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Abstract. Recently, Speech Emotion Recognition (SER) has become an important 
research topic of affective computing. It is a difficult problem, where some of the greatest 
challenges lie in the feature selection and representation tasks. A good feature representation 
should be able to reflect global trends as well as temporal structure of the signal, since 
emotions naturally evolve in time; it has become possible with the advent of Recurrent 
Neural Networks (RNN), which are actively used today for various sequence modeling 
tasks. This paper proposes a hybrid approach to feature representation, which combines 
traditionally engineered statistical features with Long Short-Term Memory (LSTM) 
sequence representation in order to take advantage of both short-term and long-term 
acoustic characteristics of the signal, therefore capturing not only the general trends but also 
temporal structure of the signal. The evaluation of the proposed method is done on three 
publicly available acted emotional speech corpora in three different languages, namely 
RUSLANA (Russian speech), BUEMODB  (Turkish speech) and EMODB (German 
speech). Compared to the traditional approach, the results of our experiments show an 
absolute improvement of 2.3% and 2.8% for two out of three databases, and a comparative 
performance on the third. Therefore, provided enough training data, the proposed method 
proves effective in modelling emotional content of speech utterances. 

Keywords: Speech emotion recognition, computational paralinguistics, affective 
computing, feature representation, context modelling, artificial neural networks, long short-
term memory. 

 

1. Introduction. Automatic emotion recognition has emerged as one 
of the most important and challenging research topics of affective 
computing [1, 2], a modern study concerned with recognizing and 
processing human feelings. Lying at the crossroads of computer and 
cognitive sciences, this rapidly growing field has gained its popularity due 
to advent of new trends and technologies that require monitoring of 
human’s psychophysical state with higher level of personalization and 
adaptation, as well as the ability to simulate empathy for more natural 
human-computer interaction. The capacity to adapt to user’s current 
emotional state is important because emotions greatly influence people’s 
behavior: they affect communication, health and personal well-being, 
decision making processes and other important aspects of everyday life. 
Hence, developing systems that are aware of current user’s state will help to 
incorporate emotional content into human-machine interaction and improve 
overall user experience.  

Some essential issues inherent to the study field of vocal emotions 
are difficulties of defining emotions, specifying number of existing 
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emotions, and distinguishing between different emotional states. These 
questions are important because they define the way investigators approach 
the study — what emotions to model, what to measure, how to interpret 
results, etc. In a typical speech research, emotions are defined as “brief and 
intense reactions to goal-relevant changes in the environment” [3]. 
Currently, there are two major approaches to modeling the emotional states 
adopted by researchers — continuous and categorical [1].  

Continuous approach assumes that every emotion can be represented 
as a point in a 2- or 3-dimensional space, where the dimensions represent 
essential emotion characteristics, such as valence (positive of negative), 
activation (calm or excited), and even dominance (active or passive). The 
two- and three- dimensional emotion spaces with some emotion 
interpretations are shown in Figures 1 and 2, respectively. Categorical 
approach defines a list of basic emotions, usually from 4 to 7, which can be 
considered universal: anger, happiness, sadness, surprise, fear and neutral 
state [4]. Both approaches are actively being exploited in the field; the 
choice is usually determined by the database of the interest. In this study, 
we will be using the categorical approach.  
 

 
Fig. 1. Two-dimensional approach for emotion modelling by activation and valence 

dimensions 
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Fig. 2. Three-dimensional space for emotion modelling with some interpretations 

using activation, valence and dominance dimensions 
 

Practical usage scenarios of emotionally-aware systems are 
numerous and range from small personalized applications to incorporation 
into big industries. Personal gadgets, such as smartphones and game 
consoles, will benefit from collecting data about user’s emotional state to 
adapt their behavior and provide a better user experience; car electronics 
will monitor driver’s stress level and sleepiness to prevent dangerous 
situations on the roads; banks and call-centers will be able to provide a 
better quality service; law enforcement agencies may escalate their security 
measures by automatically spotting suspicious activities. A good example of 
implementing such technologies on a bigger scale is medical treatment, 
where there is a need of continuous monitoring of a patient’s emotional and 
psychophysical state, aiding an expert in health examination procedures, as 
well as better interacting and assisting people struggling to perceive 
emotions of others — such as children with autism. Involvement of 
automatic technologies proves beneficial insofar it allows capturing subtle 
characteristics that may escape from human’s eyes and/or ears [2, 5].  

Analysis of human emotions is possible from different information 
channels (modalities). To name a few — voice, face, gestures, postures, eye 
gaze and other physical measurements, such as electrocardiogram and skin 
conductance. Integrating several modalities in a single task is the main idea 
behind multimodal approaches towards emotion recognition. Multiple 
modalities are complimentary in nature and often bear redundant 
information. This allows to effectively battle the problem of missing values, 
where observations from one or several modalities may not be available at a 
particular time span. However, not all of them are equal in the amount of 
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information they provide. Voice, among other modalities, provides essential 
paralinguistic cues that are indicative of speaker’s feelings. There are 
studies, which show that it is easier to read emotions from voice rather than 
from face [5], probably because people are better at hiding emotions from 
face, but not from voice [6]. Also, it has been established that face is more 
reliable conveying the valence of the portrayed emotion, while voice 
provides a better estimate of its intensity [7]. It means that speech is rather 
indicative of how calm or excited a person is, although it is not always easy 
to tell in which way — positive or negative. Thus, considering acoustic 
features of the signal, angry and happy voices sound similar in that they 
both carry a high amount of energy, higher fundamental frequency (F0), as 
well as wider F0 range, upward intonation contours, faster speaking rate and 
steeper spectral slope [6]. For the reasons described above this work is 
focused on automatic emotion recognition from speech.  

2. Related work. There are several issues that impede the 
development of speech emotion recognition systems, one of them being 
absence of understanding what features should be used for classification [8]. 
Many current state-of-the-art systems use a large amount (on the order of 
thousands) of presumably relevant features with subsequent dimensionality 
reduction technique such as Principal Component Analysis (PCA) [9]. 
Another popular approach is to abandon predefined feature extraction and 
feed raw signals into a deep neural network, which finds a new feature 
representation without any hand-crafted engineering [10]. Another big 
issue, which renders the task of classifying emotions difficult, is the 
inherent inter-speaker and intra-speaker variability. Inter-speaker variability 
arises from different people having different age, gender, individual voice 
quality and characteristics. Intra-speaker variability adds uncertainty even 
more, for the voice quality of the same person changes with health 
condition, general mood, social environment, etc.  

Cultural differences are another source of ambiguity encountered 
when modeling emotional states. A lot of debates were spawn around the 
question whether emotions are universal among people of all ages, genders, 
cultures and languages [11]. Do these factors define the way emotions are 
expressed and perceived and if so, how do emotions differ? There are few 
cross-corpus studies showing results on how well a given model trained on a 
particular database generalizes to other language databases [12]. Nevertheless, 
currently there is not enough data to prove or disprove the argument. 

Feature extraction is an important step in the overall emotion 
recognition pipeline. The features can be extracted on two different levels: 
frame level and utterance level. 

On the frame level, a certain amount of features are being extracted 
from analysis windows of the signal with a predefined frequency, usually 
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about 100 frames per second. This gives localized characteristics of the signal. 
To obtain the utterance level features, summarizing functionals are popularly 
applied to low level descriptors to form global utterance characteristics. Mere 
extraction of the features from the raw signal may not be enough; to gain a 
good performance, feature representation learning can be used to build high-
level features from low-level features [13, 14]. Utterance-level representation 
of features was also explored by Kim [15]. Combination of different feature 
representations has also been explored; for example, Li Yang and Yunxin 
Zhao proposed to apply a shifting short-time window to extract short-term 
features and then applied functionals to the resulting sequences to obtain long-
term feature representation, following with PCA dimensionality reduction and 
classification [16]. Dan-Ning Jiang and Lian-Hong Cai made use of temporal 
features alongside statistical features with GMM and HMM to benefit from 
both representations [17]. Some authors used combined frame and turn level 
analysis via HMM and statistical functionals [18]. 

Various types of classifiers have been used for the task of emotion 
classification from speech. Some of the desirable characteristics involve 
ability to work with small sets of data, handling missing values and outliers. 
As a result of Deep Neural Networks (DNN) becoming more and more 
powerful [19], various deep architectures, such as convolutional and 
recurrent NNs are actively being exploited [20-22]. A special type of 
recurrent neural network (RNN) called Long Short-Term Memory (LSTM) 
is particularly popular due to its ability to model arbitrarily large temporal 
sequences  [7, 23]. It is an important property for emotion classification 
since emotions naturally evolve in time and therefore emotionally colored 
speech signals preserve a temporal structure.  

3. Proposed method. General pipeline of a machine learning setup 
consists of feature extraction, preprocessing and training/testing stage. The 
baseline methods against which we compare the results consists of a single 
branch feature representation using predefined INTERSPEECH 2010 
feature set (utterance-level functionals extracted via openSMILE toolkit), 
and a single LSTM Neural Network. The overall baseline pipelines are 
depicted in Figures 3 and 4. Preprocessing included feature normalization. 
The classification method was chosen to be logistic regression for the 
reasons discussed below. 
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Fig. 3. Baseline method 1: PCA + Logistic Regression 
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Fig. 4. Baselie method 2: LSTM-RNN 

 

In our work, we propose a novel approach to implement a hybrid 
feature representation combining two different feature levels to take 
advantage of both short-time and long-time signal characteristics (Figure 5). 
The two levels of feature extraction are frame-level and utterance-level. The 
former corresponds to low level descriptors (LLDs), which are being 
extracted from every audio frame and form a sequence of feature vectors for 
every utterance. The length of the sequence depends on the duration of the 
audio signal and may vary for every utterance. To account for the temporal 
changes in these features as well as to match the resulting feature vectors of 
every utterance to have the same size, we let the sequences of LLDs to pass 
through an LSTM network and set the output of the network from the last 
frame to be the resulting feature vector describing the given utterance. 
Because the LSTM network has memory cells that allow accumulating 
information, the output from the last frame will have accumulated 
information from all the previous frames.  
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Fig. 5. General scheme of the proposed method 

 

On the other hand, the utterance-level features represent statistical 
functionals applied to all the LLDs within one utterance and form a 
feature vector of a fixed size. Because the dimensionality of the resulting 
feature vector is very high, principal component analysis is used to reduce 
the number of features as well as to decorrelate them. The resulting two 
feature representations are concatenated to form a single feature vector, 
which is further fed into a logistic regression classifier that makes 
predictions about class labels.  
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The reason for combining the two different representations is that 
short-time characteristics (frame level features) together with appropriate 
modelling techniques allow capturing the temporal structure of the signal, 
while long-time characteristics (utterance-level features) are capable of 
expressing general trends [24]. Therefore, by combining the two approaches 
it is possible to benefit from both temporal dynamics as well as the big 
picture provided by statistical functionals. 

4. Feature extraction and selection. The de-facto standard for feature 
extraction in the field of affective computing is openSMILE toolkit provided 
by German company audEERING [25]. There are predefined feature sets that 
were released during the series of annual INTERSPEECH Computational 
Paralinguistics Challenge (ComParE) [26-29]. The number of LLD features, 
as well as the number of applied statistical functionals and the total number of 
resulting utterance-level features are summarized in Table 1. After 
experimenting with these feature sets it turned out that the feature set, released 
in the year 2010, showed a better performance in comparison with other 
feature sets. The details about the LLDs and functionals in this set are 
presented in Table 2, the results of the comparison can be seen in Figure 6. 
Only the most significant number of principal components is shown. 

 

Table 1. openSMILE configuration sets 

Configuration set LLD Functionals Total 

INTERSPEECH-2009 16 12 384 

INTERSPEECH-2010 38 21 1582 

INTERSPEECH-2011 60 33 4368 

INTERSPEECH-2013 65 54 6373 
 

Table 2. INTERSPEECH 2010 paralinguistics challenge feature set 
Low-Level Descriptors Functionals 

PCM loudness Position maximum/minimum 

MFCC [0-14] Arithmetic mean, Standard deviation 

Log Mel Freq. Band [0-7] Skewness, Kurtosis, 

LSP Frequency [0-7] Linear regression coefficients 1/2 

F0 by sub-Harmonic sum Linear regression error Q/A 

F0 envelop Quartile 1/2/3 

Voicing probability Quartile range 2-1/3-2/3-1  

Jitter local Percentile 1/99 

Jitter DDP Percentile range 99-1 

Shimmer local Up-level time 75/90 
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Four different feature sets were compared by the accuracy, which 
was possible to obtain on RUSLANA corpus using particular feature set 
with the rest classification scheme being equal. The INTERSPEECH 
2009  (IS_09) feature set consisted of 384 features, which was considered 
small enough not to apply any dimensionality reduction techniques. For the 
rest of the feature sets Principal Component Analysis (PCA) was applied in 
order to reduce the size of the feature vectors and decorrelate the features. 
The number of principal components was ranging from 10 to 1000. The 
INTERSPEECH 2010 feature set comprised 1582 features, INTERSPEECH 
2011 feature set — 4368 features and the INTERSPEECH 2013 feature set 
included 6373 features in total. These features are obtained by applying 
certain statistical functionals to LLDs extracted on the frame level and 
represent utterance-level features.  

As can be seen from Figure 6, the INTERSPEECH 2010 feature set 
has shown the best performance in comparison to other available feature sets. 
Therefore, further research was focused to include only features contained in 
this set. 38 LLDs were extracted from the audio signal at the frame rate of 100 
fps, with the windows of various types and lengths. Hamming window of 25 
msec was used for all the features, except the fundamental frequency (F0). 
The window applied to extract F0 was Gaussian with the length of 60 msec. 
Moving average filter was applied to all of the characteristics. 21 functionals 
as well as first order regression coefficients were applied to LLDs. 16 zero 
features were removed from the set (such as minimum F0 value — always 
zero). Two other additional features were included — the number of raises 
and the length of the F0 curve.  

 

 
Fig. 6. Comparison of 4 openSMILE feature sets on RUSLANA database using 

Logistic Regression 
 

PCM loudness is the normalized intensity raised to a power of 0.3. 
MFCC [0-14] refers to Mel-frequency cepstral coefficients from 0 to 14. Log 
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Mel Frequency Band [0-7] is the logarithmic power of Mel-frequency bands 
from 0 to 7 (distributed over a range from 0 to 8 kHz). LSP Frequency [0-7] is 
the 8-line spectral pair frequencies computed from 8 LPC (Linear Prediction 
Coding) coefficients. F0 envelop is the envelope of the smoothed fundamental 
frequency contour. The vioicing probability reflects the likelihood that the 
frame is pitched. Jitter and shimmer are characteristics of voice quality that 
reflect frequency and amplitude instability, respectively. Jitter local is the 
frame-to-frame pitch period length deviations. Shimmer local is the frame-to-
frame amplitude deviations between pitch periods. Jitter DDP is the 
differential frame-to-frame jitter (the jitter of the jitter). Some functionals are 
not applied to every low-level descriptor. For example, minimum, maximum, 
mean and standard deviation are not applied to voice related LLDs except for 
fundamental frequency F0.  

5. LSTM Recurrent Neural Networks. Recurrent Neural 
Networks  [30] are a special type of Neural Networks that have feedback 
connections, i.e. the output of an RNN unit is connected to the input of the 
same unit in order to provide the network ability to the previous 
activations. This allows to store memory about previous elements of a 
sequence and make better decisions in future. The general idea of an RNN 
network with feedback connections is shown below in Figure 7. On the 
left (a), the figure shows connections of a hidden layer from a 
Feedforward Neural Network, where the information propagates strictly 
forward. On the right (b), the same piece of network is shown with added 
feedback connections to each of the hidden neurons that turns the 
architecture into a Recurrent Neural Network. The feedback connections 
may also connect the neurons on the current layer with the previous 
layers, which allows to build more complex models. 

 

 
a) b)  

Fig. 7. Recurrent Neural Network structure in comparison with a simple 
Feedforward Neural Network: a) – feedforward Neural Network; b) – recurrent 

Neural Network 

38 Труды СПИИРАН. 2019. Том 18 № 1. ISSN 2078-9181 (печ.), ISSN 2078-9599 (онлайн) 
www.proceedings.spiiras.nw.ru

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ_____________________________________________



However, this kind of architecture has several drawbacks, one of 
which is inability to store sufficiently long context information. Some 
estimates suggest that the network forgets information after ten steps of 
iteration. For these reason Recurrent Neural Networks are said to possess 
short term memory. Vanishing gradients also pose difficulty for applying 
such networks in practice.  

In order to cope with these drawbacks, a special type of cell was 
invented that can memorize and store an arbitrary amount information in 
time. It was called Long Short-Term Memory to emphasize that it 
overcomes the loss of information in RNNs. A typical LSTM cell has the 
structure depicted in Figure 8. It has an Input Gate 𝑖௧, Forget Gate 𝑓௧, and 
Output Gate 𝑜௧ that regulate the amount of information which is being 
stored in the cell. The flow of data within the cell also allows to pass 
through the cell unchanged so that the problem of vanishing gradients is no 
longer a problem for LSTM. The gates are regulated by equations 1-3, 
where 𝜎 denotes sigmoid function. Each gate has its own weight 
coefficients 𝑊௙, 𝑊௜, 𝑊௢ and biases 𝑏௙, 𝑏௜, 𝑏௢, which are optimized during 
training. The cell state 𝐶௧ and output hidden state ℎ௧ are given in equations 
4-5. The cell state is updated in accordance with the previous cell state and 
new candidates at the input gate. Output ℎ௧ represents a filtered cell state.  

 

 
Fig. 8. Structure of a basic LSTM cell [30] 

 

  1,  ,t f t t ff W h x b    (1) 

 

  1,  ,t i t t ii W h x b    (2) 
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  1,  ,t o t t oo W h x b    (3) 

 

  1 1 *  * , ,t t t t c t t cC f C i tanh W h x b     (4) 

 

  * .t t th o tanh C  (5) 
 

Another improvement in LSTM cell structure is the additional 
peephole connections, which are depicted in Figure 9. Peephole connections 
are allowing for information to flow directly to the Input, Output and Forget 
Gates, letting them access to the current cell state.  

 

 
Fig. 9. Structure of an LSTM cell with peephole connections [30] 

 

Different implementations will use some peepholes and not the others. 
One more variation is to couple forget and input gates. The implication is that 
the decision on what to store and what to forget are no longer independent and 
are made jointly, i.e. forgetting happens only when there is new data to put in 
the memory. Another popular variation on the LSTM cell is the Gated 
Recurrent Unit (GRU), introduced by Cho et al. [31]. In this particular 
implementation, the input gate and the forget gate are combined in a single 
update gate. Cell state and the output hidden state are also merged together. 
The structure of such unit is simpler than a standard LSTM cell and requires 
less computation, while providing similar performance.  

In an LSTM network, LSTM units replace feedforward neurons. 
Typically, a hidden layer of LSTM cells would be followed by a fully 
connected layer, that connects the LSTM layer with the output. The input is 
represented by a 3-dimensional array, where samples are sequences of 
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features. Assuming that the number of samples is n, the sequences are of 
length s and feature vector contains f features, the final topology of the 
network is depicted in Figure 10.  
 

 
Fig. 10. Topology of an LSTM network: n – number of samples, s – length of the 

sequence, f – number of features in each observation in the sequence, N – number of 
recurrent layers used in the network 

 

6. Feature representation using LSTM. In the second branch, 
frame-level LLD sequences are extracted via openSMILE toolkit in 
accordance with the feature selection methods described above. These 
sequences are passed through a unidirectional one-layer RNN-LSTM 
network with 300 hidden units, one frame at a time. After the last frame has 
propagated through the network, the output of the network is saved as a 
feature vector, containing information about temporal structure of the 
signal. The process of representing an utterance with LSTM unrolled in 
time is depicted in the Figure 11. The LLD sequence of one particular 
utterance is denoted as f0, f1, …, fd, where d –the number of frames in the 
utterance. The LSTM network depicted in the diagram is the same network, 
unrolled in time, to show that only the last output of the LSTM is 
considered as the feature vector representation for that one utterance. 

The training of LSTM network is done as if it performs the function 
of a classifier — that is, a pair of (feature vector, label) is presented to the 
network, the weights get updated and the procedure repeats until the 
network has seen all the samples and the training process converges. Next, 
the last layer of the network, the softmax layer with the number of units 
equal to the number of prediction classes, is removed and the output of the 
network is no longer a probability of belonging to a particular class, but 
rather a complex 300-dimensional non-linear representation of the input 
features. The two feature representations are concatenated together to form 
a single feature vector that is passed to the classification step. 
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The architecture of the used RNN-LSTM network contains one 
hidden layer of 128 LSTM units. The initial learning rate is set to 0.001 and 
is decreased every 100 epochs by the factor of 0.1. The learning process 
was stopped when the learning curve is not improved for 15 consecutive 
epochs. Dropout was not applied out of the data size concern: most of the 
datasets are small in size. L2-regularization was implemented alongside 
cross-entropy loss function. In all the experiments the optimizer of choice 
was Adam. Mini-batches of size 250 were used. In all the experiments 
LSTM implementation was carried out with TensorFlow framework [32].  

 

 
Fig. 11. Feature vector representation via LSTM network. The LLD sequence of one 

particular utterance is denoted as f0, f1, …, fd, where d is the number of frames 
 

7. Feature representation using PCA. The proposed method 
consists of two different feature representation methods, implemented in 
parallel, as can be seen in Figure 8. In the first branch, utterance-level 
functional are computed from LLDs. Statistical functional are known to 
have more expressive power than LLDs, considering the suprasegmental 
nature of emotions [24], however they fail to take into account the temporal 
changes in the signal, which are also of great importance since all emotions 
evolve in time. The number of possible functionals is very big and it is not 
clear which ones are more informative than others. They also often have a 
high correlation. For these reasons and a common problem known as curse 
of dimensionality [33], PCA is performed to reduce the dimensionality of 
resulting feature vectors and de-correlate the features. 

Mathematically, PCA [34] is defined as an orthogonal linear 
projection of data to a new coordinate system of the form ,T XW  where 

 1 , , 
T

nx x X  is the data matrix,  1, pw w W  is a p p  weight 

matrix, whose columns are eigenvectors of ,TX X  and T  is the new PCA 
representation of the data. The transformation maps each row vector of data 

 ix  to a new vector of principal component scores     1, , mi i
t t t   given 
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by      k i i kt x  w  for 1 , 1i n k m     with each weight vector w  being a 

unit vector. The greatest variance happens to lie on the first coordinate, which 
is also called the first principal component, the second greatest variance – on 
the second principal component and so on. Principal components are 
visualized in the directions of greatest variance in Figure 12.  

 

 
Fig. 12. Illustrations of the Principal Component Analysis: principal components 

point in the direction of greatest variance  
 

To maximize variance, the first weight vector  1w  must satisfy the 

following condition: 
 

     2 2
1

1 1
arg max  arg max arg max .

T T
T T

Tw w 

      
  

w X Xw
w Xw w X Xw

w w

 

(6) 

 

After the  1w  is found, the first principal component of a data 

vector  ix  can be found in the transformed coordinates as      1 1 .i it x  w  

The k-th principal component can be found by subtracting from X  the first 
k-1 principal components and then finding the weight vector corresponding 

to the maximum variance from the new data ˆ .kX  
 

   

1

1

ˆ .
k

T
k s s

s





 X X Xw w  (7) 

 

8. Classification. A comparative study [35] was conducted on the 
RUSLANA database to find out the best classification scheme suited for the 
task. The results of the study are summarized in Figure 13. As can be seen 
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from the figure, the best prediction accuracy was achieved via Logistic 
Regression (Log-R) classifier. The second-best approach turned out to be 
Support Vector Machine (SVM), and the third best — a simple artificial 
Neural Network (NN) with one hidden layer. Other classifiers, that were 
used in the comparative study, are: Linear Regression (Lin-R), Naïve 
Bayes (NB), k-Nearest Neighbours (kNN), and Random Forest (RF). 

Linear kernel gave the best result for SVM classification, which 
proves that with a high number of features non-linear projections don’t 
improve the efficiency of the system. The optimal value for C parameter was 
chosen empirically. In kNN approach, the best k parameter was also found 
empirically and was equal to 10 neighboring points. The number of hidden 
layers in NN varied from 1 to 2, number of neurons in each layer — from 50 
to 500. The number of epochs and learning rate ranged from 100 to 500, from 
0.1 to 0.0001 respectively. RF parameter was optimized experimentally.  

 
Fig. 13. Classification results of various classifiers applied to RUSLANA 

 

In order to achieve speaker-independent properties of the system we 
would like to know whether a model trained on a particular set of persons 
generalizes well to the group of previously unseen voices. To implement 
this, we need to ensure that all the samples in the validation set are not 
represented at all in the training set. This is achieved via leave-one-subject-
out cross validation strategy, which ensures that the same subject is not 
represented in both testing and training sets. Hence, the overall experiments 
are handled as 61-fold subject-independent cross-validation, i.e. the training 
was implemented on 60 speakers and the testing on the remaining speaker 
to achieve speaker-independent properties of the system. 

9. Logistic Regression. Regression models are used for defining the 
relationship between one dependent variable and several independent 
variables. When the dependent variable is in discrete form, the regression turns 
into a binary classification task. Let us assume that output yi  is a realization of 
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a random variable Y ,i  which takes on one of the two values: 0 and 1 with 

probabilities i  and i1 .  Such distribution is called a Bernoulli distribution 

and can be written in the form    1ir  .P 1
yy

i i i
iiY y       When building a 

linear regression an assumption is being made about probabilities i  having 

linear dependency on observations: '
i 1 1 2 2 n x    ,  i nx x x        where   

is a vector of regression coefficients.  
In order to limit the prediction values to the range from 0 to 1, 

probabilities i  are transformed to i

i

,
1




 which reflects the chance of a 

particular event happening, which can take on any positive value. After that 
the transformed values undergo logistic transformation 

  i
i i

i

logit log .
1

 


 


 With such representation, when the chance is close 

to 0, logit is approaching .  From the other side, when the probability is 
close to 1, both the chance and the logit approach .  Therefore, the logit 
transformation projects probability from the range {0, 1} on to the whole 
rational number space. When the probability is 0.5, the logistic function is 0. 
Negative numbers correspond to probabilities < 0.5, and positive numbers 
correspond to probabilities > 0.5. This logit transformation is unique and 

therefore reversable:  1
i i

i

i
logit  .

1  

e

e



  


 Logistic regression assumes 

that probability logit is a linear model:   '
ilogit x .i   Interestingly enough, 

logistic regression provided a better performance in comparison to simple 
feedforward Neural Network, despite having a simpler structure. This 
phenomenon can be explained by regularization effects.  

Regularization can be used in all regression models by adding 
another term to the loss function, which does not allow for coefficients to 
grow arbitrarily large, causing model overfitting. Hence, regularization 
helps to generalize the model and abstract away from the particularities.  

There are several underlying assumptions on which the logistic 
regression models are build. First, it is assumed that there is no linear 
dependency between regression model factors; second, the variance is 
assumed to be constant. In practice, it is not always possible to comply 
with such conditions. Despite of that, logistic regression models are 
commonly used in practice.  

10. Emotional speech corpora. We used 3 open source speech 
databases to evaluate our proposed method. These corpora are: 
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RUSLANA [36] (Russian speech), EMODB [37] (German speech), and 
BUEMO [38] (Turkish speech). The databases were chosen so that they 
have a similar structure and different languages to see how well the model 
can be generalized. All of them are well-balanced, i.e. having the same 
number of samples per each class, acted by non-professional actors, with a 
predefined set of categorical emotions. 

RUSsian LANguage Affective corpus RUSLANA is a Russian 
language emotional speech database collected at the Department of 
Phonetics, St. Petersburg State University, Russia, in a sound proof 
recording studio. It contains audio recordings of 61 subjects (12 male and 
49 female), in the age of 16-28 years old, all of whom were university 
students and native speakers of the standard Russian language. Each 
speaker pronounced 10 phonetically representative decontextualized 
sentences, which included all the Russian phonemes and most commonly 
encountered consonant clusters. Each sentence represented one of the 10 
syntactic types, corresponding to distinct intonation contours, which 
coincide with different intonation contours in Bryzgunova's 
classification [39] inherent to the Russian language. Every sentence was 
pronounced with the following six basic emotional states: Neutral (N), 
Surprise (S), Happiness (H), Anger (A), Sadness (D) and Fear (F). 
Therefore, there are 61 speakers × 10 sentences × 6 emotion classes = 3660 
audio files in total, each ranging in length from 2 to 5 seconds.  

RUSLANA was chosen for the training purposes for several reasons. 
First, it is a well-balanced corpus containing an equal number of emotional 
utterances in every class; second, the actors are not professional and thus they 
do not reflect exaggerated intonation and other prosodic characteristics, 
common to professional performers [40]; third, the corpus construction strategy 
takes into account peculiarities of the Russian language and therefore provides a 
useful framework for developing a speech emotion recognition system from 
Russian speech, research on which until now has been sparse and inconsistent.  

A database of German emotional speech (EMODB) was collected at the 
Department of Technical Acoustics of the Technical University of Berlin, in an 
anechoic chamber with high-quality recording equipment. Ten non-professional 
actors (5 male and 5 female) whose age ranged from 21 to 35 years old repeated 
10 utterances with the following 7 different emotions: Neutral, Anger, Fear, 
Joy, Sadness, Disgust and Boredom. The total number of utterances is 10 
speakers × 10 sentences × 7 emotion classes = 700 with some additional second 
versions reaching up to 800 recordings. The utterances of two types (a short 
sentence and a two phrase sentence) were constructed from everyday life usage.  

The speech recordings of the BUEMODB dataset were collected in 
Bogazici University in Istanbul. There are 121 utterances for each of four 
emotional classes (Angry, Happy, Neutral and Sad) from 11 amateur theatre 
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actors (4 male and 7 female) by means of Stanislavskiy effect for generating 
emotional utterances [41]. The total number of audio files is 11 
speakers × 11 sentences × 4 emotion classes = 484. The information about 
all three databases are summarized in Tables 3 and 4. Table 3 shows general 
information of how many speakers participated in database collection, what 
language was used for recording and number of emotion classes. Table 4 
shows distribution of number of utterances among the classes.  

 

Table 3. Corpora summary 

Corpus Lang. Speakers Females Classes 

EMODB German 10 5 7 

RUSLANA Russian 61 49 6 

BUEMODB Turkish 11 7 4 
 

Table 4. Corpora class distribution. Classes are abbreviated as follows: N – Neutral, 
A – Anger, H – happiness, S – Sadness, D – Disgust, F – Fear, B – boredom 

Corpus N A H S D F B All 

EMODB 79 127 71 62 51 69 81 535 

RUSLANA 610 610 610 610 610 610 - 3600 

BUEMODB 121 121 121 121 - - - 484 
 

11. Experimental results and discussion. After experimenting with 
the number of components used in the PCA analysis we can conclude that for 
different datasets the optimal number of principal components differs, which 
may be explained by different data distributions due to varying recording 
conditions and audio signal quality. This is in consent with the recent study 
of [42], which showed evidence that the nature of dataset gives an idea to 
select relevant classifiers. The results are presented in the Table 5.  

 

Table 5. Classification accuracy (%) of logistic regression with various numbers of 
principal components 

 Classification accuracy (%) 

PCA # EMODB RUSLANA BUEMO 

10 52.1 31.7 49.4 

50 56.3 34.2 52.5 

100 48.3 36.9 53.4 

200 38.4 43.6 52.8 

300 51.1 47.2 55.1 

400 52.3 44.9 56.0 

500 52.2 44.8 56.2 
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EMODB showed the best performance at the minimum number of 
principal components being equal 50, which allowed obtaining classification 
accuracy of 56.3%. Both RUSLANA and BUEMO datasets required more 
number of principal components in order to achieve optimal performance. In 
case of RUSLANA, 300 principal components obtained via PCA resulted in 
47.2% classification accuracy. Among other datasets optimal performance on 
BUEMO was achieved with the highest number of principal components 
being equal 400. In all the cases the original number of features was reduced 
more than three times. This indicates that high number of features indeed 
suffers from curse of dimensionality. The apparent conclusion is that feature 
decorrelation and dimensionality reductions techniques are an important 
preprocessing step in emotion classification task.  

The baseline classification method, which consisted of single branch 
openSMILE utterance-level feature extraction, showed maximum classification 
accuracy of 47.2% on the RUSLANA dataset, 56.3 on the EMODB dataset, and 
56.0 on the BUEMO dataset. The second baseline using a single LSTM 
network gave the worst results, as expected: 40.5% on the RUSLANA dataset, 
45.3% on the EMODB dataset, and 39.9% on the BUEMO dataset. The 
implementation of the single LSTM network alone showed a severe overfitting 
problem, presumably due to a small size of the dataset.  

Implementing the newly proposed method allowed us to obtain a 
relative improvement over the first baseline (PCA + Logistic regression) 
2.3 % in classification accuracy on the RUSLANA corpus and 2.8% on the 
BUEMO corpus. EMODB, on the contrary, did not show a relative 
improvement but a comparative performance with the combination of the 
proposed techniques. The relative improvement over the second baseline 
was much more prominent 9.0%, 10.8%, 18.9%. The details of the obtained 
results are summarized in Table 6. 

 
Table 6. Classification accuracy (%) of the baseline and the proposed methods 

Modeling method 
RUSLANA 
(6 classes) 

EMODB 
(7 classes) 

BUEMO 
(4 classes) 

PCA + 
Logistic regression 

47.2 56.3 56.0 

LSTM 40.5 45.3 39.9 

Proposed 
Combination 

49.5 56.1 58.8 

 
The number of classes differed from corpus to corpus and therefore 

the interpretation of the results should be made accordingly. In case of 4 
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classes (BUEMO), the chance level is 25%, and so the proposed method 
worked more than twice better than the chance level. In the case of 6 
classes (RUSLANA) the chance level is 16.(6)% and so the proposed 
implementation achieved performance almost 3 times better than the 
chance level. In case of 7 classes (EMODB), the chance level is at 14.29% 
giving relative improvement of the proposed approach almost 4 times 
better than the chance level.  

Training an LSTM network on EMODB and BUEMO corpora 
showed significant overfitting results despite implementing various 
regularization techniques, such as early stopping and dropout. This can be 
explained by the small dataset sizes (114 samples per class on average for 
EMODB, and 121 samples per class for BUEMO). RUSLANA, on the 
contrary, had 610 samples per class and therefore showed more consistent 
results on the training. The reader is referred to [43] for more experimental 
results on the BUEMO corpus. 

A sentiment analysis based on automatic text processing can help 
additionally improving the quality of bimodal speech emotion 
recognition [44]; automatic speech recognition techniques (e.g. [45, 46]) 
should be applied for speech-to-text transformation in this case. 

12. Conclusions. We have proposed a new method for combining two 
feature representations for emotion classification from speech: a frame-level 
representation of low-level descriptors and an utterance-level representation 
of LLD functionals. The proposed approach is motivated by the need to 
account for dynamic nature of emotion evolution in time, as well as the trade-
off between local LLD features, which give an insight on the temporal 
changes in signal, and global statistical functionals, which are known to better 
capture the general trends. Our method was built on traditional application of 
statistical openSMILE features with PCA dimensionality reduction combined 
with the recent state-of-the-art LSTM RNN technologies. The optimal 
number of principal components lies in the range 50 to 400. Principal 
components less than 50 do not allow adequately modeling the underlying 
nature of emotions and therefore do not render optimal performance. Principal 
components more than 400 turn out to possess redundancy and high 
correlation, which also hinders the effectiveness of classification and shows 
worse performance in terms of classification accuracy. More features turn out 
to give worse performance probably due to bigger correlation, redundancy, 
noise and curse of dimensionality problem.  

The experimental results were compared to two different baseline 
methods. One consisted of a single branch openSMILE utterance-level feature 
extraction, Principal Component Analysis dimensionality reduction and 
Logistic Regression classification. The other was based on a single LSTM-
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RNN Neural Network trained on utterance-level openSMILE features. The 
proposed method showed increased classification accuracy compared to the 
baseline methods, however the results were not consistent across all the 
datasets. The explanation lies in the different corpus sizes: more samples per 
class guarantee better performance of the system and less overfitting issue. 
One of the drawbacks of the proposed method is that it requires a lot of data to 
be trained. However, with recent advances in cross-corpus analysis it is 
possible to combine different corpora in order to have more training data and 
more robust and stable learning process. The method proved effective 
combining the temporal dynamic changes in frame level features and general 
trends of utterance-level functionals. Therefore, the direction of future research 
will be to investigate possible ways of post-processing of the obtained feature 
representations, scaling and normalization techniques, as well as possibility of 
conducting cross-corpus analysis in order to upsample the training data.  
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ПАРАЛИНГВИСТИЧЕСКОЙ КЛАССИФИКАЦИИ ЭМОЦИЙ 

 

Верхоляк O.В., Кайя Х., Карпов А.А. Моделирование кратко- и долговременных 
зависимостей речевого сигнала для паралингвистической классификации эмоций. 

Аннотация. Распознавание эмоций в речи стало одним из важных направлений в 
области аффективных вычислений. Это комплексная задача, трудности которой во многом 
определяются необходимостью выбора признаков и их оптимального представления. 
Оптимальное представление признаков должно отражать глобальные характеристики, а 
также локальную структуру сигнала, поскольку эмоции естественным образом длятся во 
времени. Подобное представление возможно моделировать с помощью рекуррентных 
нейронных сетей (РНС — RNN), которые активно используются для различных задач 
распознавания, предполагающих работу с последовательностями. Предлагается 
смешанный подход к представлению признаков, который объединяет традиционные 
статистические признаки с последовательностью значений, полученных на выходе РНС с 
длинной кратковременной памятью (ДКП — LSTM) и хорошо моделирующих временную 
структуру сигнала. Таким образом, удается получить одновременное представление как 
кратковременных, так и долгосрочных характеристик, позволяющих использовать 
преимущества обоих подходов к моделированию признаков речевого сигнала. Для 
экспериментальной проверки предложенного метода была произведена оценка его 
эффективности на трех различных базах данных эмоционально окрашенной речи, 
находящихся в свободном доступе: RUSLANA (русская речь), BUEMODB (турецкая речь) 
и EMODB (немецкая речь). В сравнении с традиционным подходом результаты наших 
экспериментов показывают абсолютный прирост в точности распознавания эмоций в 2.3% 
и 2.8% для двух из вышеупомянутых корпусов, в то время как для третьего корпуса 
предложенный метод не уступает базовой системе. Следовательно, данный подход можно 
признать эффективным для моделирования эмоциональной окраски речевых высказываний 
при условии достаточного количества обучающих данных.  

Ключевые слова: распознавание эмоций в речи, компьютерная паралингвистика, 
аффективные вычисления, представление признаков, моделирование контекста, 
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