these transformations can be found in [22].

Playback approaches to an expressive speech synthesis create separate
synthesizers for desired styles based only on expressive speech data. In [23]
concatenative speech synthesis system capable of producing speech in three
different styles is presented. Each style is synthesized using approximately 1
hour of corresponding speech data. HMM based TTS system that uses
different acoustic models for each desired style is presented in [24]. In the
same paper, another technique for expressive speech synthesis, which embeds
style information in input linguistic features, is proposed. The authors have
compared these approaches and concluded that they produce the same results
regarding expressive speech quality.

Implicit approaches can be applied in statistical speech synthesis
and are based on interpolation between different models. In [25]
method which adapts a model of neutral speech to some desired
style is described.

The comparison of concatenative and HMM based synthesis
regarding expressive speech is given in [26]. It is concluded
that concatenative  synthesis performs better regarding overall
emotion intensity, whereas the HMM approach is better for emotion
intensity manipulation.

4. Style-code modeling in DNN based TTS. When we initially
started experiments with proposed techniques there were almost no attempts
at the expressive speech synthesis using DNN. Meanwhile, several papers
were published where similar techniques are proposed [27-29].

Some research related to manipulation of voice intended for speaker
modeling includes voice conversion [30], speaker adaptation [31] and multi-
speaker synthesis [32]. Voice conversion approaches are based on parallel
corpus of source and target speaker. The aim is to make conversion
function, which when applied on speech of the source speaker should make
it sound as the target speaker. The speaker adaptation approaches try to
adapt already trained models towards some target speaker and do not
require parallel corpus. Starting models are usually trained on a large
training corpus and a small amount of target speaker speech material is used
for model adaptation. Multi-speaker synthesis requires a collection of
smaller datasets for training, and then, in the synthesis phase, decides on the
voice that is to be synthesized.
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In [31], [32] and [33] multi-speaker model is made by training a
DNN on a speech material from a few to more than 100 speakers. One of
the methods involves standard DNN-based single-speaker system, but
extended with the feature that represents speaker code (Figure 2) [31].
The speaker code can be represented as a one-hot vector, or extended
with additional information about a certain speaker, like gender, age,
etc. [33]. This extension provides even better results, resembling on the
idea of using i-vectors as speaker code [34]. In synthesis stage, the
network will synthesize the speech in some speaker’s voice by setting
appropriate speaker code.

Output Output Output

Input Speaker  Input Speaker  Input
code code

Fig. 2. The idea presented in [30] for multi-speaker DNN TTS model

The idea presented in this paper is to use a single one-hot vector to
represent speaking style. It is solved by adding lexical questions of type
“Is_style x”, where x can be neutral, angry, happy, etc. In case of using
DNN model, since the input of the neural network represents binary label
with value 1 on places representing questions on which answers are
positive, part of the input will be one-hot vector indicating speaking
style (Figure 3). In case of using HMM modeling, similar idea is used. Input
label is extended with information that indicates if a phone belongs to
speech of a certain style. In HMM modeling this actually corresponds to the
idea presented in [24].

Usually, just a part of the sentence will be said with high expression
of emotions and that is the reason why the style code is given per word,
although the whole sentences were labeled with a marker of just one style in
used database. This way, it should be possible to produce just a part of a
sentence with an emotion, and the rest in neutral style.
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Output Output

[ [ 00100 |

One hot vector
representing style
Fig. 3. The idea presented in [34] but modified for multi-style DNN TTS

Input Input

In multi-style modeling, it is expected that the database consists
of a lot more material of neutral speech than any other style. In case of
multi-speaker modeling, such big differences between databases of
speakers can badly influence final model (e.g. if some features of
different speakers are averaged). On the other hand, this effect should
have smaller impact in multi-style approach since all sentences are
uttered by the same speaker. This could be actually beneficial for
this model since the states are not covered with small database
of certain speaking style can be compensated by neutral style and it will
not badly influence the final model, since the voice is the same
in the two databases.

5. Experiments and results.

DNN and HMM based systems.

DNN system is built using Merlin toolkit [35]. It consists of two
neural networks, one for duration and one for acoustic modeling. Both
networks contain 4 hidden layers with 1024 units per layer. Neurons in
first 3 layers use tangent hyperbolic activation function, while the 4t
layer is based on long short-term memory (LSTM) architecture [36]. The
output layer is linear. Input for duration model consists of answers to 554
closed lexical questions. These include questions about phoneme
identity, number of phonemes and syllables in a word, ToBI tags [37]
attached to a phoneme, etc. One-hot vector representing style is not
included in the overall question number. Outputs are durations per HMM
state. Input for acoustic model, beside the answers to the lexical
questions, contains 9 additional features regarding state and phoneme
durations, which were also introduced in Merlin toolkit. The acoustic
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features are extracted by WORLD vocoder [38]. Since it produces
smoothed envelopes, they are converted to mel-generalized cepstral
coefficients (MGCs). At the end, the output feature vector for acoustic
network contains 40 MGCs, 1 band aperiodicity (BAP) feature, logarithm
of fundamental frequency, first and second derivatives of previously
mentioned features and one feature representing information if a given
frame is voiced or unvoiced (VUV).

HMM system is built by using HTS toolkit [39]. HMM models that
are used in the system are 5-state left-to-right models with no skip, where
each state is represented by a single Gaussian with the diagonal
covariance matrix. Same acoustical features as for DNN system are used,
except for the VUV feature. Input label consists of lexical features
extracted in similar way as for DNN synthesis, but the number of
available features was higher. Namely, HMM contained a combination of
some features and initial experiments in DNN synthesis showed that usage
of these complex questions does not improve the quality of synthesis. This
can be explained by the DNN’s capability to model some complex
relations that HMMs cannot.

Databases.

In order to compare performance of the proposed technic in case
of using HMM and DNN, 4h and 20 min of neutral speech and 20 min of
speech in angry style were used. The same database is used in case of
investigating quality of the synthesized speech, while in case of further
investigation of the proposed technic for the DNN based synthesizer, the
database is expanded with two more speaking styles — happy and
apologetic. More precisely, 2h of neutral speech and 10 min per style are
used for these experiments. The whole database is pronounced by a
native American English male voice talent. It is recorded in a
professional studio. Some statistics can be seen in Table 1.

Table 1. Statistics of the database

Style [iif)icel;rf:/t:] Average fo [Hz] std fo [Hz]
Neutral 12.7 98.7 34.1
Apologetic 10.8 101.9 25.1
Happy 11.4 170.2 71.4
Angry 10.9 103.9 30.3
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It can be noticed that the happy style has significantly higher
average fundamental frequency (fy) than other styles, as well as more
than two times higher standard deviation of fj in comparison to any other
style. The neutral style is the fastest and has the lowest average f).
Apologetic and angry styles have very similar characteristics with around
15% smaller standard deviation of fj in case of apologetic style.

Performance of the proposed technic for different synthesis method.

The two systems were first compared objectively. All objective
measures were calculated as differences between acoustic
features predicted by neural network and acoustic features extracted
directly from original recordings. The objective measures that were
used include:

—mel-cepstral distance (MCD) — mean square error of mel
generalized cepstral coefficients calculated in decibels,

—mean square error of band aperiodicities (BAP) calculated in
decibels,

—root mean square error of fundamental frequency (RMSE f)
calculated in hertz,

—correlation of fundamental frequency (CORR fy),

—percentage of correctly predicted voiced frames (V/UV).

The objective measures are calculated for test files only, for both
systems and they are shown in Table 2. During the feature generation the
original durations created during the DNN alignments procedure were used.
Based on the results from Table 2 it can be concluded that DNN system
outperforms HMM regarding all objective measures.

Table 2. Objective comparison between HMM and DNN systems

RMSE f; V/UV

MCD [dB] | BAP [dB] (Hz] CORR fj %]

HMM 6.73 0.18 23.60 0.5 8.64
DNN 4.29 0.15 20.84 0.63 5.52

One example of fundamental frequency trajectory created by the
tested systems is shown in Figure 4. Both trajectories are compared with
trajectory extracted from the original recording. It can be seen that DNN-
predicted trajectory resembles much better the original one than the
HMM-predicted trajectory.
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Fig. 4. Comparison of fundamental frequency trajectory created by the HMM and
DNN systems with original trajectory

But it is known that objective measures are not always fully
correlated with subjective assessment of overall speech quality.
Subjective listening tests are considered as the most reliable. Due to this
reason, for the comparison of the obtained results from HMM and DNN
synthesizers by the proposed style-code method, preference tests were
conducted among 24 amateur non-native listeners. They were asked to
recognize which sentence, in each of 20 pairs, was pronounced in angry
style. One of the possible options was also No preference (i.e. none of the
sentences stands out). The first 10 pairs consisted of sentences
pronounced in neutral and angry style, synthesized by DNN synthesizer,
while the remaining 10 pairs (also pronounced in both styles per pair)
were synthesized by HMM synthesizer. These results are given in
Figure 5. It clearly shows much better results in case of DNN synthesis.
As many as 39% of answers were No preference in case of HMM
synthesis, and even in 1% listeners chose neutral sentence as the one
where the angry emotion was better expressed. That leads to the
conclusion that HMM model is not able to produce entirely clear
difference between styles in case of the proposed technic. On the other
hand, only 12% answers were No preference, in case of DNN synthesis,
while remaining 88% of answers accurately recognized angry style. Since
even in spontaneous human communication it is not always easily
recognizable if the speaker intended to express some emotion, 88% can
be considered as high accuracy and the proposed technic can be
considered as very powerful although pretty simple.
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B Neutral Angry H No preference

0% 88% - DNN
b SR

Fig. 5. Results of preference test regarding style expression

In order to directly compare DNN and HMM synthesis in angry
style, the second listening test was conducted. It consisted of 10 pair of
sentences where each pair of sentences was synthesized by both
synthesizers. Listeners were asked to choose sentence in each
pair in which angry emotion was more emphasized. As shown
in Figure 6, exceptionally high preference for DNN synthesized
sentences clearly confirms that the proposed technic has better
performances in case of DNN.

B HMM DNN ® No preference

1 83%

Fig. 6. Direct comparison of expressive speech synthesized by HMM and DNN
based synthesizers

Quality of synthesized speech.

As previously mentioned, the key requirements for synthesized
speech is intelligibility and naturalness. Intelligibility seized to be an issue
a long time ago, but the naturalness is still a big issue in the field.
Naturalness is defined as resemblance to human speech. Since for the
experiment, almost 10 times bigger amount of neutral speech than angry-
style speech was used, it was important to investigate if mismatch in the
amount of the used material caused some loss in quality for speech
synthesized in angry style, compared to the neutral one. In order to do
that, additional listening test was conducted. In this test listeners were
asked to grade the quality of 10 sentences synthesized by DNN
synthesizer by giving grades between 1 (very bad) and 5 (very good).
Among these, 5 are pronounced in angry and 5 in neutral style. Quality of
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synthesis is defined to listeners as resemblance to human speech and the
absence of the artifacts.

The obtained average grades for the synthesis in neutral style and the
synthesis in angry style are almost the same, 3.9 against 3.8 in favor of
neutral style. This proves the hypothesis that all states not covered by the
small angry-style database are compensated by neutral style.

Objective comparison of results obtained with three different styles.

Since all of the previous experiments were performed by using only
a single style (other than neutral), we also tested the performance of the
approach in reproduction of other styles. In order to test the proposed
method performance, separate synthesizers were constructed, where each
one is capable of producing a single style. These synthesizers were created
by using 2h of neutral speech and 10 minutes of intended style (angry,
apologetic or happy). The results were compared only objectively since
subjective comparison of different speaking styles does not represent an
adequate approach, due to significant differences in the manners in which
the styles are expressed.

For each synthesizer, objective measures were calculated by using 30
test sentences of corresponding speaking style, which were not a part of the
training data. The results are given in Table 3. Among the presented styles,
the best objective measures are achieved with apologetic style and mostly
the worst for happy style. It is the most emphasized for RMSE of f; which is
41.48 Hz in case of happy style. This can be explained by its
characteristics — mean frequency as well as standard deviation are the
highest among all the styles (see Table 1). On the other hand, correlation of
fo is the best among all three styles.

Table 3 Objective measures 1-style modeling

MCD [dB] | BAP [dB] Rl\[/gz]if ’ CORR /iy V/UV [%]
Happy 5.50 0.19 41.48 0.79 5.59
Apologetic 4.70 0.13 16.85 0.73 4.88
Angry 4.79 0.17 18.67 0.62 5.68

The obtained results show that some differences exist in modeling
different styles, which can be explained by the differences in original
part of databases.

It should also be noticed that the objective measures in Tables 3 and
4 for angry style are worse compared to ones from Table 2. This can be
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explained by the amount of material of this style being used in training
process. Specifically, the amount of angry style material used in
experiments whose results are presented in Table 2 was 20 minutes, while
in other 2 experiments only 10 minutes of angry speech was used.

Table 4 Objective measures 3-style modeling

MCD [dB] | BAP [dB] RI\[’[Iszif” CORRfi | V/UV [%]
Happy 5.46 0.19 42.85 0.77 5.64
Apologetic 4.67 0.13 17.11 0.72 4.92
Angry 475 0.17 18.46 0.63 5.70

Comparison of single-style and multi-style modeling.

As already mentioned in previous sections, the style-code approach
can be applied to simultaneous modeling of an arbitrary number of styles.
Therefore, we wanted to compare single-style modeling with multi-style
approach. For these purposes we constructed a new synthesizer, which was
trained on full previously introduced database — 2 hours of neutral speech
and 10 minutes of speech of each of the three additional styles. The
objective measures calculated in the same manner as for single-style are
given in Table 4. As in the case of single-style modeling, the best results are
obtained for the apologetic style, while the measures for the happy style
again were the worst among all three styles.

The average measures per all three styles for those two approaches
are presented in Table 5. These results indicate that measures for both
approaches differ only in minor.

Table 5 Average objective measures for 1-style and 3-style modeling

MCD [dB] | BAP [dB] RI\[/IHS‘Z‘? ’ | CORRfy | V/UV[%]
1-style 5.00 0.16 25.55 0.71 5.38
3-style 4.96 0.16 26.14 0.71 5.42

We also conducted one subjective test, in which 15 non-native
listeners were included. The task consisted of 30 pairs of sentences. In each
pair there was one sentence synthesized with 1-style approach and another
synthesized with 3-style approach. Each of three styles was represented
with 10 pairs. Participants had to choose in which of the two sentences the
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presented style was better expressed. The intended style of each pair of
sentences was clearly presented to the participants. There was also No
preference as a possible answer.

The results are given in Figure 7. It can be seen that, on average,
multi-style model is preferred over the other one. Only for angry style
percentage is the same. No preference answer is chosen most often in case of
apologetic and angry style, while in case of the happy style, multi-style model
is chosen significantly more often than the other two possible answers.

m3 styles @1 style ®No pref.

Average RIS ____34% |
Happy IEERT7SN ____00% |
Apologetic IERTY/NE ____37% |
Angry IEEyL7/EEE 360 |

Fig.7. Results of subjective tests for comparing single-style and multi-style
modeling

As conclusion it can be stated that there is no significant difference
between modeling one style per model or multiple at once, although the
slight advantage can be given to multi-style model, probably because of
better generalization.

Analysis based on parallel corpus.

There are a few sentences in our database originally recorded in
different styles but with the same content spoken (i.e. parallel corpus). We
have chosen one of these sentences and performed further analysis in order
to check the impact of style code to parameter generation, as well as the
impact of some linguistic differences to generated parameters. The chosen
sentence is originally recorded in happy and apologetic style and annotated
in accordance to the actual prosodic events. In this particular sentence, there
are 2 more phrase breakes in apologetic sentence in comparison to the
happy one. All other prosodic annotations are the same.

In this experiment, the focus was on predicted fundamental
frequency trajectories. Although the same content was spoken in both
sentences the length of corresponding phonemes is not the same. Namely,
according to Table 1 the phoneme rate is slightly higher for apologetic style.

230 Tpyasl CMIMMPAH. 2018. Bein.5(60). ISSN 2078-9181 (neu.), ISSN 2078-9599 (oHnaiiH)
www.proceedings.spiiras.nw.ru



ARTIFICIAL INTELLIGENCE, KNOWEDGE AND DATA ENGINEERING

This makes the direct comparison not possible. In order to make direct
comparison feasable original durations were used.

Figure 8 shows generated trajectories when lingustic annotations and
durations of original apologetic sentence are used. It can be seen that
fundamental frequency of the original recording (black line) does not vary
much (mostly it is between 60 Hz and 120 Hz) and its average is around
95 Hz, which is in accordance to the style characteristic (Table 1). It can
also be noticed that the synthesis in apologetic style follow the original
trajectory very well. On the other hand, synthesis of the same sentence with
the same durations and annonations and switching only the style code to
happy produced different curve. The average frequency is increased for
about 65 Hz, and it varies a lot more than the other two curves in Figure 8,
reaching even 300 Hz. This behaviour is also in accordance to happy style
characteristics presented in Table 1.

340

290

= PN S

Time

Frequency {Hz)
= el
o F=3
S S

s
B
=}

=}
o

——0Org_apologetic Synth_happy ~——Synth_apologetic
Fig. 8. Fundamental frequency trajectories of the sentences originally anotated as
apologetic, synthesized in happy and apologetic style

The case when annotations and durations for original happy sentence
are used are shown in Figure 9. Again, it can be seen that the sentence
synthesized in apologetic style, has a lot lower fundamental frequency
compared to both, original and sentence synthesized in happy style.
Synthesized happy sentence follows the original trajectory of fundamental
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frequency very well, but sometimes fails to track some rush changes from
original recording. This can be explained by certain smoothing that is
introduced by the model.

The case when annotations and durations for original happy sentence
are used are shown in Figure 9. Again, it can be seen that the sentence
synthesized in apologetic style, has a lot lower fundamental frequency
compared to both, original and sentence synthesized in happy style.
Synthesized happy sentence follows the original trajectory of fundamental
frequency very well, but sometimes fails to track some rush changes from
original recording. This can be explained by certain smoothing that is
introduced by the model.

340

290

—

240

190

Y | | P\“H%]
i: A

Time

Frequency {Hz)

= Org_happy Synth_happy =——Synth_apologetic

Fig. 9. Fundamental frequency trajectories of the sentences originally anotated as
happy, synthesized in happy and apologetic style

Both examples prove that the style code itself succesfully predicts
important style characteristics and that these characteristics are not highly
dependent on linguistic input.

The impact of linguistic differences on the generated trajectories can
be analyzed in Figure 10. These trajectories are generated using linguistic
features from both original recordings, which have the same spoken content
but differ in their annotations. The biggest differences in the generated
trajectories can be observed in the middle of the sentence where the phrase
brakes are annotated differently.
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Apologetic synthesis
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Fig. 10. Comparison of linguistic features impact on fundamental frequency trajectory

One more characteristic that the model learned, but cannot be seen
from figures, is loudness of certain styles. In case of apologetic style, the
speech is noticeable quieter, e.g. in this particular sentence, the difference
between synthesized happy and apologetic sentence is around 10 dB.

4. Conclusion. In this paper we present a simple but very effective
method for incorporating styles into statistical speech synthesis. It is based
on style codes, similar to earlier introduced speaker codes, and consists of
adding one-hot vector representing style to the auxiliary inputs used in NN-
based speech synthesis.

The proposed method is also applicable to HMM based speech
synthesis. Objective and subjective results show that the proposed method
achieves higher performances in case of DNN systems. Objective and

SPIIRAS Proceedings. 2018. Issue 5(60). ISSN 2078-9181 (print), ISSN 2078-9599 (online) 233
www.proceedings.spiiras.nw.ru



WMCKYCCTBEHHbLIV UHTENNEKT, MHXXEHEPWA JAHHBIX 1 3HAHUIN

subjective results also suggest that, although the amount of speech material
of certain style is much smaller compared to material in neutral style, quality
of speech synthesized in certain style is preserved. It is proved that the
method is applicable to any speaking style and that there is no significant
difference if the model learns multiple styles at once or one by one.

Although the duration is important feature in expressing some style,
the focus of this paper was on analysis of the acoustic features. Some
analysis on the duration prediction performance should be performed.

Bearing in mind that humans are able to control the level of expressed
emotion in speech and rarely one emotion is completely distinguished from
another, some future work should investigate possibilities of controlling level
of expressed emotion as well as mixing them.
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C. Cy3uy, T.B. IEan4, C. OCTPOroHALL, C. JIDKYPUY, I[.I71. ITEKAP
METO/ CTUJIEBBIX KOJOB /151 MHOTI'OCTHUJIEBOI'O
INAPAMETPUYECKOI'O CUHTE3A PEYHA 11O TEKCTY

Cysuu C., lenuu T.B., Ocmpozonay C., locypuu C., Iexap JI.J. MeTol cTHIEBBIX KOI0B
JJ151 MHOTOCTHJICBOT0 IAPAMETPHYECKOro CHHTE3a PeyH 10 TeKCTy.

AnHoTtamusi. CoOBpEeMEHHBIC CHCTEMbl IpeoOpa3oBaHMsI TEKCTa B pedb OOBIYHO
obecreunBaloT Xopourylo pa3dopunBoctb. OIMH U3 TIABHBIX HEJOCTAaTKOB JTHX CHCTEM —
OTCYTCTBUE BBIPA3UTEIBHOCTH II0 CPABHEHUIO C ECTECTBEHHOH 4YeJOBEUECKOH pedblo.
OCo0OECHHO HENpPUATHO BOCIPHHMMAETCSl Ha CIIyX, KOIZla aBTOMAaTH4YecKas CHCTeMa INepenact
yTBepAUTEIbHbIE U OTpPHIATEIbHbIE IPEUIOKEHUs COBEPIIEHHO OJIHHAKOBO. BBenenue
apaMeTpUYecKUX METONOB B CHHTE3€ pEeYM Jal0 BO3MOXHOCTH JIETKO H3MEHSATh
XapaKTepHCTUKH TOBODSIIEro M CTUIM peyd. B craThe mpezacTaBieH IPOCTOH Crocod
BKJIIOUEHHS CTHJIEH B CHHTE3UPOBAHHYIO Pedb, UCHIOJIb3YsI CTUIEBBIE KOIBIL.

IIpennaraemslii MeToq TpeOyer He 0Oojee mapbl MUHYT 3aJaHHOTO CTHWJIS M HEKOTOPBIH
00beM JaHHBIX HelTpanbHOI peur. OH yCIIENIHO NPUMEHSETCS B CHHTE3€ PeuH Ha IIIyOOKUX
HEHPOHHBIX CETAX M B CKPBITHIX MapKOBCKHMX MOJENSAX, NPENOCTaBIIsis CTHIEBOH KO Kak
JOTOJHUTENbHBIA BKIaJ B Mojenb. AyIupoBaHHE MOATBEPIMIO, 4YTO HauOONIbIIAs
BBIPA3UTEIbHOCTh JOCTHIAETCS 33 CUET CHHTE3a IIyOOKHX HEHPOHHBIX CeTell 10 CPaBHEHHIO C
CHHTE30M CKpPBITHIX MAapKOBCKHX Mozeneil. Taxxke [J0Ka3aHO, 4YTO Ka4yecTBO peEUH,
CHHTE3HPOBAHHOE TNIyOOKUMU HEHPOHHBIMH CETSAMH B ONpPEAENCHHOM CTHJE, COOCTABUMO C
peublo, CHHTE3MPOBAHHON B HEHTPalIbHOM CTHIE, XOTA 0a3a JaHHBIX HEHTpanbHON peun
npumepHo B 10 pa3 Gonbie. ['yOokue HEHPOHHBIE CETH HA OCHOBE CHHTE3a PEYH IO TEKCTY
€O CTHJIEBBIMH KOJJAMH H3y4aloTCsl IyTeM CPaBHEHHs KayecTBa PeyuH, CO3JaBaeMoil cucreMaMu
OJHOCTUIICBOTO MOJEIHPOBAHUS M MHOTOCTHIEBOTO MopenupoBaHus. OOBEKTHBHBIE U
CyOBCKTHBHBIE U3MEPEHHS IOATBEPIMIM, YTO MEXIAy OTHMH JABYMs IOIXOZaMU HET
CYILIECTBEHHOMN pa3HUIIbI.

KiroueBble cjI0Ba: CHHTE3 PEYM IO TEKCTY, SKCHPECCUBHBIM CHUHTE3 pedH, IIyOoKue
HEHpPOHHBIE CETH, CTHJIb PEUH, CTUIIEBOI KO, IPSAMOI YHUTAPHBIH BEKTOP.
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