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Abstract. Mathematical models of the Earth system and its components represent one 
of the most powerful and effective instruments applied to explore the Earth system's 
behaviour in the past and present, and to predict its future state considering external 
influence. These models are critically reliant on a large number of various observations (in 
situ and remotely sensed) since the prediction accuracy is determined by, amongst other 
things, the accuracy of the initial state of the system in question, which, in turn, is defined 
by observational data provided by many different instrument types. The development of an 
observing network is very costly, hence the estimation of the effectiveness of existing 
observation network and the design of a prospective one, is very important. The objectives 
of this paper are (1) to present the adjoint-based approach that allows us to estimate the 
impact of various observations on the accuracy of prediction of the Earth system and its 
components, and (2) to illustrate the application of this approach to two coupled low-order 
chaotic dynamical systems and to the ACCESS (Australian Community Climate and Earth 
System Simulator) global model used operationally in the Australian Bureau of 
Meteorology. The results of numerical experiments show that by using the adjoint-based 
method it is possible to rank the observations by the degree of their importance and also to 
estimate the influence of target observations on the quality of predictions. 

Keywords: variational data assimilation, adjoint model, forecast sensitivity, observation 
impact, Earth system. 

 
1. Introduction. Mathematical models of the Earth system and its 

components such as the atmosphere, ocean, hydrosphere and biosphere, 
represent one of the most powerful and effective instruments applied to ex-
plore the Earth system's behaviour in the past and present, and to predict its 
future state considering external influence (e.g. [1-4] and references herein). 
These models include and parametrically describe numerous physical, 
chemical and biological processes and cycles such as water cycle, carbon 
and nitrogen cycles etc. Prediction of the Earth system dynamics under the 
influence of natural forcing and anthropogenic interventions represents one 
of the challenging issues of modern science. From the standpoint of dynam-
ical systems theory, the Earth system consists of several interactive dynam-
ical subsystems. Each of them covers a broad space-time spectrum of mo-
tions and a wide variety of physical and chemical processes. The Earth sys-
tem components have specific physical, chemical and dynamical properties, 
unique structure and behaviour. They are closely related to each other via 
fluxes of energy, matter, water, aerosols, carbon dioxide and other chemical 
substances. Modern Earth system models are highly complex and resource 
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intensive. These models, which can range substantially in their complexity, 
can be a simple concept or a set of partial differential equations that can be 
solved numerically by high-performance computers. Formally, the Earth 
system (or its any component) can be considered as dynamical system gen-
erated by the following vector-valued evolutionary differential equation: 

 

  ,dx dt x t   ; (1) 
 

00t
x x


 , (2) 

 

where ℒ is a nonlinear differential operator, 𝑥 is a state vector, 𝑥଴ is a given 
vector-valued function defining the initial state of a system, and 𝛼 is a vec-
tor of parameters. 

Since equation (1) is solved numerically, it should be transformed to 
the discretised form. Equation (1) discretised on the model space-time grid 
can be written in the following compact from: 

 

 1 , 1k k k k kx x    , (3) 
 

where n
kx   is the n-dimensional state vector at time 𝑡௞ representing the 

complete set of variables that determine the internal state of a system in 
question, , 1 : n

k k
n

    is a discrete nonlinear operator that propagates 

the state variables from time 𝑡௞ to time 𝑡௞ାଵ, and 𝜀௞ ∈ ℝ௡ is model errors. 
Note that the model discrete operator indirectly includes known model pa-
rameters. It is usually assumed that the model (3) is "perfect" (𝜀௞ ൌ 0), i.e. 
given the initial condition 𝑥଴, equation (3) uniquely specify the path of dy-
namical system in its phase space. 

Numerical models used in Earth system simulations are critically re-
liant on large amounts of Earth observation data that are required to correct-
ly define the initial conditions through the process known as data assimila-
tion (DA) (e.g. [5, 6]). As the practice shows, the quality of prediction is 
strongly affected by the observations – their volume, temporal and special 
distribution, and accuracy of measurements. In many applications, to simu-
late and predict the long-time behaviour of dynamical system (e.g. in cli-
mate studies) observation data are used to adjust a predictive model trajec-
tory to newly obtained observations (see Figure 1; this figure was created 
based on the ideas discussed in [7]). To date DA remains one of the key 
issues in geophysical sciences. The basic goal of DA is to merge observa-
tions of any type with certain prior information which needs to be estimated 
in some way. For example, this prior information referred to as the back-
ground can be estimated by models used in prediction. 
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One of the most popular and effective DA methods is four-
dimensional DA (4D-Var). In general terms, 4D-Var DA aims to define the 
initial state of a dynamical system in question by combining (in statistically 
optimal manner) the observations of state variables of a real physical system 
together with a background. 4D-Var procedures are mathematically formu-
lated as an optimization problem, in which the initial condition plays the 
role of control vector and model equations are considered as constraints. 
The theoretical foundations of the study and the solution of such problems 
were laid in the classical works of R.E. Bellman [8], L.S. Pontryagin et 
al. [9], J.-L. Lions [10], G.I. Marchuk [11]. The variational approach was 
first used in the prediction of atmospheric processes by Sasaki [12] and 
then, starting from famous research papers [13-15], has been extensively 
explored in a vast number of publications. 

 

 
Fig. 1. The scheme of model trajectory adjustment to new observations 

 

The ACCESS (Australian Community Climate and Earth System 
Simulator) at the Bureau of Meteorology [16] utilizes the 4D-Var scheme in 
incremental formulation developed at the UK Met Office [19]. The general 
idea of 4D-Var approach can be simply illustrated as follows. Suppose that 

at a certain initial time the background state 
bx  and some physical quanti-

ties 𝑦୭ measured by instruments are known. Then [5] 
 

 o o,     ,b bx x y x     (4) 
 

where  is the (nonlinear) projection operator, that maps the space of 

model state into the space of observations, b  and 
o  are the errors of the 
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background and observations respectively. Within the framework of 4D-Var, 
the initial state 𝑥଴ is estimated via the following optimization problem [5]: 
 

 0 0arg minax x  , (5) 
 

   
2 2o

0 0 0
B R-1 -1

1 1
,

2 2
bx x x x y      (6) 

 
where B and R are the error covariance matrices of the background and ob-
servations, respectively, 

A
   is the inner product with respect to the A 

matrix metrics, i.e. 
2 T 1
A 1a a A a
  .  

The cost (objective) function (6) is interpreted as follows. The first 
term that is the background term represents the deviation between the model 
initial state 𝑥଴ and the background 𝑥଴

௕ and calculated in the Euclidean norm 
𝐿ଶ described by the background covariance matrix B. The second term, the 

observation term, measures the deviation between observations oy  and the 

"model equivalent" of observations  x . This term is calculated in the 
2L  norm described by the observation-error covariance matrix R and is 

summed over the assimilation window.  
The 4D-var problem is simply a minimization problem with con-

straints on x given by the model equation (3). If the observation operator is 
linear, we obtain a quadratic problem whose unique solution is provided by 
the Best Linear Unbiased Estimator (BLUE) [5]: 

 

0 0 Kda bx x  , (7) 
 

where   1-1 T -1 T -1K= B H R H H R


  is the Kalman gain matrix, H is a linear-

ized observation operator, and od H by x   is the innovation vector.  

When the observation operator is nonlinear, the variational data as-
similation system considers a series of state variables 𝑥௝  along which the 
nonlinear operator   can be linearized. This approach known as an incre-
mental variational data assimilation was introduced in [18]. The first state 

variable is taken as the background state 0
bx x , and at iteration j the ob-

jective function is: 
 

   2 2

0 0 B R-1 -1
1 1

b H d ,
2 2j j jx x x       (8) 
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where 0 0, 0, 1j jx x x    is the output result of the minimization, 

0 0, 1b b
j jx x   , o

1d H( )j jy x   , and H j  is the observation operator 

linearized around the state estimate 1jx  . To achieve the absolute mini-

mum (not the local one), the first guess should be close enough to the truth.  
The essential component of 4D-Var system is an adjoint model 

which, as will be shown below, plays a major role in the exploration of 
model forecast sensitivity to observations and in the assessment of observa-
tion impact on the accuracy of prediction of the Earth system and its com-
ponents. We would like to emphasize that significant contribution to the 
theory of adjoint equations was made by G.I. Marchuk and his scientific 
school (e.g. [11, 19, 20]).  

Commonly, the impact of observations on the prediction skill of 
Earth system models is evaluated by executing the so-called Observing 
System Experiment (OSE), also known as a Data Denial Experi-
ment (DDE). In a DDE, the forecast skill of two individual runs are com-
pared—one with all observations assimilated and the other with a given 
observation type (or individual instrument) withheld or added (e.g. [21]). 
Any change in the forecast accuracy is referred to the observations, which 
have been withheld. The approach can also be used to assess the impact of 
target or newly available observations. DDEs can be very helpful but 
come with disadvantages: they are computationally expensive and not 
suited to assess the impact of a single station in an observing network or 
individual measurement device. In addition, DDEs only provide infor-
mation on the dataset that was withheld, and no information on the value 
of other subsets of observations.  

Another technique, which is able to calculate the individual impact 
that each assimilated observation has, and is capable to continually generate 
and aggregate forecast impacts for all observations, was suggested 
in [22, 23]. This approach makes use of the adjoint models utilized within 
4D-Var systems. The observation impact is measured by the reduction in 
the forecast error expressed as a total "moist" or "dry" energy norm. This 
method was subsequently implemented in several research and operational 
centres (e.g. [24, 25]). It is important that such a method uses the same 
computer code as 4D-Var systems.  

This paper aims to illustrate the application of the adjoint-based ap-
proach to two coupled low-order chaotic dynamical systems and to the 
ACCESS global model. We emphasize that this technique is a powerful in-
strument that allows for not only evaluating the current observing network but 
also assessing the value of network components which will be used in the 
future, and, therefore, solve the problems of designing an observing network.  
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Low-order chaotic dynamical systems considered in this paper, rep-
resent computational tools which can be helpful for exploring various as-
pects of numerical modeling and predicting the behaviour of complex dy-
namical systems arising in geophysical, environmental, biological, engi-
neering and other branches of science. For these models, the computational 
cost is insignificant. Consequently, they can be viewed as testing tools to 
mimic the behaviour of complex systems and, in particular, to explore the 
forecast sensitivity with respect to observations. 

2. Method. As mentioned above, the simplest, but computationally 
expensive method to assess the impact of observations coming from vari-
ous sources is the OSE. The main idea behind this method is as follows. 
Suppose we calculate the forecast (the future state of dynamical system in 
question) by integrating the model equations over a given time inter-
val ሾ𝑡଴, 𝑡௙ሿ, where 𝑡௙ is a verification time (the time at which the forecast 
accuracy is assessed). Initial conditions for this experiment are determined 
through 4D-Var utilizing all types of observations. Assume that the fore-
cast accuracy is verified by the use some quantitative measure 𝐸௙. Then 
we integrate the model equation utilizing via 4D-Var all types of observa-
tions excluding 𝑦௦

୭. For this run the forecast accuracy is characterized by 
𝐸௕. The difference 𝐸௙ െ 𝐸௕ quantifies the impact of observations 𝑦௦

୭ on the 
forecast accuracy. However, this approach is computationally ineffective 
and inconvenient to assess the impact of observations of different types 
and individual measurements.  

Meanwhile, using the adjoint-based technique we can assess the 
impact of any or all available observations in a computationally efficient 
way. This method is very appropriate since adjoint models are embedded 
in 4D-Var systems. Observation impact is computed using (a) sensitivity 
functions which are components of the adjoint sensitivity gradient of 
some cost function that characterizes the forecast error, and (b) innova-

tions  o by x  [23].  

Let   be a scalar response function which is dependent on the sys-

tem state variables at verification time  :f ft x  . From the Taylor 

expansion we can derive the first-order variation of  at time 𝑡௙: 
 

0, M ,f f fx x x x      �   . (9) 

 

Here 〈 , 〉 denotes the dot product, and the forecast variation is ex-
presses via tangent linear model: 𝛿𝑥௙ ൌ M𝛿𝑥଴ , where M is a linearized 
model operator. Let M∗ be the adjoint of M such that 〈M𝑥, 𝑦 〉 ൌ 〈𝑥 , M∗𝑦 〉. 
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Since the adjoint of a real matrix equals to its transpose then M∗ ൌ M୘ and 
the equation (9) takes the form [23]: 
 

T
0 ,M ( ) ;fx x   �   (10) 

 

and the sensitivity of response function to the initial state can be ex-
pressed as [23]: 
 

T

0

M
fx x

 


 
 

. (11) 

 

Thus, running the adjoint model backward in time with the sensitivi-
ty of ℛ at the verification time as input, one can calculate the sensitivity of 
ℛ with respect to the initial conditions. Generally, any differentiable scalar 
function that represents the forecast accuracy can be considered as the re-
sponse function (e.g. single model variable or some function of model state 
variables). Commonly, the forecast error relative to the "true" state 𝑥௧  is 
measured in terms of the "total energy norm" [26]: 

 
T( ) C( )f t f tE x x x x   , (12) 

 

where C is a diagonal matrix of weighting coefficients. The sensitivity of E 
with respect to initial conditions is expressed as [27]: 
 

T

0

2M ( )f tE
C x x

x


 


. (13) 

 

At some initial time 𝑡଴, there are two state estimations: 𝑥଴
௔, which is 

obtained using 4D-Var, and 𝑥଴
௕, which is obtained via previous model run. 

Thus, two forecast errors, fE and bE , can be defined as [23]:  
 

T T( ) C( ),    ( ) C( ),f t f t f t f t
a a b bf bE x x x x E x x x x       (14) 

 

where 𝑥௔
௙ and 𝑥௕

௙ are the predicted states initiated from 𝑥଴
௔ and 𝑥଴

௕.  
To estimate the impact of observations on the forecast error reduction, 

the response function can be defined as the difference between fE  and bE : 
 

 1 1

2 2 f bE E E     . (15) 
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The linear approximation of error reduction 𝛿𝐸 ൎ ∆𝐸 is given by [23]: 
 

   T
0

1
H ,  K

2
fo b b
a b

E E
E y x

x x


 
   

  
, (16) 

 

where K୘ is a transpose of the Kalman gain matrix.  
The equation (16) gives the estimate of the forecast error reduction 

𝛿𝐸 produced by any or all observations. Figure 2 (adopted from [23]) shows 
the schematic representation of the discussed approach for evaluating the 
forecast sensitivity with respect to observations and assessing the impact of 
various observations on the forecast accuracy. To estimate the impact of all 
types of observations we only need to perform a single system's run. 

 

 
Fig. 2. Schematic representation of the adjoint-based method for observation impact 

assessment 
 

It is obvious that if the assimilated observations improve the forecast 
accuracy at the verification time 𝑥௙, then the forecast error 𝛿𝐸 is reduced, 
and the value 𝛿𝐸 will be negative. However, if the assimilated observations 
diminish the forecast quality, the value 𝛿𝐸 will be positive.  

3. Results. For illustrative purposes only we first apply the method 
discussed in Section 2 to estimate the observation impact on the prediction of 
dynamics of coupled chaotic dynamical system [27] described in the appen-
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dix. This model has six state variables. The following information should be 

available to solve the problem: the “true” trajectory of a system tx , the back-

ground (the first guess) trajectory bx , and observations oy .  

In our calculations, we used synthetic data. The "true" trajectory is 
obtained by integrating model equations numerically with the initial condi-

tions 0
tx  taken on the system’s attractor. The background (the first guess) 

trajectory bx  is obtained by integration of the system equations with prede-

fined initial conditions 0
bx  which is specified as 0 0

b t bx x   , where b  is a 

normally distributed random perturbation with a standard deviation of b  

applied to all elements of the state vector.  
To take into account the background errors, the assumption 
2

0B Ib  is used, where I is the identity matrix. We assume that the value 

of 0.2b   is applied to all elements of the state vector. Observations oy  

are defined for every 2 t  within the assimilation window, which has a total 
temporal length of 50∆𝑡 . The observed values are generated by adding 
Gaussian random noise with zero mean and specified standard deviation o   

to the true state tx . In calculation we assume that  1
o 0.05   ("accurate" 

observations) and  2
o 0.1   ("inaccurate" observations) for "fast" varia-

bles, and  1
o 0.1   and  2

o 0.2   for "slow" variables.  

Since observation grid and model grid are the same, the linearized 
observation operator is simply an identity mapping H 1 . Under the as-
sumption that observation errors are the same for all variables, the observa-

tion covariance matrices are defined as 2
oR R Ik   .  

To minimize the objective function, the conjugate gradient method, 
resulting in the analysis 𝑥଴

௔, has been applied. The forecast trajectory is then 
obtained by integrating the model equations given initial conditions 𝑥଴

௔. 
To estimate the prediction accuracy and the reduction of the forecast 

error due to observations we use the relative error in energy norm: 
 

1
T T 2( ) ( ) ( ) .t f t f t t

rE x x x x x x      (17) 

 

The impact of observations is assessed using the ensemble of trajectories 
generated by randomly produced initial conditions. Table 1 shows the relative 
error reductions averaged over 500 ensemble members for both "accurate" and 
"inaccurate" observations. In this table, the forecast errors are computed for 
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different verification time ft . The coupled model used in these experiments is 
chaotic, therefore, its behaviour is highly sensitive to initial conditions. Thus, 
the forecast accuracy strongly depends on how accurately we can specify the 
initial state of the dynamical system in question. In turn, the accuracy of initial 
conditions depends on available observations, the model used in producing 
forecasts, and data assimilation system. In numerical experiments, the accuracy 
of observations is specified by the standard deviation o  (see above).  

 

Table 1. Observation impact estimates for different verification times for "accurate" 
(1)( )rE  and "inaccurate" (2)( )rE  initial conditions 

 Verification time 
 0.5 1.0 1.5 2.0 
(1)( )rE  -0.91 -2.33 -4.32 -3.27 
(2)( )rE  -0.58 -1.74 -2.53 -1.22 

 

Table 1 illustrates that both "accurate" and "inaccurate" observations 
show positive impact on the forecast accuracy since the relative energy 
norm reductions are negative. The impact of “accurate” observations” is, 
however, larger than the impact of “inaccurate” observations. It is important 
that the observation impact estimate rE  is valid over a limited lead time 

f
limt  since the adjoint model used in calculation of rE  is derived from a 

linear forward propagation model known as a tangent linear model. Numer-

ical experiments shown that 2.2f
limt   of dimensionless time units. 

For coupled chaotic dynamical system developed on the bases of mod-
el [28], the prediction error reductions by observations computed for different 

verification times ft  and "accurate" observations are presented in Table 2.  
 

Table 2. Observation impact estimates for different verification times for "accurate" 
initial conditions 

 Verification time 
 1 2 3 4 

rE  -4.53 -3.39 -2.34 -0.39 
 

This table shows that the shorter the forecast range the larger the er-
ror reduction or, in other words, the prediction accuracy. These results were 
obtained by ensemble simulations with 500 ensemble members. For refer-
ence, the relative observation impacts (in percentage points) calculated for 

each observation variable at 3ft   are shown in Table 3. Observations of 
z-component provide the highest impact on the forecast error reduction 
while observations of Y-component the smallest impact.  
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Table 3. Relative observation impact (in percentage points) of each model variable 

for verification time of 3ft   
Verification time 

x y z X Y 
26.5 21.8 36.2 14.7 0.8 

 
Let us now discuss some results obtained via ACCESS global mod-

el [16]. The model grid covers the globe with a horizontal resolution of 
N512 (1024×769 grid points along longitude and latitude, respectively, with 
average distance between grid points about 25 km), with 70 vertical levels 
up to ~80 km altitude. The linear perturbation forecast model (a tangent 
linear model with moist physics) and its adjoint used in 4D-Var and fore-
cast-to-observations experiments has the same vertical resolution as the 
nonlinear model with a horizontal resolution of N215 (about 60 km).  

In the Bureau of Meteorology, a total of 40 million observations are 
processed daily. Most of these data are satellite measurements. However, 
only about 10 percent of all observations (~ 4 million) are used in the assim-
ilation system to calculate the initial conditions for the global ACCESS pre-
diction. The following is a summary of the observation types assimilated in 
the ACCESS 4D-Var global system:  

 Surface observations: SYNOP (synoptic network weather sta-
tions), SHIP (ship-based instruments), WINPRO (wind profilers), 
DRIBU (buoy-based instruments) ;  

 Upper air observations: TEMP (radiosondes), PILOT (wind ob-
servations from pilot balloons and radar profilers), aircraft re-
ports (AIREPS, AMDARS); 

 Satellite winds: scatterometer surface winds (ASCAT), atmos-
pheric vector winds (AMV); 

 Microwave radiances: ATOVS (AMSU A, B and MHS); 
 Infrared radiances: ATOVS (HIRS), AIRS); 
 Infrared atmospheric sounding interferometer (IASI); 
 Cross-track infrared sounder (CrIS), microwave humidity sound-

er (MHS), atmospheric infrared sounder (AITS); advanced technology mi-
crowave sounder (ATMS); 

 Satellites and occultation data from various global navigation 
satellite systems (GNSS) such as the Global Positioning System; 

 Geostationary operational environmental satellite sys-
tem (GEOS). 

The analysis (initial conditions for the prediction model) is generated 
through the 4D-Var system with a 6-h assimilation window. Observation 
impacts represent an estimate of the change in a 24-h forecast error as a 

15SPIIRAS Proceedings. 2018. Issue 6(61). ISSN 2078-9181 (print), ISSN 2078-9599 (online) 
www.proceedings.spiiras.nw.ru

MATHEMATICAL MODELING AND NUMERICAL METHODS_____________________________________________



consequence of the assimilation of observations. Forecast error is measured 
in terms of a moist energy norm calculated from the surface to the 150 hPa 
level over the globe and the northern and southern hemispheres. The ad-
joint-based observation impacts were calculated from 00Z 1 January 2017 
to 00Z 31 December 2017 in 6-h intervals. The experiment details are 
summarized in Table 4. The total energy norm used to calculate the forecast 
error reduction due to observations is defined as follows [24]: 
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where 𝑀஽ is the mass of the atmosphere in the integration domain 𝐷; 𝑢, 𝑣 
are the zonal and meridional wind components, respectively; 𝜃 is the refer-
ence potential temperature, 𝑝 is pressure; 𝑞 is the specific humidity; 𝑐௣  is 
the heat capacity at constant pressure; 𝐿 is the latent heat of water vapor 
condensation; g is the acceleration of gravity; 𝜌 is the air density; 𝑐 is the 
speed of sound; 𝑁ଶ is the square of the Brunt-Väisälä frequency; Σ is the 
horizontal domain of integration defined by the local projection matrix and 
η is the vertical coordinate. The primed variables denote the components of 
linear perturbation forecast model. 

 
Table 4. Summary of experiment 

Data period From 00Z 1 January 2016 to 00Z 31 December 2016 

Impact measure 
24-hour forecast error reduction on the moist energy norm 
calculated from the surface to 150 hPa level over the globe 
and the northern and southern hemispheres. 

Prediction system 

Operational version of the Bureau of Meteorology predic-
tion system with the resolution of N512 for the forecasting 
model and N216 for the inner loop of 4D-Var, in horizon-
tal, and 70 levels in vertical. The adjoint of perturbation 
forecast model includes the moist physics. 

 

The procedure of observation impact assessment is a post-processing 
routine. For each analysis time (four times per day), the adjoint forecast-to-
observation system produces an ASCII output file that contains the information 
on all the observations including satellite and in situ, non-satellite observation 
types. The following information is contained in the ASCII output file:  

 Sequential number of observation; 
 The observation value; 
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 The value of innovation (the difference between observation and 
background values); 

 Sensitivity of the forecast to observation; 
 Latitude and longitude of observation; 
 Pressure level of observation; 
 Identifier of the instrument type (radiosonde, surface station, 

wind profiler etc.); 
 Identifier of the observation variable type (temperature, moisture, 

pressure, horizontal wind components etc.); 
 The time offset of the observation from the analysis time; 
 Observation error variance; 
 WMO (World Meteorological Organization) station identification 

number; 
 Satellite identifier, satellite instrument and channel number. 
Calculation of the observation impact is a multi-step process. At 

each analysis time, the ASCII output file is processed into a set of 
JSON (Java Script Object Notation) files, from which a set of Python-based 
tools aggregate the individual forecast sensitivities based on observation 
type and/or station and statistically analyze and visualize the results.  

The calculated average observation impact per day of each type of 
observation on the global forecast is illustrated in Figure 3. This figure 
shows that all subsets of observations are beneficial, i.e. the impact measure 
is negative. That is, each individual observation type leads to the reduction 
of the forecast error of the total energy norm. The most significant observa-
tion impact is demonstrated by the Infrared Atmospheric Sounding Interfer-
ometer (IASI). Sonde (TEMP) data has the second largest impact. High 
impact is also provided by AMSUA (microwave sounder radiances), 
JPSSO-CrIS (cross track infrared sounders), Aircraft and SYNOP (surface 
observations at land stations). However, MTSAT (atmospheric motion re-
trievals), HIRS (infrared sounder radiances) and WINPRO (wind profilers) 
show very small impact. The small impact of WINPRO likely results from 
the cessation of NOAA's supply of the wind profiler data to the Global Ob-
serving System. Currently, only European (CWINDE, 29 wind profilers), 
Japanese (WINDAS, 31 wind profilers) and Australian (11 wind profilers) 
wind profiler networks serve as a source of observations. The European and 
Japanese profilers are operating in densely observed areas of the world, and 
so the low impact is not surprising. In addition, there are about 50 
standalone wind profilers around the globe, which provide data via the 
Global Observing System.  

The volume of satellite information is about 90% of the volume of 
meteorological information processed via the 4D-Var system. Conse-
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quently, the impact of satellite data is always high. However, the analysis 
of impact per observations for different observation subsets shows (see 
Figure 4) that the most substantial contributions into the reduction of 
forecast error per one observation demonstrate PILOT, BUOY and satel-
lite data such as ESA and GOES. 

 

 
Fig. 3. Average observation impact per day ሺJ kgሻ⁄  over the globe of each type of 

observation 
 

The spatial distribution of observation sources is inhomogeneous 
over the globe. In the northern hemisphere the ratio of land to ocean is 
about 1 to 1.5. In contrast, in the southern hemisphere the fraction of ocean 
is about 80% while the land fraction is only about 20%. Consequently, the 
network of synoptic and aerological stations (upper air observations) in the 
northern hemisphere is significantly denser than in the southern hemisphere, 
and the number of synoptic stations and aerological stations in the northern 
hemisphere significantly exceeds the corresponding number of stations in 
the southern hemisphere. Figures 5 and 6 illustrate the contribution of ob-
servations from both northern and southern hemispheres to the reduction of 
global forecast error. Sonde observations, Aircraft data, IASI and AMSUA 
obtained in the northern hemisphere demonstrate the most important impact 
on the forecast quality (skill). In the southern hemisphere, data from IASI 
and AMSUA contribute the greatest to the forecast error reduction. Satellite 
data such as MTSAT2, EOS2 and HIRS are less influential in terms of in-
fluence on the forecast accuracy.  

18 Труды СПИИРАН. 2018. Вып.6(61). ISSN 2078-9181 (печ.), ISSN 2078-9599 (онлайн) 
www.proceedings.spiiras.nw.ru

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПРИКЛАДНАЯ МАТЕМАТИКА_____________________________________________



 
Fig. 4. Average impact per observation ሺJ kgሻ⁄  for the global forecast 
 

 
Fig. 5. Daily observation impact ሺJ kgሻ⁄  for the northern hemisphere calculated for 

the period January – December 2017 
 

Results obtained show that all observation types positively influence 
the forecast accuracy both over the globe and northern and southern hemi-
spheres. However, satellite data play a crucial role in weather prediction in the 
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southern hemisphere. We should keep in mind that the adjoint-based method 
used in calculations is restricted by the linearity of the algorithm (the pertur-
bation forecast model is linear and, certainly, its adjoint is also linear), which 
makes it valid only to evaluate short-range forecasts (0 to 48 hours). 

 

 
Fig. 6. Daily observation impact ሺJ kgሻ⁄  for the southern hemisphere calculated for 

the period January – December 2017 
 

4. Discussion and conclusion. In this paper, we evaluated impacts 
of various types of observations, in situ observations (ground and ocean-
based synoptic and ship observations, wind profiler information, radiosonde 
and wind balloon upper air observations, and aircraft data) and satellite in-
formation, on the accuracy of short-term prediction of global weather condi-
tions using the adjoint-based approach embedded into the ACCESS and 
its 4D-Var. The impact is measured by the reduction in the 24-hour forecast 
error expressed as a moist energy norm calculated globally. Overall, all ob-
servation types have a positive impact on the forecast accuracy.  

Using the adjoint-based method we can support the decision-making 
process regarding the evolution of the observing network. This powerful 
technique represents a tool for guiding the design and running of an effi-
cient and effective observing network at the national level and international-
ly. Future studies are required to explore the seasonal and inter-annual vari-
ability of observation impacts. 

We also presented two coupled chaotic dynamical systems devel-
oped on the bases of the original Lorenz chaotic models [27, 28] which can 
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imitate the essential features of natural, societal and technical dynamical 
systems that possess the deterministic chaos. These two coupled systems 
together with variational assimilation subsystems provide the computational 
framework for testing different numerical methods and algorithms, and es-
timating the observation impacts on the prediction of chaotic dynamics. 

The Bureau of Meteorology has been applying an adjoint-based ap-
proach to estimate the impact of observations on forecasts for about five years. 
The results obtained are consistent with the available estimates calculated in 
different research and prediction centres around the world (e.g. [29 – 35]).  

5. Appendix. In this appendix we describe two low-order coupled 
chaotic dynamical systems used in this study. We start from the model ob-
tained by coupling of two ("fast" and "slow") versions of the original Lorenz 
system [27] (from hereon, L63) with specific time scales differing by a factor 
𝜀. We emphasize that L63 is deterministic, however, describes the phenome-
non known as "deterministic chaos": over time the behaviour of a simulated 
system begins to resemble a random process, even though the system is de-
fined by deterministic laws and described by deterministic equations. This 
phenomenon was first uncovered by Lorenz as he observed the sensitive de-
pendence of atmospheric convection model output on initial conditions [27].  

The L63 system is derived by strong spectral truncation of Saltz-
man’s equations, which describe the Rayleigh-Benard convection, and con-
sists of three autonomous ordinary differential equations for time-dependent 
variables 𝑥, 𝑦, and 𝑧: with 𝑥 corresponding to the intensity of the convective 
motion in terms of the stream function, 𝑦 to the temperature differences 
between rising and descending currents, and 𝑧 to the departure of the verti-
cal temperature gradient from its equilibrium magnitude. The L63 contains 
three positive parameters 𝜎, 𝑟, and 𝑏, with 𝜎 being the Prandtl number, 𝑟 the 
normalized Rayleigh number, and 𝑏 a geometric parameter characterizing 
length scale of the convective cell.  

The L63 can imitate some essential properties of the general circula-
tion of the atmosphere and ocean since the heat flux from equator to the 
poles can be represented by variable 𝑧, which is proportional to meridional 
temperature gradient that can be represented by parameter 𝑟.  

A coupled nonlinear chaotic dynamical system is represented by the 
following set of autonomous differential equations [36]: 

a) The “fast” subsystem: 
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b) The “slow” subsystem: 
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where the lower-case letters x, y and z represent the state variables of the 
"fast" model, upper-case letters X, Y and Z denote the state variables of the 
"slow" model, 𝜎 > 0, 𝑟 > 0, and 𝑏 > 0 are the parameters of the original L63 
model, 𝜀 is a time-scale factor (e.g. if 𝜀 = 0.1, then the "slow" subsystem is ten 
times slower than the "fast" subsystem), 𝑐 is a coupling strength parameter for 
𝑥, 𝑋, 𝑦, and 𝑌 variables, 𝑐z is a coupling strength parameter for 𝑧 and 𝑍 varia-
bles, 𝑘 is a “decentring” parameter, and 𝑎 is a parameter representing the am-
plitude scale factor (𝑎 = 1 indicates that "slow" and "fast" subsystems have 
the same amplitude scale).The coupling strength parameters 𝑐 and 𝑐z control 
the interconnection between "fast" and "slow" subsystems: the smaller the 
parameters 𝑐 and 𝑐z, the weaker the interdependence between two subsystems.  

Essential properties of this chaotic system have been considered in 
detail earlier [37]. It was underlined that the temporal dynamics of coupled 
L63 is strongly conditioned by its parameters. Standard values of the L63 
parameters corresponding to chaotic behaviour are 𝜎 = 10, 𝑏 = 8/3, and 
𝑟 = 28 [27]. These parameter values are used in this study since the motions 
in the atmosphere and ocean are inherently chaotic. Note that for 𝜎 = 10 
and 𝑏 = 8/3, there is a critical value for parameter 𝑟, equal to 24.74, and 
any 𝑟 larger than 24.74 induces chaotic behaviour of the L63 system.  

The time-scale factor 𝜀, “decentring” parameter k and the ampli-
tude scale factor a are taken to be 0.1, 0 and 1 respectively. Without loss 
of generality, we can assume that and 𝑐 = 𝑐z. The coupling strength 𝑐 de-
termines the strength of interactions between "fast" and "slow" subsys-
tems and, therefore, the dynamics of the entire coupled system. In numer-
ical experiments we assumed that the coupling between two subsystems 
is weak, therefore 𝑐=0.15 [37].  

The system of model equations is numerically integrated by fourth 
order Runge-Kutta algorithm with a time step 35 10t    . To discard the 

initial transient period the numerical integration starts at time 152t t    

with the initial conditions generated randomly around the point 

   T
0.01;  0.01;  0.01;  0.02;  0.02;  0.02x    and finishes at time 𝑡=0. This guar-

antees that the calculated state vector 𝑥଴ ൌ 𝑥ሺ0ሻ is on the system’s attractor. 
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The state vector 𝑥଴ is then used as the initial conditions for further numeri-
cal experiments. Note that for 35 10t    , the numerical integration with 
length of 200 time steps corresponds to one dimensionless unit of time. 

The next coupled chaotic dynamical system is also composed of 
"fast" and "slow" models. The "fast" model represents the chaotic dynam-
ical system developed by Lorenz to study the large-scale atmospheric mo-
tions [28] (herein is referred to as L84), while the "slow" model, in the ab-
sence of coupling to the "fast" model, is a simple harmonic oscillator [38]. 
The following two sets of autonomous differential equations describe:  

a) The "fast" model [28]: 
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b) The "slow" model [38]: 
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where 𝑥 is the intensity of the symmetric, globally averaged westerly wind 
current (equivalent to the meridional temperature gradient); 𝑦 and 𝑧 are the 
amplitudes of cosine and sine phases of a series of superposed large scale 
eddies, which transport heat poleward; 𝐹 and 𝐺 represent the thermal forc-
ing terms due to the average north-south temperature contrast and the earth-
sea temperature contrast, respectively, 𝜔 is the ocean oscillation frequency, 
𝑋 and 𝑌 are zonal asymmetries in sea surface temperature, which interact 
with the model atmosphere’s eddy fields (𝑦 and 𝑧).  

The "fast" model (the original model proposed by Lorenz) is a Ga-
lerkin truncation of the Navier-Stokes equations and gives the simplest ap-
proximation of the general circulation of the atmosphere. This model has 
been widely used in climatological studies and its properties have been ex-
plored extensively.  

Values of the model parameters used in numerical experiments are as 
follows [45]: 0.12a  , 4b b , 0.5c  , 8F  , 0.25G  , 0.1   , 

and 2 / 4  , where 0.0274  .  
The model equations are solved numerically by fourth order Runge-

Kutta algorithm with a time step 3Δ 5 10t   . The initial transient period is 
discarded, as was mentioned above for the L63 model. 
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