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Abstract. Mathematical models of the Earth system and its components represent one
of the most powerful and effective instruments applied to explore the Earth system's
behaviour in the past and present, and to predict its future state considering external
influence. These models are critically reliant on a large number of various observations (in
situ and remotely sensed) since the prediction accuracy is determined by, amongst other
things, the accuracy of the initial state of the system in question, which, in turn, is defined
by observational data provided by many different instrument types. The development of an
observing network is very costly, hence the estimation of the effectiveness of existing
observation network and the design of a prospective one, is very important. The objectives
of this paper are (1) to present the adjoint-based approach that allows us to estimate the
impact of various observations on the accuracy of prediction of the Earth system and its
components, and (2) to illustrate the application of this approach to two coupled low-order
chaotic dynamical systems and to the ACCESS (Australian Community Climate and Earth
System Simulator) global model used operationally in the Australian Bureau of
Meteorology. The results of numerical experiments show that by using the adjoint-based
method it is possible to rank the observations by the degree of their importance and also to
estimate the influence of target observations on the quality of predictions.

Keywords: variational data assimilation, adjoint model, forecast sensitivity, observation
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1. Introduction. Mathematical models of the Earth system and its
components such as the atmosphere, ocean, hydrosphere and biosphere,
represent one of the most powerful and effective instruments applied to ex-
plore the Earth system's behaviour in the past and present, and to predict its
future state considering external influence (e.g. [1-4] and references herein).
These models include and parametrically describe numerous physical,
chemical and biological processes and cycles such as water cycle, carbon
and nitrogen cycles etc. Prediction of the Earth system dynamics under the
influence of natural forcing and anthropogenic interventions represents one
of the challenging issues of modern science. From the standpoint of dynam-
ical systems theory, the Earth system consists of several interactive dynam-
ical subsystems. Each of them covers a broad space-time spectrum of mo-
tions and a wide variety of physical and chemical processes. The Earth sys-
tem components have specific physical, chemical and dynamical properties,
unique structure and behaviour. They are closely related to each other via
fluxes of energy, matter, water, aerosols, carbon dioxide and other chemical
substances. Modern Earth system models are highly complex and resource
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intensive. These models, which can range substantially in their complexity,
can be a simple concept or a set of partial differential equations that can be
solved numerically by high-performance computers. Formally, the Earth
system (or its any component) can be considered as dynamical system gen-
erated by the following vector-valued evolutionary differential equation:

dx/dt = £(x(t).a); (1)

A,y =X @)

where L is a nonlinear differential operator, x is a state vector, X, is a given
vector-valued function defining the initial state of a system, and « is a vec-
tor of parameters.

Since equation (1) is solved numerically, it should be transformed to
the discretised form. Equation (1) discretised on the model space-time grid
can be written in the following compact from:

X1 = Mg (xk ) té&, (3)

where x, € R" is the n-dimensional state vector at time t; representing the
complete set of variables that determine the internal state of a system in
question, A7, .., :R" — R" is a discrete nonlinear operator that propagates

the state variables from time t;, to time t,,;, and & € R™ is model errors.
Note that the model discrete operator indirectly includes known model pa-
rameters. It is usually assumed that the model (3) is "perfect" (g, = 0), i.e.
given the initial condition x,, equation (3) uniquely specify the path of dy-
namical system in its phase space.

Numerical models used in Earth system simulations are critically re-
liant on large amounts of Earth observation data that are required to correct-
ly define the initial conditions through the process known as data assimila-
tion (DA) (e.g. [5, 6]). As the practice shows, the quality of prediction is
strongly affected by the observations — their volume, temporal and special
distribution, and accuracy of measurements. In many applications, to simu-
late and predict the long-time behaviour of dynamical system (e.g. in cli-
mate studies) observation data are used to adjust a predictive model trajec-
tory to newly obtained observations (see Figure 1; this figure was created
based on the ideas discussed in [7]). To date DA remains one of the key
issues in geophysical sciences. The basic goal of DA is to merge observa-
tions of any type with certain prior information which needs to be estimated
in some way. For example, this prior information referred to as the back-
ground can be estimated by models used in prediction.
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One of the most popular and effective DA methods is four-
dimensional DA (4D-Var). In general terms, 4D-Var DA aims to define the
initial state of a dynamical system in question by combining (in statistically
optimal manner) the observations of state variables of a real physical system
together with a background. 4D-Var procedures are mathematically formu-
lated as an optimization problem, in which the initial condition plays the
role of control vector and model equations are considered as constraints.
The theoretical foundations of the study and the solution of such problems
were laid in the classical works of R.E. Bellman [8], L.S. Pontryagin et
al. [9], J.-L. Lions [10], G.I. Marchuk [11]. The variational approach was
first used in the prediction of atmospheric processes by Sasaki [12] and
then, starting from famous research papers [13-15], has been extensively
explored in a vast number of publications.
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Fig. 1. The scheme of model trajectory adjustment to new observations

The ACCESS (Australian Community Climate and Earth System
Simulator) at the Bureau of Meteorology [16] utilizes the 4D-Var scheme in
incremental formulation developed at the UK Met Office [19]. The general
idea of 4D-Var approach can be simply illustrated as follows. Suppose that

b
at a certain initial time the background state ¥ and some physical quanti-
ties y° measured by instruments are known. Then [5]

x=x"+éeb, y°=72’(x)+8°, 4)

where 77 is the (nonlinear) projection operator, that maps the space of

o
model state into the space of observations, £” and ¢ are the errors of the

SPIIRAS Proceedings. 2018. Issue 6(61). ISSN 2078-9181 (print), ISSN 2078-9599 (online) 7
www.proceedings.spiiras.nw.ru



MATEMATUYECKOE MOAENMPOBAHWE N NPUKNAOHAA MATEMATUKA

background and observations respectively. Within the framework of 4D-Var,
the initial state x, is estimated via the following optimization problem [5]:

Xy = argmin](xo) , %)

2

()=l 2T 0

where B and R are the error covariance matrices of the background and ob-
servations, respectively, || - ||, is the inner product with respect to the A

. . 2 T p-1
matrix metrics, i.e. || a ||A,1 =a A a.

The cost (objective) function (6) is interpreted as follows. The first
term that is the background term represents the deviation between the model
initial state x, and the background x? and calculated in the Euclidean norm
L? described by the background covariance matrix B. The second term, the

observation term, measures the deviation between observations y° and the
"model equivalent" of observations 7/ (x) This term is calculated in the

I* norm described by the observation-error covariance matrix R and is
summed over the assimilation window.

The 4D-var problem is simply a minimization problem with con-
straints on x given by the model equation (3). If the observation operator is
linear, we obtain a quadratic problem whose unique solution is provided by
the Best Linear Unbiased Estimator (BLUE) [5]:

Xy = xg +Kd, @)

-1
where K=(B" + HTR'IH) H'R™ is the Kalman gain matrix, H is a linear-

ized observation operator, and d = y° —Hx” is the innovation vector.

When the observation operator is nonlinear, the variational data as-
similation system considers a series of state variables x; along which the
nonlinear operator 7 can be linearized. This approach known as an incre-
mental variational data assimilation was introduced in [18]. The first state
variable is taken as the background state x; = x", and at iteration J the ob-

jective function is:

T (8x) = ||5x0 ~b, ||Bl+ 1, (%) -4, || ©)

Jlir-1?
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where 6x, =x,;—x,;; 1s the output result of the minimization,
b, = x5 —Xp 15 d;=y°—H(x, ), and H, is the observation operator
linearized around the state estimate x; ;. To achieve the absolute mini-

mum (not the local one), the first guess should be close enough to the truth.

The essential component of 4D-Var system is an adjoint model
which, as will be shown below, plays a major role in the exploration of
model forecast sensitivity to observations and in the assessment of observa-
tion impact on the accuracy of prediction of the Earth system and its com-
ponents. We would like to emphasize that significant contribution to the
theory of adjoint equations was made by G.I. Marchuk and his scientific
school (e.g. [11, 19, 20]).

Commonly, the impact of observations on the prediction skill of
Earth system models is evaluated by executing the so-called Observing
System Experiment (OSE), also known as a Data Denial Experi-
ment (DDE). In a DDE, the forecast skill of two individual runs are com-
pared—one with all observations assimilated and the other with a given
observation type (or individual instrument) withheld or added (e.g. [21]).
Any change in the forecast accuracy is referred to the observations, which
have been withheld. The approach can also be used to assess the impact of
target or newly available observations. DDEs can be very helpful but
come with disadvantages: they are computationally expensive and not
suited to assess the impact of a single station in an observing network or
individual measurement device. In addition, DDEs only provide infor-
mation on the dataset that was withheld, and no information on the value
of other subsets of observations.

Another technique, which is able to calculate the individual impact
that each assimilated observation has, and is capable to continually generate
and aggregate forecast impacts for all observations, was suggested
in [22, 23]. This approach makes use of the adjoint models utilized within
4D-Var systems. The observation impact is measured by the reduction in
the forecast error expressed as a total "moist" or "dry" energy norm. This
method was subsequently implemented in several research and operational
centres (e.g. [24, 25]). It is important that such a method uses the same
computer code as 4D-Var systems.

This paper aims to illustrate the application of the adjoint-based ap-
proach to two coupled low-order chaotic dynamical systems and to the
ACCESS global model. We emphasize that this technique is a powerful in-
strument that allows for not only evaluating the current observing network but
also assessing the value of network components which will be used in the
future, and, therefore, solve the problems of designing an observing network.

SPIIRAS Proceedings. 2018. Issue 6(61). ISSN 2078-9181 (print), ISSN 2078-9599 (online) 9
www.proceedings.spiiras.nw.ru



MATEMATUYECKOE MOAENMPOBAHWE N NPUKNAOHAA MATEMATUKA

Low-order chaotic dynamical systems considered in this paper, rep-
resent computational tools which can be helpful for exploring various as-
pects of numerical modeling and predicting the behaviour of complex dy-
namical systems arising in geophysical, environmental, biological, engi-
neering and other branches of science. For these models, the computational
cost is insignificant. Consequently, they can be viewed as testing tools to
mimic the behaviour of complex systems and, in particular, to explore the
forecast sensitivity with respect to observations.

2. Method. As mentioned above, the simplest, but computationally
expensive method to assess the impact of observations coming from vari-
ous sources is the OSE. The main idea behind this method is as follows.
Suppose we calculate the forecast (the future state of dynamical system in
question) by integrating the model equations over a given time inter-
val [to,t'], where t/ is a verification time (the time at which the forecast
accuracy is assessed). Initial conditions for this experiment are determined
through 4D-Var utilizing all types of observations. Assume that the fore-
cast accuracy is verified by the use some quantitative measure E¢. Then
we integrate the model equation utilizing via 4D-Var all types of observa-
tions excluding y?. For this run the forecast accuracy is characterized by
Ej. The difference Ey — Ej, quantifies the impact of observations y; on the
forecast accuracy. However, this approach is computationally ineffective
and inconvenient to assess the impact of observations of different types
and individual measurements.

Meanwhile, using the adjoint-based technique we can assess the
impact of any or all available observations in a computationally efficient
way. This method is very appropriate since adjoint models are embedded
in 4D-Var systems. Observation impact is computed using (a) sensitivity
functions which are components of the adjoint sensitivity gradient of
some cost function that characterizes the forecast error, and (b) innova-

tions ” -7 (x") [23].
Let &2 be a scalar response function which is dependent on the sys-

tem state variables at verification time ¢t/ : 2 = & (xf) . From the Taylor

expansion we can derive the first-order variation of /2 at time t/:
s7=(sx" 07/ ) = (Mx,07/ox" ) )

Here (,) denotes the dot product, and the forecast variation is ex-
presses via tangent linear model: §x/ = M&x,, where M is a linearized
model operator. Let M* be the adjoint of M such that (Mx,y ) = (x,M*y ).
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Since the adjoint of a real matrix equals to its transpose then M* = MT and
the equation (9) takes the form [23]:

SR= <5xO,MT (OR/ox’ )>; (10)

and the sensitivity of response function to the initial state can be ex-
pressed as [23]:

oR 1 0R
E oMt
o 7 (11)

Thus, running the adjoint model backward in time with the sensitivi-
ty of R at the verification time as input, one can calculate the sensitivity of
R with respect to the initial conditions. Generally, any differentiable scalar
function that represents the forecast accuracy can be considered as the re-
sponse function (e.g. single model variable or some function of model state
variables). Commonly, the forecast error relative to the "true" state x* is
measured in terms of the "total energy norm" [26]:

E=("-x"H'Cc(x! -x"), (12)

where C is a diagonal matrix of weighting coefficients. The sensitivity of £
with respect to initial conditions is expressed as [27]:

aTE:2MTC(xf—xt). (13)
0

At some initial time t,, there are two state estimations: x§, which is
obtained using 4D-Var, and x2, which is obtained via previous model run.
Thus, two forecast errors, E,and E), , can be defined as [23]:

E, =(x] -x")'C(x] -x"), E, =(x/ —x)"C(x] —x"), (14)
where x[f and x{: are the predicted states initiated from x& and x5.
To estimate the impact of observations on the forecast error reduction,

the response function can be defined as the difference between £, and £, :

1 1
§7€EEAE:E(Ef—Eb). (15)
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The linear approximation of error reduction 6E =~ AE is given by [23]:

SE = (y"—H(xg)), %K{%{ﬁ%} , (16)

where KT is a transpose of the Kalman gain matrix.

The equation (16) gives the estimate of the forecast error reduction
OE produced by any or all observations. Figure 2 (adopted from [23]) shows
the schematic representation of the discussed approach for evaluating the
forecast sensitivity with respect to observations and assessing the impact of
various observations on the forecast accuracy. To estimate the impact of all
types of observations we only need to perform a single system's run.
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Fig. 2. Schematic representation of the adjoint-based method for observation impact
assessment

It is obvious that if the assimilated observations improve the forecast
accuracy at the verification time xf, then the forecast error 8E is reduced,
and the value 6E will be negative. However, if the assimilated observations
diminish the forecast quality, the value §E will be positive.

3. Results. For illustrative purposes only we first apply the method
discussed in Section 2 to estimate the observation impact on the prediction of
dynamics of coupled chaotic dynamical system [27] described in the appen-
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dix. This model has six state variables. The following information should be
available to solve the problem: the “true” trajectory of a system x’, the back-
ground (the first guess) trajectory x” , and observations y° .

In our calculations, we used synthetic data. The "true" trajectory is
obtained by integrating model equations numerically with the initial condi-

tions x; taken on the system’s attractor. The background (the first guess)

trajectory x” is obtained by integration of the system equations with prede-
fined initial conditions x; which is specified as x; = x + 5", where 5” is a
normally distributed random perturbation with a standard deviation of o,

applied to all elements of the state vector.
To take into account the background errors, the assumption

B, = o;1 is used, where I is the identity matrix. We assume that the value

of o, =0.2 is applied to all elements of the state vector. Observations »°

are defined for every 2Ar within the assimilation window, which has a total
temporal length of 50At. The observed values are generated by adding
Gaussian random noise with zero mean and specified standard deviation o,

to the true state x'. In calculation we assume that agl) =0.05 ("accurate"
observations) and o-éz) =0.1 ("inaccurate" observations) for "fast" varia-

bles, and 0(()1) =0.1 and 0-52) =0.2 for "slow" variables.

Since observation grid and model grid are the same, the linearized
observation operator is simply an identity mapping H=1. Under the as-
sumption that observation errors are the same for all variables, the observa-

. . . 2
tion covariance matrices are defined as R, =R =o1.

To minimize the objective function, the conjugate gradient method,
resulting in the analysis x§, has been applied. The forecast trajectory is then
obtained by integrating the model equations given initial conditions x§.

To estimate the prediction accuracy and the reduction of the forecast
error due to observations we use the relative error in energy norm:

!
E = [(xt —xH)T (! —xf)/(x’)TxtF. (17)

The impact of observations is assessed using the ensemble of trajectories
generated by randomly produced initial conditions. Table 1 shows the relative
error reductions averaged over 500 ensemble members for both "accurate" and
"inaccurate" observations. In this table, the forecast errors are computed for
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different verification time ¢’ . The coupled model used in these experiments is
chaotic, therefore, its behaviour is highly sensitive to initial conditions. Thus,
the forecast accuracy strongly depends on how accurately we can specify the
initial state of the dynamical system in question. In turn, the accuracy of initial
conditions depends on available observations, the model used in producing
forecasts, and data assimilation system. In numerical experiments, the accuracy
of observations is specified by the standard deviation o (see above).

Table 1. Observation impact estimates for different verification times for "accurate"
(5E£”) and "inaccurate" (5E£2)) initial conditions

Verification time
0.5 1.0 1.5 2.0
(SED) -0.91 -2.33 -4.32 -3.27
(BE™) -0.58 -1.74 -2.53 -1.22

Table 1 illustrates that both "accurate" and "inaccurate" observations
show positive impact on the forecast accuracy since the relative energy
norm reductions are negative. The impact of “accurate” observations” is,
however, larger than the impact of “inaccurate” observations. It is important
that the observation impact estimate 0E, is valid over a limited lead time

tf

m since the adjoint model used in calculation of 6F, is derived from a
linear forward propagation model known as a tangent linear model. Numer-
ical experiments shown that ¢, ~ 2.2 of dimensionless time units.

For coupled chaotic dynamical system developed on the bases of mod-
el [28], the prediction error reductions by observations computed for different

verification times #/ and "accurate" observations are presented in Table 2.

Table 2. Observation impact estimates for different verification times for "accurate"
initial conditions
Verification time
1 2 3 4

JF, -4.53 -3.39 -2.34 -0.39

This table shows that the shorter the forecast range the larger the er-
ror reduction or, in other words, the prediction accuracy. These results were
obtained by ensemble simulations with 500 ensemble members. For refer-
ence, the relative observation impacts (in percentage points) calculated for
each observation variable at #/ =3 are shown in Table 3. Observations of

z-component provide the highest impact on the forecast error reduction
while observations of Y-component the smallest impact.

14 Tpyabl CIMIMUPAH. 2018. Bbin.6(61). ISSN 2078-9181 (neuv.), ISSN 2078-9599 (oHnaiiH)
www.proceedings.spiiras.nw.ru



MATHEMATICAL MODELING AND NUMERICAL METHODS

Table 3. Relative observation impact (in percentage points) of each model variable
for verification time of ¢/ =3
Verification time
X y z X Y
26.5 21.8 36.2 14.7 0.8

Let us now discuss some results obtained via ACCESS global mod-
el [16]. The model grid covers the globe with a horizontal resolution of
N512 (1024x769 grid points along longitude and latitude, respectively, with
average distance between grid points about 25 km), with 70 vertical levels
up to ~80 km altitude. The linear perturbation forecast model (a tangent
linear model with moist physics) and its adjoint used in 4D-Var and fore-
cast-to-observations experiments has the same vertical resolution as the
nonlinear model with a horizontal resolution of N215 (about 60 km).

In the Bureau of Meteorology, a total of 40 million observations are
processed daily. Most of these data are satellite measurements. However,
only about 10 percent of all observations (~ 4 million) are used in the assim-
ilation system to calculate the initial conditions for the global ACCESS pre-
diction. The following is a summary of the observation types assimilated in
the ACCESS 4D-Var global system:

— Surface observations: SYNOP (synoptic network weather sta-
tions), SHIP (ship-based instruments), WINPRO (wind profilers),
DRIBU (buoy-based instruments) ;

— Upper air observations: TEMP (radiosondes), PILOT (wind ob-
servations from pilot balloons and radar profilers), aircraft re-
ports (AIREPS, AMDARS);

— Satellite winds: scatterometer surface winds (ASCAT), atmos-
pheric vector winds (AMV);

— Microwave radiances: ATOVS (AMSU A, B and MHS);

— Infrared radiances: ATOVS (HIRS), AIRS);

— Infrared atmospheric sounding interferometer (IASI);

— Cross-track infrared sounder (CrIS), microwave humidity sound-
er (MHS), atmospheric infrared sounder (AITS); advanced technology mi-
crowave sounder (ATMYS);

— Satellites and occultation data from various global navigation
satellite systems (GNSS) such as the Global Positioning System;

— Geostationary ~ operational  environmental  satellite  sys-
tem (GEOS).

The analysis (initial conditions for the prediction model) is generated
through the 4D-Var system with a 6-h assimilation window. Observation
impacts represent an estimate of the change in a 24-h forecast error as a
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consequence of the assimilation of observations. Forecast error is measured
in terms of a moist energy norm calculated from the surface to the 150 hPa
level over the globe and the northern and southern hemispheres. The ad-
joint-based observation impacts were calculated from 00Z 1 January 2017
to 00Z 31 December 2017 in 6-h intervals. The experiment details are
summarized in Table 4. The total energy norm used to calculate the forecast
error reduction due to observations is defined as follows [24]:

— T = 1 2
E=5x c5x_M—DjﬂAr cos pdZdn , (18)
1 . n, P o 1 o plr o,
A=—| pu”” +pv'" + 0 +—p+¢ , 19
2o TN TN pct ¢, K "

where M, is the mass of the atmosphere in the integration domain D; u, v
are the zonal and meridional wind components, respectively; 6 is the refer-
ence potential temperature, p is pressure; q is the specific humidity; ¢, is
the heat capacity at constant pressure; L is the latent heat of water vapor
condensation; g is the acceleration of gravity; p is the air density; c is the
speed of sound; N2 is the square of the Brunt-Viiséld frequency; X is the
horizontal domain of integration defined by the local projection matrix and
n is the vertical coordinate. The primed variables denote the components of
linear perturbation forecast model.

Table 4. Summary of experiment

Data period From 00Z 1 January 2016 to 00Z 31 December 2016
24-hour forecast error reduction on the moist energy norm
Impact measure calculated from the surface to 150 hPa level over the globe

and the northern and southern hemispheres.

Operational version of the Bureau of Meteorology predic-
tion system with the resolution of N512 for the forecasting
Prediction system | model and N216 for the inner loop of 4D-Var, in horizon-
tal, and 70 levels in vertical. The adjoint of perturbation
forecast model includes the moist physics.

The procedure of observation impact assessment is a post-processing
routine. For each analysis time (four times per day), the adjoint forecast-to-
observation system produces an ASCII output file that contains the information
on all the observations including satellite and in situ, non-satellite observation
types. The following information is contained in the ASCII output file:

— Sequential number of observation;

— The observation value;
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— The value of innovation (the difference between observation and
background values);

— Sensitivity of the forecast to observation;

— Latitude and longitude of observation;

— Pressure level of observation;

— Identifier of the instrument type (radiosonde, surface station,
wind profiler etc.);

— Identifier of the observation variable type (temperature, moisture,
pressure, horizontal wind components etc.);

— The time offset of the observation from the analysis time;

— Observation error variance;

— WMO (World Meteorological Organization) station identification
number;

— Satellite identifier, satellite instrument and channel number.

Calculation of the observation impact is a multi-step process. At
each analysis time, the ASCII output file is processed into a set of
JSON (Java Script Object Notation) files, from which a set of Python-based
tools aggregate the individual forecast sensitivities based on observation
type and/or station and statistically analyze and visualize the results.

The calculated average observation impact per day of each type of
observation on the global forecast is illustrated in Figure 3. This figure
shows that all subsets of observations are beneficial, i.e. the impact measure
is negative. That is, each individual observation type leads to the reduction
of the forecast error of the total energy norm. The most significant observa-
tion impact is demonstrated by the Infrared Atmospheric Sounding Interfer-
ometer (IASI). Sonde (TEMP) data has the second largest impact. High
impact is also provided by AMSUA (microwave sounder radiances),
JPSSO-CrIS (cross track infrared sounders), Aircraft and SYNOP (surface
observations at land stations). However, MTSAT (atmospheric motion re-
trievals), HIRS (infrared sounder radiances) and WINPRO (wind profilers)
show very small impact. The small impact of WINPRO likely results from
the cessation of NOAA's supply of the wind profiler data to the Global Ob-
serving System. Currently, only European (CWINDE, 29 wind profilers),
Japanese (WINDAS, 31 wind profilers) and Australian (11 wind profilers)
wind profiler networks serve as a source of observations. The European and
Japanese profilers are operating in densely observed areas of the world, and
so the low impact is not surprising. In addition, there are about 50
standalone wind profilers around the globe, which provide data via the
Global Observing System.

The volume of satellite information is about 90% of the volume of
meteorological information processed via the 4D-Var system. Conse-

SPIIRAS Proceedings. 2018. Issue 6(61). ISSN 2078-9181 (print), ISSN 2078-9599 (online) 17
www.proceedings.spiiras.nw.ru



MATEMATUYECKOE MOAENMPOBAHWE N NPUKNAOHAA MATEMATUKA

quently, the impact of satellite data is always high. However, the analysis
of impact per observations for different observation subsets shows (see
Figure 4) that the most substantial contributions into the reduction of
forecast error per one observation demonstrate PILOT, BUOY and satel-
lite data such as ESA and GOES.

JPSSO_CrIS
aircraft
SYNOP

EOS2
JPSS0_ATMS
BUOY

GOES
ASCAT

MSG

AMSUB
PILOT
WINPRO

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Global daily impact (J/kg)

Fig. 3. Average observation impact per day (J/kg) over the globe of each type of

observation

The spatial distribution of observation sources is inhomogeneous
over the globe. In the northern hemisphere the ratio of land to ocean is
about 1 to 1.5. In contrast, in the southern hemisphere the fraction of ocean
is about 80% while the land fraction is only about 20%. Consequently, the
network of synoptic and aerological stations (upper air observations) in the
northern hemisphere is significantly denser than in the southern hemisphere,
and the number of synoptic stations and aerological stations in the northern
hemisphere significantly exceeds the corresponding number of stations in
the southern hemisphere. Figures 5 and 6 illustrate the contribution of ob-
servations from both northern and southern hemispheres to the reduction of
global forecast error. Sonde observations, Aircraft data, IAST and AMSUA
obtained in the northern hemisphere demonstrate the most important impact
on the forecast quality (skill). In the southern hemisphere, data from [ASI
and AMSUA contribute the greatest to the forecast error reduction. Satellite
data such as MTSAT2, EOS2 and HIRS are less influential in terms of in-
fluence on the forecast accuracy.
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Fig. 4. Average impact per observation (J/kg) for the global forecast
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Fig. 5. Daily observation impact (J/kg) for the northern hemisphere calculated for

the period January — December 2017

T

Results obtained show that all observation types positively influence
the forecast accuracy both over the globe and northern and southern hemi-
spheres. However, satellite data play a crucial role in weather prediction in the
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southern hemisphere. We should keep in mind that the adjoint-based method
used in calculations is restricted by the linearity of the algorithm (the pertur-
bation forecast model is linear and, certainly, its adjoint is also linear), which
makes it valid only to evaluate short-range forecasts (0 to 48 hours).
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Aircraft |
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BUOY
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PILOT |
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MTSAT2 ) . ) )
-0.5 -0.4 -0.3 -0.2 -0.1 0.0
Impact (J/kg)/day for southern hemisphere

Fig. 6. Daily observation impact (J/kg) for the southern hemisphere calculated for
the period January — December 2017

4. Discussion and conclusion. In this paper, we evaluated impacts
of various types of observations, in situ observations (ground and ocean-
based synoptic and ship observations, wind profiler information, radiosonde
and wind balloon upper air observations, and aircraft data) and satellite in-
formation, on the accuracy of short-term prediction of global weather condi-
tions using the adjoint-based approach embedded into the ACCESS and
its 4D-Var. The impact is measured by the reduction in the 24-hour forecast
error expressed as a moist energy norm calculated globally. Overall, all ob-
servation types have a positive impact on the forecast accuracy.

Using the adjoint-based method we can support the decision-making
process regarding the evolution of the observing network. This powerful
technique represents a tool for guiding the design and running of an effi-
cient and effective observing network at the national level and international-
ly. Future studies are required to explore the seasonal and inter-annual vari-
ability of observation impacts.

We also presented two coupled chaotic dynamical systems devel-
oped on the bases of the original Lorenz chaotic models [27, 28] which can
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imitate the essential features of natural, societal and technical dynamical
systems that possess the deterministic chaos. These two coupled systems
together with variational assimilation subsystems provide the computational
framework for testing different numerical methods and algorithms, and es-
timating the observation impacts on the prediction of chaotic dynamics.

The Bureau of Meteorology has been applying an adjoint-based ap-
proach to estimate the impact of observations on forecasts for about five years.
The results obtained are consistent with the available estimates calculated in
different research and prediction centres around the world (e.g. [29 — 35]).

5. Appendix. In this appendix we describe two low-order coupled
chaotic dynamical systems used in this study. We start from the model ob-
tained by coupling of two ("fast" and "slow") versions of the original Lorenz
system [27] (from hereon, L63) with specific time scales differing by a factor
&. We emphasize that L63 is deterministic, however, describes the phenome-
non known as "deterministic chaos": over time the behaviour of a simulated
system begins to resemble a random process, even though the system is de-
fined by deterministic laws and described by deterministic equations. This
phenomenon was first uncovered by Lorenz as he observed the sensitive de-
pendence of atmospheric convection model output on initial conditions [27].

The L63 system is derived by strong spectral truncation of Saltz-
man’s equations, which describe the Rayleigh-Benard convection, and con-
sists of three autonomous ordinary differential equations for time-dependent
variables x, y, and z: with x corresponding to the intensity of the convective
motion in terms of the stream function, y to the temperature differences
between rising and descending currents, and z to the departure of the verti-
cal temperature gradient from its equilibrium magnitude. The L63 contains
three positive parameters o, 1, and b, with o being the Prandtl number, r the
normalized Rayleigh number, and b a geometric parameter characterizing
length scale of the convective cell.

The L63 can imitate some essential properties of the general circula-
tion of the atmosphere and ocean since the heat flux from equator to the
poles can be represented by variable z, which is proportional to meridional
temperature gradient that can be represented by parameter 7.

A coupled nonlinear chaotic dynamical system is represented by the
following set of autonomous differential equations [36]:

a) The “fast” subsystem:

x=0(y—-x)—c(aX +k),
y=rx—y—xz+c(aY +k),
Z=xy—-bz+c,Z.
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b) The “slow” subsystem:
nga(Y—X)—c(x+k),
Y =e(rX =Y —aXZ)+c(y +k),

7 =&(aXY —-bZ) -c,z,

where the lower-case letters x, y and z represent the state variables of the
"fast" model, upper-case letters X, ¥ and Z denote the state variables of the
"slow" model, ¢ > 0, r > 0, and b > 0 are the parameters of the original L63
model, € is a time-scale factor (e.g. if € = 0.1, then the "slow" subsystem is ten
times slower than the "fast" subsystem), c is a coupling strength parameter for
x, X, y, and Y variables, c; is a coupling strength parameter for z and Z varia-
bles, k is a “decentring” parameter, and a is a parameter representing the am-
plitude scale factor (a = 1 indicates that "slow" and "fast" subsystems have
the same amplitude scale).The coupling strength parameters ¢ and c, control
the interconnection between "fast" and "slow" subsystems: the smaller the
parameters ¢ and c¢,, the weaker the interdependence between two subsystems.

Essential properties of this chaotic system have been considered in
detail earlier [37]. It was underlined that the temporal dynamics of coupled
L63 is strongly conditioned by its parameters. Standard values of the L63
parameters corresponding to chaotic behaviour are ¢ = 10, b = 8/3, and
r =28 [27]. These parameter values are used in this study since the motions
in the atmosphere and ocean are inherently chaotic. Note that for o = 10
and b = 8/3, there is a critical value for parameter r, equal to 24.74, and
any r larger than 24.74 induces chaotic behaviour of the L63 system.

The time-scale factor &, “decentring” parameter k and the ampli-
tude scale factor a are taken to be 0.1, 0 and 1 respectively. Without loss
of generality, we can assume that and ¢ = c,. The coupling strength ¢ de-
termines the strength of interactions between "fast" and "slow" subsys-
tems and, therefore, the dynamics of the entire coupled system. In numer-
ical experiments we assumed that the coupling between two subsystems
is weak, therefore ¢=0.15 [37].

The system of model equations is numerically integrated by fourth
order Runge-Kutta algorithm with a time step Ar=5x107. To discard the
initial transient period the numerical integration starts at time ¢, =2"As
with the initial conditions generated randomly around the point
x(-7)=(0.01;0.01;0.01;0.02; 0.02; 0.02)T and finishes at time t=0. This guar-

antees that the calculated state vector x, = x(0) is on the system’s attractor.
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The state vector x; is then used as the initial conditions for further numeri-
cal experiments. Note that for Ar=5x10", the numerical integration with
length of 200 time steps corresponds to one dimensionless unit of time.

The next coupled chaotic dynamical system is also composed of
"fast" and "slow" models. The "fast" model represents the chaotic dynam-
ical system developed by Lorenz to study the large-scale atmospheric mo-
tions [28] (herein is referred to as L.84), while the "slow" model, in the ab-
sence of coupling to the "fast" model, is a simple harmonic oscillator [38].
The following two sets of autonomous differential equations describe:

a) The "fast" model [28]:

x=-y*—z* —ax+aF,
y=xy—cy—-bxz+G+aX,
z=xz—cz+bxy+aY.

b) The "slow" model [38]:

X =-wY - pY,
Y =0X - fz,

where x is the intensity of the symmetric, globally averaged westerly wind
current (equivalent to the meridional temperature gradient); y and z are the
amplitudes of cosine and sine phases of a series of superposed large scale
eddies, which transport heat poleward; F and G represent the thermal forc-
ing terms due to the average north-south temperature contrast and the earth-
sea temperature contrast, respectively, w is the ocean oscillation frequency,
X and Y are zonal asymmetries in sea surface temperature, which interact
with the model atmosphere’s eddy fields (y and z).

The "fast" model (the original model proposed by Lorenz) is a Ga-
lerkin truncation of the Navier-Stokes equations and gives the simplest ap-
proximation of the general circulation of the atmosphere. This model has
been widely used in climatological studies and its properties have been ex-
plored extensively.

Values of the model parameters used in numerical experiments are as
follows [45]: a=0.12, b=4b, ¢c=05, F=8, G=025, p=y=0.1,
and @=274/4,where 1=0.0274.

The model equations are solved numerically by fourth order Runge-

Kutta algorithm with a time step Af =5x10~. The initial transient period is
discarded, as was mentioned above for the L63 model.
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I1. CtaitHim, K. TUHrBEJUL, C.A. COJIJATEHKO
OLIEHKA BJIMSIHUS HABJIOJEHUM HA ITIPOTHO3UPOBAHHUE
JTUHAMMKHA 3EMHOM CUCTEMBI C IOMOILBIO METOJIA
COIIPSI)KEHHBIX YPABHEHUI

Cmaiinau I1., Tuneeean K., Conoamenxo C.A. OuneHka BJIMSIHHUSA HAOJIOAEHHMH Ha
NPOrHO3HPOBAHHE JHHAMHUKH 3eMHOH CHCTeMBbI ¢ MOMOINbIO MeTOJAa CONMPSKeHHBIX
YPaBHEHHI.

AnHoTanus. MateMaTHYeCKue MOIEIU 36MHON CHUCTEMBI CIIyXKaT MOIIHBIM U 3(h(EKTHBHBIM
HMHCTPYMEHTOM, HCIOJIB3YEMBIM JUIS H3Yy4YeHHs] IIOBEICHMS IIPOLIECCOB, MPOTEKAIOIMMX B
chepryeckux 000NOYKAX Hamlell IUIAHETHl, B IIPOLUIOM M HACTOALIEM, a TAKKe Uil
MIPOTHO3UPOBAHUS HX B OyIyIeM ¢ y4eToM BHENIHUX Bo3ielcTBHil. KadecTBo MomenupoBaHUS H
MIPOTHO3UPOBAHUS TIPHPOAHBIX IPOLECCOB C INPUMEHEHHEM COOTBETCTBYIOIIMX MaTEMaTHYECKHX
Mozeneil B 3HAYMTENBHOM CTENEHM 3aBHCHUT OT JOCTOBEPHOCTH M 00beMa HH(OpMAIH,
XapaKTEePHU3YIOILEH COCTOSHUE PACCMATPUBAEMOi (PM3MIECKOI CHCTEMBI (Harpumep, atMocdepbl) B
HEKOTOPHIil HAYalIbHBI MOMEHT BpeMeHH. cTouHMKamu SToif MH(pOPMAIMH CIIyXaT pa3iIHIHbIe
CTal[MOHAPHBIC U TOJBIDKHBIC TEXHHYECKHE CPENCTBA, MHTEIPHPYEMbIC B CIUHYIO ITIOOATBHYIO
HaONIIOJATeNNbHYIO0 ceTh. I10CKONIbKY pa3BHTHE CPEACTB HAOMIOAEHIS JOPOrOCTOSIIee MEPOIPHUATHE,
OYeHb BAKHO HMETh BO3MOXKHOCTb OLCHUBAaThH J(P(EKTHBHOCT Kak CyIIECTBYIONICH, Tak H
IUTaHUPyeMOH HaOmronarensHol ceTu. Llens HacTosimeil paGoTEI COCTOUT B TOM, YTOOBI, C OJJHOH
CTOPOHBI, PACCMOTPETh IOAXOJ, OCHOBAaHHBIM HA CONPSDKCHHBIX YPABHEHISIX U IIO3BOJIIOIIMH
OLICHUBATh BIIISHHE PA3IMYHBIX HAOMIOEHIH Ha TOYHOCTH IPOTHO3UPOBAHNS YBOJIIOIIMH OCHOBHBIX
KOMIIOHGHTOB ~ 3¢MHOH cHCTeMSHI (aTMocepsl M OKeaHa), W C JAPYTOd CTOPOHBI —
MPOMUTIOCTPUPOBATh ~ HPUMEHEHHE OTOr0 MOAXOZAa HAa IIpUMepe [BYX  XAOTHYECKHX
MaJlonapaMeTpUIecKuX JUHAMUYECKHX cucTeM U riobamsHoil Mogemu ACCESS (MonemupoBaHue
aBCTPAIMIICKOrO ~ KJIMMara ¥ 36MHOM  CHCTEMBI), HCIONB3yeMOH B  ABCTpaJMHCKOM
METEOpOJIOTHIECKOM O10po. Pe3ynbTaThl YMCIEHHBIX SKCHEPHMEHTOB JEMOHCTPHUPYIOT BBICOKHE
BO3MOJKHOCTH ~ METOJa  CONPSDKCHHBIX ~ YPAaBHEHMH, KOTOPBIH IO3BOJIIET  PAHIKHUPOBATh
M3MEPUTENEHYIO HH(OPMALIHIO, TOTyJaeMyr0 ¢ HOMOIIBIO PA3IMYHBIX TEXHUYECKHMX CPEJCTB, MO
CTEIIeHH e BaXKHOCTH, a TAKOKe OLICHUTH BIIMSHIE HAOMIOICHUH Ha KaueCTBO IPOTHO30B.

KiioueBble €/10Ba: BapHAIllMOHHOE YCBOSHHE HHGOPMAIWH, CONpPSDKCHHBIC YPAaBHEHUS,
4yBCTBUTEIBHOCTh IPOrHO3a K HAOJIIOIEHHAM, 36MHAsI CHCTEMA.
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peter.steinle@bom.gov.au; yn. Komnuns, 700, Joknanas, MensOypH, 3001, Bukropus, AB-
cTpanus; p.T.: +61(3)9669-4848.

Tunrsenn Kpue — Ph.D., crapmmii Hay4HBIH COTpYIHUK TPYMIITEI IO ACCUMIIIIUH JAHHBIX,
ABgcrpanuiickoe 610po meTeoposoruu. O6acTh HayYHBIX MHTEPECOB: YHCIEHHOE MOJEIHPO-
BaHUE IIPOILIECCOB B 3EMHOH CHUCTEME, YUCIECHHOE NPOTHO3MPOBAHHE HMPHPOIHBIX SABICHUM,
acCCHMIJILILMSL  JaHHBIX, acTpodmsuka. UYwmeno  Hayunslx — myOmmkamumii —  200.
chris.tingwell@bom.gov.au; yi. Kowumuns, 700, Joknaunas, Mensoyph, 3001, Bukropus, A-
crpanus; p.1.: +61(3)9669-4239.

Coanarenko Cepreii AHaTo/IbeBHY — JI-p (u3.-mar. Hayk, npodeccop, BeayInil Hay HbIH
COTPYAHHMK JIabOpaTOpHH MPOLIECCOB B3aMMOACHCTBUS OKeaHa u arMocdepsl, I'ocynapcTBeH-

26 Tpyabl CIMIMUPAH. 2018. Bbin.6(61). ISSN 2078-9181 (neuv.), ISSN 2078-9599 (oHnaiiH)
www.proceedings.spiiras.nw.ru



MATHEMATICAL MODELING AND NUMERICAL METHODS

HBIM Hay4HBIH LEHTp "ApPKTHYECKMH M aHTapKTMYECKHH Hay4yHO-MCCIIEN0BATENbCKUH HHCTH-
TyT". O0NacTh HAy4HBIX MHTEPECOB: MaTeMaTHYECKOE MOAEIUPOBAHHE IeO(PU3NUECKUX MPO-
IIECCOB, YCBOGHHE MH(OPMAINH, OIIeHKAa U MOJEINPOBaHNEe PUCKOB. UNCII0 HaydHBIX MyOmn-
kamuit — 190. prof.soldatenko@yandex.ru; yiu. bepunra, 38, Caukr-IletepOypr, 199397;
p.1.: +7(812)337-3146.

10.

11
12.

13.

14.

15.

16.

17.

18.

19.

20.

Jlutepatypa

Biermann F. Earth System Governance: World Politics in the Anthropocene // MIT
Press. 2014. 267 p.

Hajima T. et al. Modeling in Earth system science up to and beyond IPCC ARS //
Progress in Earth and Planetary Science. 2014. vol. 1. no. 1. 29 p.

Goose H. Climate system dynamics and modelling // Cambridge University Press.
2015.273 p.

Gellelman A., Rood R.B. Demystifying climate models: a user's guide to Earth system
models // Springer Nature. 2016. 274 p.

Kody L., Andrew S., Konstantinos Z. Data assimilation: A mathematical introduction //
Springer. 2015. 242 p.

Fletcher S.J. Data assimilation for the geosciences: From theory to application // Else-
vier. 2017. 908 p.

Leith C.E. Numerical models of weather and climate / Plasma physics and controlled
fusion. 1993. vol. 35.919 p.

Bellman R.E., Dreyfus S.E. Applied dynamic programming // Princeton University
Press. 2015. vol. 2050. 392 p.

Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The mathemat-
ical theory of optimal processes // WileyEnglish. 1962. 360 p.

Lions J.L. Control optimal des systemes gouvernes par des equations aux derivees
Partielles // Dunod. 1968. 426 p.

Marchuk G.1. Numerical methods in weather prediction / Academic Press. 1974. 288 p.
Sasaki Y. Some basic formalism in numerical weather analysis // University of Okla-
homa. 1970. vol. 98. pp. 875-883.

Penenko V.V., Obraztsov N.N. Variational method of adapting of meteorological fields
/I Meteorology and Hydrology. 1976. vol. 11. pp. 3-16.

Le Dimet F.-X., Talagrand O. Variational algorithms for analysis and assimilation of mete-
orological observations: theoretical aspects // Tellus A. 1986. vol. 38. no. 2. pp. 97-110.
Courtier P., Talagrand O. Variational assimilation of meteorological observations
with the adjoint equations. Part 2: Numerical results // Quarterly Journal of the Royal
Meteorological Society. 1987. vol. 113. no. 478. pp. 1329-1347.

Puri K. et al. Implementation of the initial ACCESS numerical weather prediction
system // Australian Meteorological and Oceanographic Journal. 2013. vol. 63.
pp. 265-284.

Rawlins F. et al. The Met Office global four-dimensional variational data assimilation
scheme // Quarterly Journal of the Royal Meteorological Society. 2007. vol. 133.
no. 623. pp. 347-362.

Courtier P., Thepaut J.-N., Hollingsworth A. A strategy for operational implementa-
tion of 4D-Var, using an incremental approach // Quarterly Journal of the Royal Me-
teorological Society. 1994. vol. 120. no. 519. pp. 1367-1387.

Marchuk G.I. Adjoint equations and analysis of complex systems // Kluver Academic
Publishers. 1995. 468 p.

Marchuk G.1., Agoshkov V.1, Shutyaev V.P. Adjoint equations and perturbation theory
// CRC Press. 1996. 288 p.

SPIIRAS Proceedings. 2018. Issue 6(61). ISSN 2078-9181 (print), ISSN 2078-9599 (online) 27

www.proceedings.spiiras.nw.ru



MATEMATUYECKOE MOAENMPOBAHWE N NPUKNAOHAA MATEMATUKA

21.

22.

23.

24.

25.

26.
217.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

28

Kelly G., Thépaut J.-N. Evaluation of the impact of the space component of the Global
Observing System through Observing System Experiments / ECMWF Newsletter.
2017. vol. 113. pp. 16-28.

Baker N., Daley R. Observation and background adjoint sensitivity in the adaptive
observation targeting problem // Quarterly Journal of the Royal Meteorological Socie-
ty. 2000. vol. 126. pp. 1434-1454.

Langland R.H., Baker N.L. Estimation of observation impact using the NRL atmos-
pheric variational data assimilation adjoint system // Tellus A: Dynamic Meteorology
and Oceanography. 2004. vol. 56. no. 3. pp. 189-201.

Lorenc A.C., Marriott R.T. Forecast sensitivity to observations in the Met Office
Global numerical weather prediction system // Quarterly Journal of the Royal Meteor-
ological Society. 2014. vol. 140. no. 678. pp. 209-224.

Soldatenko S., Tingwell C., Steinle P., Kelly-Gerreyn B.A. Assessing the impact of
surface and upper-air observations on the forecast skill of the ACCESS numerical
weather prediction model over Australia / Atmosphere. 2018. vol. 9. no. 1. 23 p.
Errico M.R. Interpretations of an adjoint-derived observational impact measure // Tellus
A: Dynamic Meteorology and Oceanography. 2007. vol. 59. no. 2. pp. 273-276.

Lorenz E.N. Deterministic nonperiodic flow // Journal of the Atmospheric Sciences.
1963. vol. 20. pp. 130-141.

Lorenz E.N. Irregularity: A fundamental property of the atmosphere // Tellus A. 1984.
vol. 36. no. 2. pp. 98-110.

Lupu C., Cardinali C., McNally A.P. Adjoint-based forecast sensitivity applied to
observation error variances turning // Quarterly Journal of the Royal Meteorological
Society. 2015. vol. 141. no. 693. pp. 3157-3165.

Cardinali C., Healy S. Impact of GPS radio occultation measurements in the ECMWF
system using adjoint-based diagnostics // Quarterly Journal of the Royal Meteorologi-
cal Society. 2014. vol. 140. no. 684. pp. 2315-2320.

English S. et al. Impact of satellite data / European Centre for Medium-Range
Weather Forecasts. 2013. vol. 711. 48 p.

Jung B.-J., Kim H.M. Adjoint-derived observation impact using WRF in the Western
North Pacific // Monthly Weather Review. 2013. vol. 141. no. 11. pp. 4080—4097.
Hoover B.T., Langland R.H. Forecast and observation-impact experiments in the Navy
Global Environmental Model with assimilation of ECWMF Analysis Data in the
global domain // Journal of the Meteorological Society of Japan. 2017. vol. 95. no. 6.
pp. 369-389.

Cioaca A., Sandu A., de Sturler E. Efficient method for computing observation impact
in 4D-Var data assimilation // Computational Geosciences. 2013. vol. 17. no. 6.
pp. 975-990.

Janiskoca M., Cardinali C. On the impact of the diabatic component in the forecast
sensitivity observation impact diagnostics // Data Assimilation for Atmospheric, Oce-
anic and Hydrologic Applications. 2017. vol. 3. pp. 483-511.

Sequeira L., Kirtman B. Predictability of a low-order interactive ensemble // Nonlinear
Processes in Geophysics. 2012. vol. 19. no. 2. pp. 273-282.

Soldatenko S., Steinle P., Tingwell C., Chichkine D. Some aspects of sensitivity analy-
sis in variational data assimilation for coupled dynamical systems // Advances in Me-
teorology. 2015. vol. 2015. 22 p.

Wittenberg A.T., Anderson J.L. Dynamical implications of prescribing part of a cou-
pled system: results from a low-order model // Nonlinear Processes in Geophysics.
1998. vol. 5. no. 3. pp. 167-179.

Tpyabl CIMIMUPAH. 2018. Bbin.6(61). ISSN 2078-9181 (neuv.), ISSN 2078-9599 (oHnaiiH)
www.proceedings.spiiras.nw.ru





