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Abstract. Recently, Speech Emotion Recognition (SER) has become an important
research topic of affective computing. It is a difficult problem, where some of the greatest
challenges lie in the feature selection and representation tasks. A good feature representation
should be able to reflect global trends as well as temporal structure of the signal, since
emotions naturally evolve in time; it has become possible with the advent of Recurrent
Neural Networks (RNN), which are actively used today for various sequence modeling
tasks. This paper proposes a hybrid approach to feature representation, which combines
traditionally engineered statistical features with Long Short-Term Memory (LSTM)
sequence representation in order to take advantage of both short-term and long-term
acoustic characteristics of the signal, therefore capturing not only the general trends but also
temporal structure of the signal. The evaluation of the proposed method is done on three
publicly available acted emotional speech corpora in three different languages, namely
RUSLANA (Russian speech), BUEMODB (Turkish speech) and EMODB (German
speech). Compared to the traditional approach, the results of our experiments show an
absolute improvement of 2.3% and 2.8% for two out of three databases, and a comparative
performance on the third. Therefore, provided enough training data, the proposed method
proves effective in modelling emotional content of speech utterances.

Keywords: Speech emotion recognition, computational paralinguistics, affective
computing, feature representation, context modelling, artificial neural networks, long short-
term memory.

1. Introduction. Automatic emotion recognition has emerged as one
of the most important and challenging research topics of affective
computing [1, 2], a modern study concerned with recognizing and
processing human feelings. Lying at the crossroads of computer and
cognitive sciences, this rapidly growing field has gained its popularity due
to advent of new trends and technologies that require monitoring of
human’s psychophysical state with higher level of personalization and
adaptation, as well as the ability to simulate empathy for more natural
human-computer interaction. The capacity to adapt to user’s current
emotional state is important because emotions greatly influence people’s
behavior: they affect communication, health and personal well-being,
decision making processes and other important aspects of everyday life.
Hence, developing systems that are aware of current user’s state will help to
incorporate emotional content into human-machine interaction and improve
overall user experience.

Some essential issues inherent to the study field of vocal emotions
are difficulties of defining emotions, specifying number of existing
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emotions, and distinguishing between different emotional states. These
questions are important because they define the way investigators approach
the study — what emotions to model, what to measure, how to interpret
results, etc. In a typical speech research, emotions are defined as “brief and
intense reactions to goal-relevant changes in the environment” [3].
Currently, there are two major approaches to modeling the emotional states
adopted by researchers — continuous and categorical [1].

Continuous approach assumes that every emotion can be represented
as a point in a 2- or 3-dimensional space, where the dimensions represent
essential emotion characteristics, such as valence (positive of negative),
activation (calm or excited), and even dominance (active or passive). The
two- and three- dimensional emotion spaces with some emotion
interpretations are shown in Figures 1 and 2, respectively. Categorical
approach defines a list of basic emotions, usually from 4 to 7, which can be
considered universal: anger, happiness, sadness, surprise, fear and neutral
state [4]. Both approaches are actively being exploited in the field; the
choice is usually determined by the database of the interest. In this study,
we will be using the categorical approach.

Activation
« alert
+ rage « excited
* elated
* anger
' : * happy
= disappointment
Valence
* content
+ sad
* relaxed
« fatigue

* calm

Fig. 1. Two-dimensional approach for emotion modelling by activation and valence
dimensions
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Fig. 2. Three-dimensional space for emotion modelling with some interpretations
using activation, valence and dominance dimensions

Practical usage scenarios of emotionally-aware systems are
numerous and range from small personalized applications to incorporation
into big industries. Personal gadgets, such as smartphones and game
consoles, will benefit from collecting data about user’s emotional state to
adapt their behavior and provide a better user experience; car electronics
will monitor driver’s stress level and sleepiness to prevent dangerous
situations on the roads; banks and call-centers will be able to provide a
better quality service; law enforcement agencies may escalate their security
measures by automatically spotting suspicious activities. A good example of
implementing such technologies on a bigger scale is medical treatment,
where there is a need of continuous monitoring of a patient’s emotional and
psychophysical state, aiding an expert in health examination procedures, as
well as better interacting and assisting people struggling to perceive
emotions of others — such as children with autism. Involvement of
automatic technologies proves beneficial insofar it allows capturing subtle
characteristics that may escape from human’s eyes and/or ears [2, 5].

Analysis of human emotions is possible from different information
channels (modalities). To name a few — voice, face, gestures, postures, eye
gaze and other physical measurements, such as electrocardiogram and skin
conductance. Integrating several modalities in a single task is the main idea
behind multimodal approaches towards emotion recognition. Multiple
modalities are complimentary in nature and often bear redundant
information. This allows to effectively battle the problem of missing values,
where observations from one or several modalities may not be available at a
particular time span. However, not all of them are equal in the amount of
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information they provide. Voice, among other modalities, provides essential
paralinguistic cues that are indicative of speaker’s feelings. There are
studies, which show that it is easier to read emotions from voice rather than
from face [5], probably because people are better at hiding emotions from
face, but not from voice [6]. Also, it has been established that face is more
reliable conveying the valence of the portrayed emotion, while voice
provides a better estimate of its intensity [7]. It means that speech is rather
indicative of how calm or excited a person is, although it is not always easy
to tell in which way — positive or negative. Thus, considering acoustic
features of the signal, angry and happy voices sound similar in that they
both carry a high amount of energy, higher fundamental frequency (FO0), as
well as wider FO range, upward intonation contours, faster speaking rate and
steeper spectral slope [6]. For the reasons described above this work is
focused on automatic emotion recognition from speech.

2. Related work. There are several issues that impede the
development of speech emotion recognition systems, one of them being
absence of understanding what features should be used for classification [8].
Many current state-of-the-art systems use a large amount (on the order of
thousands) of presumably relevant features with subsequent dimensionality
reduction technique such as Principal Component Analysis (PCA) [9].
Another popular approach is to abandon predefined feature extraction and
feed raw signals into a deep neural network, which finds a new feature
representation without any hand-crafted engineering [10]. Another big
issue, which renders the task of classifying emotions difficult, is the
inherent inter-speaker and intra-speaker variability. Inter-speaker variability
arises from different people having different age, gender, individual voice
quality and characteristics. Intra-speaker variability adds uncertainty even
more, for the voice quality of the same person changes with health
condition, general mood, social environment, etc.

Cultural differences are another source of ambiguity encountered
when modeling emotional states. A lot of debates were spawn around the
question whether emotions are universal among people of all ages, genders,
cultures and languages [11]. Do these factors define the way emotions are
expressed and perceived and if so, how do emotions differ? There are few
cross-corpus studies showing results on how well a given model trained on a
particular database generalizes to other language databases [12]. Nevertheless,
currently there is not enough data to prove or disprove the argument.

Feature extraction is an important step in the overall emotion
recognition pipeline. The features can be extracted on two different levels:
frame level and utterance level.

On the frame level, a certain amount of features are being extracted
from analysis windows of the signal with a predefined frequency, usually
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about 100 frames per second. This gives localized characteristics of the signal.
To obtain the utterance level features, summarizing functionals are popularly
applied to low level descriptors to form global utterance characteristics. Mere
extraction of the features from the raw signal may not be enough; to gain a
good performance, feature representation learning can be used to build high-
level features from low-level features [13, 14]. Utterance-level representation
of features was also explored by Kim [15]. Combination of different feature
representations has also been explored; for example, Li Yang and Yunxin
Zhao proposed to apply a shifting short-time window to extract short-term
features and then applied functionals to the resulting sequences to obtain long-
term feature representation, following with PCA dimensionality reduction and
classification [16]. Dan-Ning Jiang and Lian-Hong Cai made use of temporal
features alongside statistical features with GMM and HMM to benefit from
both representations [17]. Some authors used combined frame and turn level
analysis via HMM and statistical functionals [18].

Various types of classifiers have been used for the task of emotion
classification from speech. Some of the desirable characteristics involve
ability to work with small sets of data, handling missing values and outliers.
As a result of Deep Neural Networks (DNN) becoming more and more
powerful [19], various deep architectures, such as convolutional and
recurrent NNs are actively being exploited [20-22]. A special type of
recurrent neural network (RNN) called Long Short-Term Memory (LSTM)
is particularly popular due to its ability to model arbitrarily large temporal
sequences [7, 23]. It is an important property for emotion classification
since emotions naturally evolve in time and therefore emotionally colored
speech signals preserve a temporal structure.

3. Proposed method. General pipeline of a machine learning setup
consists of feature extraction, preprocessing and training/testing stage. The
baseline methods against which we compare the results consists of a single
branch feature representation using predefined INTERSPEECH 2010
feature set (utterance-level functionals extracted via openSMILE toolkit),
and a single LSTM Neural Network. The overall baseline pipelines are
depicted in Figures 3 and 4. Preprocessing included feature normalization.
The classification method was chosen to be logistic regression for the
reasons discussed below.

Emotional Feature openSMILE Principle Logistic
speech extraction statistical component regression
database from signal features analysis

Fig. 3. Baseline method 1: PCA + Logistic Regression
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Feature openSMILE
extraction from statistical RNN-LSTM
signal features

Emotional

speech
database

Fig. 4. Baselie method 2: LSTM-RNN

In our work, we propose a novel approach to implement a hybrid
feature representation combining two different feature levels to take
advantage of both short-time and long-time signal characteristics (Figure 5).
The two levels of feature extraction are frame-level and utterance-level. The
former corresponds to low level descriptors (LLDs), which are being
extracted from every audio frame and form a sequence of feature vectors for
every utterance. The length of the sequence depends on the duration of the
audio signal and may vary for every utterance. To account for the temporal
changes in these features as well as to match the resulting feature vectors of
every utterance to have the same size, we let the sequences of LLDs to pass
through an LSTM network and set the output of the network from the last
frame to be the resulting feature vector describing the given utterance.
Because the LSTM network has memory cells that allow accumulating
information, the output from the last frame will have accumulated
information from all the previous frames.

Frame- RNN-LSTM

level features

i

- Combined ..
Emotional Feature . Logistic
h . feature Preprocessing .
Speec extraction tafi regression
database representation
Utterance- PCA

level features,

Fig. 5. General scheme of the proposed method

On the other hand, the utterance-level features represent statistical
functionals applied to all the LLDs within one utterance and form a
feature vector of a fixed size. Because the dimensionality of the resulting
feature vector is very high, principal component analysis is used to reduce
the number of features as well as to decorrelate them. The resulting two
feature representations are concatenated to form a single feature vector,
which is further fed into a logistic regression classifier that makes
predictions about class labels.
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The reason for combining the two different representations is that
short-time characteristics (frame level features) together with appropriate
modelling techniques allow capturing the temporal structure of the signal,
while long-time characteristics (utterance-level features) are capable of
expressing general trends [24]. Therefore, by combining the two approaches
it is possible to benefit from both temporal dynamics as well as the big
picture provided by statistical functionals.

4. Feature extraction and selection. The de-facto standard for feature
extraction in the field of affective computing is openSMILE toolkit provided
by German company audEERING [25]. There are predefined feature sets that
were released during the series of annual INTERSPEECH Computational
Paralinguistics Challenge (ComParE) [26-29]. The number of LLD features,
as well as the number of applied statistical functionals and the total number of
resulting utterance-level features are summarized in Table 1. After
experimenting with these feature sets it turned out that the feature set, released
in the year 2010, showed a better performance in comparison with other
feature sets. The details about the LLDs and functionals in this set are
presented in Table 2, the results of the comparison can be seen in Figure 6.
Only the most significant number of principal components is shown.

Table 1. openSMILE configuration sets

Configuration set LLD Functionals Total
INTERSPEECH-2009 16 12 384
INTERSPEECH-2010 38 21 1582
INTERSPEECH-2011 60 33 4368
INTERSPEECH-2013 65 54 6373

Table 2. INTERSPEECH 2010 paralinguistics challenge feature set
Low-Level Descriptors Functionals
PCM loudness Position maximum/minimum
MFCC [0-14] Arithmetic mean, Standard deviation
Log Mel Freq. Band [0-7] Skewness, Kurtosis,
LSP Frequency [0-7] Linear regression coefficients 1/2
FO by sub-Harmonic sum Linear regression error Q/A
FO envelop Quartile 1/2/3
Voicing probability Quartile range 2-1/3-2/3-1
Jitter local Percentile 1/99
Jitter DDP Percentile range 99-1
Shimmer local Up-level time 75/90
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Four different feature sets were compared by the accuracy, which
was possible to obtain on RUSLANA corpus using particular feature set
with the rest classification scheme being equal. The INTERSPEECH
2009 (IS_09) feature set consisted of 384 features, which was considered
small enough not to apply any dimensionality reduction techniques. For the
rest of the feature sets Principal Component Analysis (PCA) was applied in
order to reduce the size of the feature vectors and decorrelate the features.
The number of principal components was ranging from 10 to 1000. The
INTERSPEECH 2010 feature set comprised 1582 features, INTERSPEECH
2011 feature set — 4368 features and the INTERSPEECH 2013 feature set
included 6373 features in total. These features are obtained by applying
certain statistical functionals to LLDs extracted on the frame level and
represent utterance-level features.

As can be seen from Figure 6, the INTERSPEECH 2010 feature set
has shown the best performance in comparison to other available feature sets.
Therefore, further research was focused to include only features contained in
this set. 38 LLDs were extracted from the audio signal at the frame rate of 100
fps, with the windows of various types and lengths. Hamming window of 25
msec was used for all the features, except the fundamental frequency (FO).
The window applied to extract FO was Gaussian with the length of 60 msec.
Moving average filter was applied to all of the characteristics. 21 functionals
as well as first order regression coefficients were applied to LLDs. 16 zero
features were removed from the set (such as minimum FO value — always
zero). Two other additional features were included — the number of raises
and the length of the FO curve.

50 -
® no PCA
40 -
S 100
530 -
o ®200
; 20 n
bt =300
< 10 -
400
0 - B B © =500

IS 09 IS 10 IS 11 IS 13

Fig. 6. Comparison of 4 openSMILE feature sets on RUSLANA database using
Logistic Regression

PCM loudness is the normalized intensity raised to a power of 0.3.
MFCC [0-14] refers to Mel-frequency cepstral coefficients from 0 to 14. Log
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Mel Frequency Band [0-7] is the logarithmic power of Mel-frequency bands
from 0 to 7 (distributed over a range from 0 to 8 kHz). LSP Frequency [0-7] is
the 8-line spectral pair frequencies computed from 8 LPC (Linear Prediction
Coding) coefficients. FO envelop is the envelope of the smoothed fundamental
frequency contour. The vioicing probability reflects the likelihood that the
frame is pitched. Jitter and shimmer are characteristics of voice quality that
reflect frequency and amplitude instability, respectively. Jitter local is the
frame-to-frame pitch period length deviations. Shimmer local is the frame-to-
frame amplitude deviations between pitch periods. Jitter DDP is the
differential frame-to-frame jitter (the jitter of the jitter). Some functionals are
not applied to every low-level descriptor. For example, minimum, maximum,
mean and standard deviation are not applied to voice related LLDs except for
fundamental frequency FO.

5. LSTM Recurrent Neural Networks. Recurrent Neural
Networks [30] are a special type of Neural Networks that have feedback
connections, i.e. the output of an RNN unit is connected to the input of the
same unit in order to provide the network ability to the previous
activations. This allows to store memory about previous elements of a
sequence and make better decisions in future. The general idea of an RNN
network with feedback connections is shown below in Figure 7. On the
left (a), the figure shows connections of a hidden layer from a
Feedforward Neural Network, where the information propagates strictly
forward. On the right (b), the same piece of network is shown with added
feedback connections to each of the hidden neurons that turns the
architecture into a Recurrent Neural Network. The feedback connections
may also connect the neurons on the current layer with the previous
layers, which allows to build more complex models.

. °

O N=O-
. e o«

SO SO

. % > A

@
¢ .

a) b)

Fig. 7. Recurrent Neural Network structure in comparison with a simple
Feedforward Neural Network: a) — feedforward Neural Network; b) — recurrent
Neural Network
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However, this kind of architecture has several drawbacks, one of
which is inability to store sufficiently long context information. Some
estimates suggest that the network forgets information after ten steps of
iteration. For these reason Recurrent Neural Networks are said to possess
short term memory. Vanishing gradients also pose difficulty for applying
such networks in practice.

In order to cope with these drawbacks, a special type of cell was
invented that can memorize and store an arbitrary amount information in
time. It was called Long Short-Term Memory to emphasize that it
overcomes the loss of information in RNNs. A typical LSTM cell has the
structure depicted in Figure 8. It has an Input Gate i,, Forget Gate f;, and
Output Gate o, that regulate the amount of information which is being
stored in the cell. The flow of data within the cell also allows to pass
through the cell unchanged so that the problem of vanishing gradients is no
longer a problem for LSTM. The gates are regulated by equations 1-3,
where o denotes sigmoid function. Each gate has its own weight
coefficients Wy, W;, W, and biases b, b;, b,, which are optimized during
training. The cell state C; and output hidden state h, are given in equations
4-5. The cell state is updated in accordance with the previous cell state and
new candidates at the input gate. Output h, represents a filtered cell state.

Output Gate

T

Forget Gate

Fig. 8. Structure of a basic LSTM cell [30]
fi=o (W [hosx]+by), (1
i, :U(VV:"[ht—th]"'bi)’ )
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o, :G(W<;'[ht—1’xt]+bo)7 3)
C, =f,*C,_y +i, *tanh(W, [ h_.x,]+b,), 4)
h, =0, *tanh(C,). %)

Another improvement in LSTM cell structure is the additional
peephole connections, which are depicted in Figure 9. Peephole connections
are allowing for information to flow directly to the Input, Output and Forget
Gates, letting them access to the current cell state.

Ty T

Forget Gate

Fig. 9. Structure of an LSTM cell with peephole connections [30]

Different implementations will use some peepholes and not the others.
One more variation is to couple forget and input gates. The implication is that
the decision on what to store and what to forget are no longer independent and
are made jointly, i.e. forgetting happens only when there is new data to put in
the memory. Another popular variation on the LSTM cell is the Gated
Recurrent Unit (GRU), introduced by Cho et al. [31]. In this particular
implementation, the input gate and the forget gate are combined in a single
update gate. Cell state and the output hidden state are also merged together.
The structure of such unit is simpler than a standard LSTM cell and requires
less computation, while providing similar performance.

In an LSTM network, LSTM units replace feedforward neurons.
Typically, a hidden layer of LSTM cells would be followed by a fully
connected layer, that connects the LSTM layer with the output. The input is
represented by a 3-dimensional array, where samples are sequences of
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features. Assuming that the number of samples is n, the sequences are of
length s and feature vector contains f features, the final topology of the
network is depicted in Figure 10.

Input Recurrent 1 -+ Recurrent N
I I J Fully connected

[

LSTM I\

Output
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Fig. 10. Topology of an LSTM network: n — number of samples, s — length of the
sequence, f — number of features in each observation in the sequence, N — number of
recurrent layers used in the network

N

58 85

6. Feature representation using LSTM. In the second branch,
frame-level LLD sequences are extracted via openSMILE toolkit in
accordance with the feature selection methods described above. These
sequences are passed through a unidirectional one-layer RNN-LSTM
network with 300 hidden units, one frame at a time. After the last frame has
propagated through the network, the output of the network is saved as a
feature vector, containing information about temporal structure of the
signal. The process of representing an utterance with LSTM unrolled in
time is depicted in the Figure 11. The LLD sequence of one particular
utterance is denoted as fy, fi, ..., f5, where d —the number of frames in the
utterance. The LSTM network depicted in the diagram is the same network,
unrolled in time, to show that only the last output of the LSTM is
considered as the feature vector representation for that one utterance.

The training of LSTM network is done as if it performs the function
of a classifier — that is, a pair of (feature vector, label) is presented to the
network, the weights get updated and the procedure repeats until the
network has seen all the samples and the training process converges. Next,
the last layer of the network, the softmax layer with the number of units
equal to the number of prediction classes, is removed and the output of the
network is no longer a probability of belonging to a particular class, but
rather a complex 300-dimensional non-linear representation of the input
features. The two feature representations are concatenated together to form
a single feature vector that is passed to the classification step.
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The architecture of the used RNN-LSTM network contains one
hidden layer of 128 LSTM units. The initial learning rate is set to 0.001 and
is decreased every 100 epochs by the factor of 0.1. The learning process
was stopped when the learning curve is not improved for 15 consecutive
epochs. Dropout was not applied out of the data size concern: most of the
datasets are small in size. L2-regularization was implemented alongside
cross-entropy loss function. In all the experiments the optimizer of choice
was Adam. Mini-batches of size 250 were used. In all the experiments
LSTM implementation was carried out with TensorFlow framework [32].

Feature vector

LSTM — LSTM — LSTM — . — LSTM

I |

rd ; ™ TN ’/.f ~N Ve ’fﬁ\‘
{ ) ( ) ‘ ) 1 )
\2/ NG 2/ N
Fig. 11. Feature vector representation via LSTM network. The LLD sequence of one
particular utterance is denoted as fy, fj, ..., fy, where d is the number of frames

7. Feature representation using PCA. The proposed method
consists of two different feature representation methods, implemented in
parallel, as can be seen in Figure 8. In the first branch, utterance-level
functional are computed from LLDs. Statistical functional are known to
have more expressive power than LLDs, considering the suprasegmental
nature of emotions [24], however they fail to take into account the temporal
changes in the signal, which are also of great importance since all emotions
evolve in time. The number of possible functionals is very big and it is not
clear which ones are more informative than others. They also often have a
high correlation. For these reasons and a common problem known as curse
of dimensionality [33], PCA is performed to reduce the dimensionality of
resulting feature vectors and de-correlate the features.

Mathematically, PCA [34] is defined as an orthogonal linear
projection of data to a new coordinate system of the form T =XW, where

X=(x1,...,xn)T is the data matrix, Wz(wl,...wp) isa pxp weight

matrix, whose columns are eigenvectors of XTX, and T is the new PCA
representation of the data. The transformation maps each row vector of data

i

X(;) to a new vector of principal component scores iy = (tl,...,tm )( ) given
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bY 1y = X)Wy for i=1...n,k=1...m with each weight vector w being a

unit vector. The greatest variance happens to lie on the first coordinate, which
is also called the first principal component, the second greatest variance — on
the second principal component and so on. Principal components are
visualized in the directions of greatest variance in Figure 12.

o~ ot
o o
’5 o
® x x PC1
2L
~ feature 1
feature 3 RE-1

Fig. 12. Illustrations of the Principal Component Analysis: principal components
point in the direction of greatest variance

To maximize variance, the first weight vector w(y) must satisfy the

following condition:

w=1 w=l r

T
X'X
W) = argmax{sz} =argmax{wTXTXw2} = argmax {%} ©

After the way is found, the first principal component of a data

vector X can be found in the transformed coordinates as tl( ) = X)Wy

The k-th principal component can be found by subtracting from X the first
k-1 principal components and then finding the weight vector corresponding

to the maximum variance from the new data X,.

k-1
s=1
8. Classification. A comparative study [35] was conducted on the
RUSLANA database to find out the best classification scheme suited for the
task. The results of the study are summarized in Figure 13. As can be seen
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from the figure, the best prediction accuracy was achieved via Logistic
Regression (Log-R) classifier. The second-best approach turned out to be
Support Vector Machine (SVM), and the third best — a simple artificial
Neural Network (NN) with one hidden layer. Other classifiers, that were
used in the comparative study, are: Linear Regression (Lin-R), Naive
Bayes (NB), k-Nearest Neighbours (kNN), and Random Forest (RF).

Linear kernel gave the best result for SVM classification, which
proves that with a high number of features non-linear projections don’t
improve the efficiency of the system. The optimal value for C parameter was
chosen empirically. In kNN approach, the best k parameter was also found
empirically and was equal to 10 neighboring points. The number of hidden
layers in NN varied from 1 to 2, number of neurons in each layer — from 50
to 500. The number of epochs and learning rate ranged from 100 to 500, from
0.1 to 0.0001 respectively. RF parameter was optimized experimentally.

50 +

HH|I|

Log-R SVM NN Lin-R NB
Fig. 13. Classification results of various classifiers applied to RUSLANA
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In order to achieve speaker-independent properties of the system we
would like to know whether a model trained on a particular set of persons
generalizes well to the group of previously unseen voices. To implement
this, we need to ensure that all the samples in the validation set are not
represented at all in the training set. This is achieved via leave-one-subject-
out cross validation strategy, which ensures that the same subject is not
represented in both testing and training sets. Hence, the overall experiments
are handled as 61-fold subject-independent cross-validation, i.e. the training
was implemented on 60 speakers and the testing on the remaining speaker
to achieve speaker-independent properties of the system.

9. Logistic Regression. Regression models are used for defining the
relationship between one dependent variable and several independent
variables. When the dependent variable is in discrete form, the regression turns

into a binary classification task. Let us assume that output Y; is a realization of

44 Tpyabl CIIMUPAH. 2019. Tom 18 Ne 1. ISSN 2078-9181 (neu.), ISSN 2078-9599 (oHnaitH)
www.proceedings.spiiras.nw.ru



ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

a random variable Y;, which takes on one of the two values: 0 and 1 with
probabilities 7z; and 1—7;. Such distribution is called a Bernoulli distribution
and can be written in the form Pr{Y, =y} =77 (1-r, )lfy" . When building a
linear regression an assumption is being made about probabilities 7; having

linear dependency on observations: 7; =X, f = Bx,+ S,x, +...8,x,, where

is a vector of regression coefficients.
In order to limit the prediction values to the range from 0 to 1,

probabilities 7; are transformed to , which reflects the chance of a

-7,
particular event happening, which can take on any positive value. After that
the transformed values undergo logistic transformation
7
-7
to 0, logit is approaching —oo. From the other side, when the probability is
close to 1, both the chance and the logit approach +o. Therefore, the logit
transformation projects probability from the range {0, 1} on to the whole
rational number space. When the probability is 0.5, the logistic function is 0.
Negative numbers correspond to probabilities < 0.5, and positive numbers
correspond to probabilities > 0.5. This logit transformation is unique and
7

e
L+e"
that probability logit is a linear model: logit(ﬁi) =X ,.' L. Interestingly enough,

= logit(izi ) =log . With such representation, when the chance is close

1

therefore reversable: 7; =logit™ (1;) = Logistic regression assumes

logistic regression provided a better performance in comparison to simple
feedforward Neural Network, despite having a simpler structure. This
phenomenon can be explained by regularization effects.

Regularization can be used in all regression models by adding
another term to the loss function, which does not allow for coefficients to
grow arbitrarily large, causing model overfitting. Hence, regularization
helps to generalize the model and abstract away from the particularities.

There are several underlying assumptions on which the logistic
regression models are build. First, it is assumed that there is no linear
dependency between regression model factors; second, the variance is
assumed to be constant. In practice, it is not always possible to comply
with such conditions. Despite of that, logistic regression models are
commonly used in practice.

10. Emotional speech corpora. We used 3 open source speech
databases to evaluate our proposed method. These corpora are:
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RUSLANA [36] (Russian speech), EMODB [37] (German speech), and
BUEMO [38] (Turkish speech). The databases were chosen so that they
have a similar structure and different languages to see how well the model
can be generalized. All of them are well-balanced, i.e. having the same
number of samples per each class, acted by non-professional actors, with a
predefined set of categorical emotions.

RUSsian LANguage Affective corpus RUSLANA is a Russian
language emotional speech database collected at the Department of
Phonetics, St. Petersburg State University, Russia, in a sound proof
recording studio. It contains audio recordings of 61 subjects (12 male and
49 female), in the age of 16-28 years old, all of whom were university
students and native speakers of the standard Russian language. Each
speaker pronounced 10 phonetically representative decontextualized
sentences, which included all the Russian phonemes and most commonly
encountered consonant clusters. Each sentence represented one of the 10
syntactic types, corresponding to distinct intonation contours, which
coincide with different intonation contours in Bryzgunova's
classification [39] inherent to the Russian language. Every sentence was
pronounced with the following six basic emotional states: Neutral (N),
Surprise (S), Happiness (H), Anger (A), Sadness (D) and Fear (F).
Therefore, there are 61 speakers % 10 sentences x 6 emotion classes = 3660
audio files in total, each ranging in length from 2 to 5 seconds.

RUSLANA was chosen for the training purposes for several reasons.
First, it is a well-balanced corpus containing an equal number of emotional
utterances in every class; second, the actors are not professional and thus they
do not reflect exaggerated intonation and other prosodic characteristics,
common to professional performers [40]; third, the corpus construction strategy
takes into account peculiarities of the Russian language and therefore provides a
useful framework for developing a speech emotion recognition system from
Russian speech, research on which until now has been sparse and inconsistent.

A database of German emotional speech (EMODB) was collected at the
Department of Technical Acoustics of the Technical University of Berlin, in an
anechoic chamber with high-quality recording equipment. Ten non-professional
actors (5 male and 5 female) whose age ranged from 21 to 35 years old repeated
10 utterances with the following 7 different emotions: Neutral, Anger, Fear,
Joy, Sadness, Disgust and Boredom. The total number of utterances is 10
speakers x 10 sentences x 7 emotion classes = 700 with some additional second
versions reaching up to 800 recordings. The utterances of two types (a short
sentence and a two phrase sentence) were constructed from everyday life usage.

The speech recordings of the BUEMODB dataset were collected in
Bogazici University in Istanbul. There are 121 utterances for each of four
emotional classes (Angry, Happy, Neutral and Sad) from 11 amateur theatre
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actors (4 male and 7 female) by means of Stanislavskiy effect for generating
emotional utterances [41]. The total number of audio files is 11
speakers x 11 sentences x 4 emotion classes = 484. The information about
all three databases are summarized in Tables 3 and 4. Table 3 shows general
information of how many speakers participated in database collection, what
language was used for recording and number of emotion classes. Table 4
shows distribution of number of utterances among the classes.

Table 3. Corpora summary

Corpus Lang. Speakers Females Classes
EMODB German 10 5 7
RUSLANA Russian 61 49 6
BUEMODB Turkish 11 7 4

Table 4. Corpora class distribution. Classes are abbreviated as follows: N — Neutral,

A — Anger, H — happiness, S — Sadness, D — Disgust, F — Fear, B — boredom
Corpus N A H S D F B All
EMODB 79 127 71 62 51 69 81 535
RUSLANA | 610 610 | 610 | 610 610 | 610 - 3600
BUEMODB | 121 121 121 121 - - - 484

11. Experimental results and discussion. After experimenting with
the number of components used in the PCA analysis we can conclude that for
different datasets the optimal number of principal components differs, which
may be explained by different data distributions due to varying recording
conditions and audio signal quality. This is in consent with the recent study
of [42], which showed evidence that the nature of dataset gives an idea to
select relevant classifiers. The results are presented in the Table 5.

Table 5. Classification accuracy (%) of logistic regression with various numbers of
principal components

Classification accuracy (%)

PCA # EMODB RUSLANA BUEMO
10 52.1 31.7 49.4
50 56.3 342 52.5
100 48.3 36.9 534

200 384 43.6 52.8
300 51.1 47.2 55.1
400 52.3 449 56.0
500 52.2 44.8 56.2
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EMODB showed the best performance at the minimum number of
principal components being equal 50, which allowed obtaining classification
accuracy of 56.3%. Both RUSLANA and BUEMO datasets required more
number of principal components in order to achieve optimal performance. In
case of RUSLANA, 300 principal components obtained via PCA resulted in
47.2% classification accuracy. Among other datasets optimal performance on
BUEMO was achieved with the highest number of principal components
being equal 400. In all the cases the original number of features was reduced
more than three times. This indicates that high number of features indeed
suffers from curse of dimensionality. The apparent conclusion is that feature
decorrelation and dimensionality reductions techniques are an important
preprocessing step in emotion classification task.

The baseline classification method, which consisted of single branch
openSMILE utterance-level feature extraction, showed maximum classification
accuracy of 47.2% on the RUSLANA dataset, 56.3 on the EMODB dataset, and
56.0 on the BUEMO dataset. The second baseline using a single LSTM
network gave the worst results, as expected: 40.5% on the RUSLANA dataset,
45.3% on the EMODB dataset, and 39.9% on the BUEMO dataset. The
implementation of the single LSTM network alone showed a severe overfitting
problem, presumably due to a small size of the dataset.

Implementing the newly proposed method allowed us to obtain a
relative improvement over the first baseline (PCA + Logistic regression)
2.3 % in classification accuracy on the RUSLANA corpus and 2.8% on the
BUEMO corpus. EMODB, on the contrary, did not show a relative
improvement but a comparative performance with the combination of the
proposed techniques. The relative improvement over the second baseline
was much more prominent 9.0%, 10.8%, 18.9%. The details of the obtained
results are summarized in Table 6.

Table 6. Classification accuracy (%) of the baseline and the proposed methods

Modeling method RUSLANA EMODB BUEMO
s (6 classes) (7 classes) (4 classes)
PCA- + . 47.2 56.3 56.0
Logistic regression
LSTM 40.5 453 39.9
Proposed
Combination 49.5 56.1 58.8

The number of classes differed from corpus to corpus and therefore
the interpretation of the results should be made accordingly. In case of 4
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classes (BUEMO), the chance level is 25%, and so the proposed method
worked more than twice better than the chance level. In the case of 6
classes (RUSLANA) the chance level is 16.(6)% and so the proposed
implementation achieved performance almost 3 times better than the
chance level. In case of 7 classes (EMODB), the chance level is at 14.29%
giving relative improvement of the proposed approach almost 4 times
better than the chance level.

Training an LSTM network on EMODB and BUEMO corpora
showed significant overfitting results despite implementing various
regularization techniques, such as early stopping and dropout. This can be
explained by the small dataset sizes (114 samples per class on average for
EMODB, and 121 samples per class for BUEMO). RUSLANA, on the
contrary, had 610 samples per class and therefore showed more consistent
results on the training. The reader is referred to [43] for more experimental
results on the BUEMO corpus.

A sentiment analysis based on automatic text processing can help
additionally improving the quality of bimodal speech emotion
recognition [44]; automatic speech recognition techniques (e.g. [45, 46])
should be applied for speech-to-text transformation in this case.

12. Conclusions. We have proposed a new method for combining two
feature representations for emotion classification from speech: a frame-level
representation of low-level descriptors and an utterance-level representation
of LLD functionals. The proposed approach is motivated by the need to
account for dynamic nature of emotion evolution in time, as well as the trade-
off between local LLD features, which give an insight on the temporal
changes in signal, and global statistical functionals, which are known to better
capture the general trends. Our method was built on traditional application of
statistical openSMILE features with PCA dimensionality reduction combined
with the recent state-of-the-art LSTM RNN technologies. The optimal
number of principal components lies in the range 50 to 400. Principal
components less than 50 do not allow adequately modeling the underlying
nature of emotions and therefore do not render optimal performance. Principal
components more than 400 turn out to possess redundancy and high
correlation, which also hinders the effectiveness of classification and shows
worse performance in terms of classification accuracy. More features turn out
to give worse performance probably due to bigger correlation, redundancy,
noise and curse of dimensionality problem.

The experimental results were compared to two different baseline
methods. One consisted of a single branch openSMILE utterance-level feature
extraction, Principal Component Analysis dimensionality reduction and
Logistic Regression classification. The other was based on a single LSTM-
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RNN Neural Network trained on utterance-level openSMILE features. The
proposed method showed increased classification accuracy compared to the
baseline methods, however the results were not consistent across all the
datasets. The explanation lies in the different corpus sizes: more samples per
class guarantee better performance of the system and less overfitting issue.
One of the drawbacks of the proposed method is that it requires a lot of data to
be trained. However, with recent advances in cross-corpus analysis it is
possible to combine different corpora in order to have more training data and
more robust and stable learning process. The method proved effective
combining the temporal dynamic changes in frame level features and general
trends of utterance-level functionals. Therefore, the direction of future research
will be to investigate possible ways of post-processing of the obtained feature
representations, scaling and normalization techniques, as well as possibility of
conducting cross-corpus analysis in order to upsample the training data.
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0.B. BEPXOJISIK, X. KAiis1, A.A. KAPIIOB
MOJIEJIMPOBAHUE KPATKO- 1 JIOJITOBPEMEHHBIX
3ABUCHUMOCTEN PEYEBOI'O CUT'HAJIA JIJISI
MAPAJIMHTBUCTUYECKOM KJIACCU®PUKAIIMA SMOILUI

Bepxonax O.B., Kaiia X, Kapnos A.A. MojaelupoBaHHe KPaTKO- M 10JroOBpeMeHHbIX
3aBHCHMOCTel pe4eBOro CHrHaJia J1Jisi NapajJuHIBUCTHYECKOH KJIaccH(PUKALUM IMOLHUIA.

AnHotanusi. Pacrio3HaBaHHMe SMOLMI B pedd CTAJO OJHUM M3 BaXKHBIX HAIpaBICHUH B
obsacty ad(heKTUBHBIX BHIYMCICHUH. DTO KOMIUIEKCHAS 3a71a4a, TPYIHOCTH KOTOPOH BO MHOTOM
OIPEEISIOTCS HEOOXOJUMOCTBIO BBIOOpa NPU3HAKOB U HX ONTHMAIBHOIO IIPEICTABICHHUS.
OnTrUManbHOE NpeCTaBICHUe IPU3HAKOB NOJDKHO OTpaXkaTh IIOOAIBHBIE XapaKTEPHUCTHKH, a
TAKKE JIOKAJIbHYIO CTPYKTYPY CHIHAJa, IOCKOJbKY DMOLMHU €CTECTBEHHBIM 00pa3oM HJIATCS BO
Bpemenn. [Tomo6HOe mpencTaBIeHHEe BO3MOXKHO MOIENHPOBATH C MOMOIIBIO PEKYPPEHTHBIX
HeliponHblx cereil (PHC — RNN), koTopble aKTHBHO MCIOJB3YIOTCS Ul PasiIMYHBIX 3a/ad
pacro3HaBaHHs, NpeANoaralolMXx paboTy ¢  mociexoBaTedbHoOcTsaMuU.  IIpemmaraercst
CMEIIAHHBI TOAXOA K IPEACTABICHUIO IPU3HAKOB, KOTOPBI OOBEAMHSET TpaIHIMOHHEBIC
CTaTHCTUYECKUE NMPHU3HAKH C MOCIIeOBATeNEHOCTRIO 3HAYCHUH, TOTy4eHHbIX Ha Bbixoge PHC ¢
JUIMHHOW KpaTkoBpeMeHHOH namsaTbio (JIKIT — LSTM) u XopoI1o MOAEIUPYIOLIMX BPEMEHHYIO
CTPYKTypy curHana. Takum oOpa3oM, y#aeTcsl IOTy4UTh OAHOBPEMEHHOE IpEeICTaBICHHE KaK
KPaTKOBPEMEHHBIX, TaK M JIOJTOCPOYHBIX XapaKTePUCTUK, IIO3BOJSIIOIIMX HCIOJIB30BaTh
MPEUMYIECTBa O0OMX IIOJXOJ0B K MOJEIMPOBAHUIO IHPH3HAKOB peueBoro curhana. Js
9KCIIEPHMEHTAIBHOH IPOBEPKH IPEMIOKEHHOTO MeToja Oblda IIpOM3BeJeHa OLEHKA €ro
9((heKTUBHOCTH Ha TpeX pPa3IMYHBIX 0a3ax JaHHBIX OSMOIMOHAIBHO OKpALICHHOW pedH,
Haxozmsumxcs B cBoboaHoM pocryne: RUSLANA (pycckast peus), BUEMODB (typerikast peus)
u EMODB (nemeuxas peub). B cpaBHEeHMM C TPaaMIMOHHBIM HOJIXOIOM PE3YJbTaThl HAIIMX
9KCIIEPHMEHTOB [OKa3bIBAIOT a0COTIOTHBIN NMPUPOCT B TOYHOCTH PAcHO3HABaHMs dMoLwii B 2.3%
n 2.8% Uil IByX U3 BBIMIEYNOMSAHYTHIX KOPIyCOB, B TO BpeMs Kak JUIs TPETHEro Kopiyca
MPETIOKEHHBII METO He ycTynaeT 6a3oBoii cucteme. CreoBaTeIbHO, JAHHBIH MOIXO0A MOXKHO
npu3HaTh 3QHEKTUBHBIM TSI MOZICTIMPOBAHNUS SMOLMOHAIBHOM OKPACKHU PEUEBBIX BHICKA3bIBAHUN
IPH YCJIOBHMH JIOCTATOYHOIO KOJIMYECTBA 00yUalOMUX JaHHbIX.
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