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Abstract. The problem of the pursuit curve construction in the case when the tangent
to pursuer’s motion trajectory passes at any time through the point representing the pursued
is considered. A new approach to construct the pursuit curves using difference schemes is
proposed. The proposed technique eliminates the need to derive the differential equations
for the description of the pursuit curves, which is quite difficult task in the general case. In
addition, the application of difference methods is justified in a situation where it is
complicated to find the analytical solution of an existing differential equation and it is
possible to obtain the pursuit curve only numerically. Various modifications of difference
schemes respectively equivalent to the Euler, to the Adams — Bashforth and to the Milne
methods are constructed. Their software implementation is realized by using the
mathematical package Mathcad. We consider the case of a uniform rectilinear motion of the
pursued whose differential equation describing the path of the pursuer and its analytical
solution are known. We compare the numerical solutions obtained by the different methods
with the well-known analytical solution. The error of the obtained numerical solutions is
examined. Moreover, an application is considered illustrating the construction of the
difference schemes for the case of an arbitrary trajectory of the pursued. Also, we extend the
proposed method to the case of cyclic pursuit with several participants in the three-
dimensional space. In particular, we construct a difference scheme equivalent to the Euler
method for a three-dimensional analogue of the "bugs problem". The results obtained are
demonstrated by means of animated examples for either two-dimensional or three-
dimensional cases.

Keywords: Differential Games, Pursuit Problem, Pursuit Curve, Numerical Methods,
Difference Methods, the Euler Method, "Three Bugs" or "Three Mice" Problem, Mathcad.

1. Introduction. The pursuit problem belongs to a class of long and
widely studied problems. The leading role in the formulation of this problem
belongs to research conducted in the field of the differential games, where it
is necessary to choose the optimal pursuit strategy [1-6]. A common strategy
is the pursuit method [7] which determines the motion of the pursuer in such
way that the tangent to the trajectory of its motion at any time passes through
the position of the point associated with the pursued. The problem of
constructing the trajectory of the pursuer — the pursuit curve — is relevant
in various areas and it has a wide practical value, in particular, in mechanics,
military affairs, control systems [8-25].

Despite the variety of applied problems, only particular cases of pursuit
are sufficiently studied, for example, the case of a simple motion when the
pursued entity moves uniformly along a straight line. For this case, it is possible
to explicitly write a second-order nonlinear differential equation describing the
pursuit curve and to find its analytical solution [9, 10]. It is assumed, for
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definiteness, that the pursued entity begins a uniform motion with speed v
along the axis Oy from the origin of coordinates, while the pursuer starts with
speed V from the point with coordinates (1,0) (Figure 1).

ial 4

Fig. 1. Scheme of a simple motion

Then the sought differential equation is given by [9, 10]:

V@) =$-\/1+<y'<x)>2, (1

where k£ =v/V is the ratio of the speeds of the pursued and of the pursuer.
Taking into account the zero initial conditions y(1)=0,y'(1)=0,

which emerge from the statement of the problem, the solution of equation (1)
is described as follows [10]:

1 x1+k xl—k k
xX)=— - + Af k#1;
e 2{1+k =k ) 1=K

| 2
y(x) =Z()c2 —Inx*-1),ifk=1.

To find the pursuit curve in particular cases, either kinematics
methods [11-14] or parametrization methods [8] are also used.

However, the question of describing the curve of the pursuer in the
general case remains open due to the complexity of deriving the differential
equation itself, as well as finding its analytical solution.

This article proposes a numerical approach for constructing the pursuit
curve based on difference schemes. Numerical methods are often used in
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differential games problems, also in relation to the pursuit curve problem. In
particular, the grid method and its variations are widely known [22-24], they
are designed to derive the value function in a time-optimal game and the
optimal trajectory [22]. This method is also successfully applied to solve the
pursuit problem in distributed control systems [25]. The difference schemes
investigated in the mentioned works are constructed for an available
differential equation describing the pursuit process.

The proposed approach instead makes it possible to abandon the need
to derive the differential equation that describes the pursuit trajectory. In
addition, the application of this approach is justified in a situation where it is
difficult to find the analytical solution of the existing differential equation and
it is possible to obtain the pursuit curve only by numerical methods. The
possibility of this approach is described, in particular, in reference [26].

2. Construction of a difference scheme equivalent to the Euler
method. Initially, it is constructed a difference scheme for the case of a
simple motion (Figure 1) in order to show the approximation of a well-known
analytical solution (2).

Then we deal with the parametrization with respect to time t and
denote at each time point the known coordinates of the pursued with
x(t), y(¢t) and the unknown coordinates of the pursuer with X (¢),Y(¢) [8].

According to the law of the uniform rectilinear motion, the coordinates
x(t), y(t) of the pursued along the axis Oy, are determined by the formulas:

x(1)=0,

y()=v-t. )

The pursuit time is divided into n time intervals and the time step is
denoted Af, and the approximate coordinates of the pursued and of the

pursuer at each step: x;,y; and X,,Y,i=0,n, respectively. At the initial
time, the coordinates have the following values:

X =0, »,=0,

4
X,=0, ¥,=0. @

From (3) it follows that the coordinates of the pursued

X115 Vin»1 = 0,n—1, are defined as follows:

xi+1 =O, .
i=0,n-1. ®)
YVin=y; +v-At,
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In order to determine the coordinates of the pursuer at step i+1,
geometric constructions are used (Figure 2).

=

=0 Xina X;
Fig. 2. Construction of the difference scheme

The acute angle between the tangent to the pursuit curve and the Ox
axis at stepi is denoted by ¢, . Obviously, at the initial time ¢, = 0. The

tangent of the right angle (Figure 2) is given by:

=Y
tg(cpi>=|jf_—)(’_|,i=0,n—1. ©)

From the right triangle ABC we obtain:

Xy —X; =—-AC-cosg,,

Y., -Y, =AC-sing,,

1

i=0,n-1, @)

or

X=X, +AC-cos(m+9,), re
' i=0,n—1 (®)
Y., =Y, +A4AC sin(7 +¢;),

Since the velocity vector V is directed tangentially, the following
relation applies:
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AC=[p|-a )
Taking into account (6) and generalizing formula (8) for the cases where
the angle ¢; is located in any coordinates quarter, the following recurrence

formulas are derived for determining the coordinates of the pursuer:

X=X, +‘I7‘-At-cos(6,.),

_ _ i=0,n-1, (10)
Y., =Y;+‘V‘-At'sin((pi),
where
=Y
arctg( YT ]+7r,if X; >x;,
x; =X,
— =Y
¢, = arctg( Yi ],if X, <x,
x; —X; (11)
%‘Sgn(yi_yi)aiin =X

i=0,n.

It should be noted that the calculation by the difference scheme (10)
should be stopped if at any step k <n the equality x, = X, ,y, =Y, is

verified. In fact, this means that the pursuer caught up with the pursued, i.e.
the pursuit is complete.
Thus, the central element of the proposed method is the calculation

at each step i of the angle 61. between the tangent to the pursuit curve and
the axis Ox. The expressions ‘V"At'cos@i) and ‘V‘ ~Atosin(6i) are

respectively approximate increments of functions X (¢) and Y(¢) per step
At (Figure 2), and, therefore, at a small step, these expressions serve as
analogues of the differentials of the functions X(¢#) and Y(¢) at the
point ¢;. Therefore, it can be said that the difference scheme (10) is

equivalent to the classical difference scheme, which is constructed by
the Euler method for finding the solution u(f) of a Cauchy

problem of the type:
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"= 1@),
u'()=1() (12)
u(t0)=u09
and it has the form [27]:
U, =u,+du(t), i=0,n-1, (13)

where ¢, is a partition point, u, are the values of the approximate solution at

the partition points, At is the step.

The difference scheme (10) is implemented using the mathematical
package Mathcad [28, 29] for given values of the number of stepsn , step
At and speeds v and V(v #V). A numerical solution of the problem is

obtained in terms of the vectors (X,,Y)),i=Ln, that is, we obtain an

approximation of the pursuit curve. A comparison with the analytical
solution (2) is made. The results are shown in Figure 3a, b (the animation
for Figure 3a is posted on an electronic  resource
https://community.ptc.com/tS/PTCMathcad/OchkovArticleAnimaions/td-
p/583048).

From the graphs shown in Figure 3, it is clear that the obtained
numerical solution actually implements the pursuit method (the tangent at the
selected point of the pursuer’s trajectory passes through the point of the
pursued entity — Figure 3b) and approximates the analytical solution quite
well Figure 3a.

!

X

Fig. 3(a). Comparison of numerical and analytical pursuit curves: general view
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yl'l\ c

—— analytical pursuit curve
A4 numerical pursuit curve

' ' ' ' x
Fig. 3(b). Comparison of numerical and analytical pursuit curves: scaled view of
part of the curve

In Figure 4 it is reported a plot showing the error € of the numerical
solution, defined according to the formula:

£=|y(X)-Y(X,). (14)

where y(X,) is defined according to (2).

As can be seen from Figure 4, because of accumulation, the error
becomes equal to the step Ar=107, that is, the difference scheme (10) has
an accuracy of the first order corresponding to the Euler method [27].

3

1.5x10”
&
1x107°
sx107*
1 038 0.6 02 0
x
Fig. 4. Numerical solution error
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3. Construction of difference schemes using linear multi-step
methods. The Euler method, that is used to construct the difference scheme
described above, is a rather "rough" method of approximate calculation. To
increase accuracy, linear multi-step methods are usually applied. These
methods use not only one, but several previously calculated values of the
sought function [27]. Let us consider the construction of a difference scheme
equivalent to the two-step Adams — Bashforth method, which for a Cauchy
problem of the form (12) is given by the formula [27]:

u =1, +du(t0),

(15)

3 1 A
U, =ui+5du(ti)—5du(ti71),z =l,n-1.

This method has, in contrast to the Euler method, an accuracy of the
second order [27].
The difference scheme (10) is modified in accordance with (15).

Taking into account the fact that the expressions |I7|~At~cos(6i) and

|I7|~At-sin($l.) have the meaning of differentials of the functions X (t) and
Y (t) at the point #,, the modified difference method will be:

X, = X, +|7|- At-cos(@y).Y; =Y, +[7|- At-sin(@,),
X=X, +%|I7| At -cos(9,) —%|I7| At -cos(9,_;),

3 | (16)
Va= Y4 2|7 |-t -sin@,) - |- At -sin@,.),

i=lLn-1,

where 61. is defined by the formula (11).

The difference scheme (16) is implemented using the Mathcad
mathematical package for given values of the number of steps 7, step At

and speeds v,V (v#V) . The obtained numerical solution is compared with

the analytical solution (2) and with the solution obtained using the
difference method (10). The results are shown in Figure 5a, b (the
animation for Figure 5a is posted on an -electronic resource
https://community.ptc.com/tS/PTCMathcad/OchkovArticleAnimaions/td-
p/583048).

From Figure 5b it is clear that the numerical solution obtained by the
difference scheme (16) (equivalent to the Adams — Bashforth method)
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approximates the analytical solution better than the numerical solution
obtained by the difference scheme (10) (equivalent to the Euler method): the
plot of this solution coincides visually with the analytical solution.

y p
x
a)
XN
. —— analytical pursuit curve

S, A7 numerical curve by method (10)

;. \_®ee numerical curve by method (16)
x

b)
Fig. 5. Comparison of numerical and analytical pursuit curves:
a) general view, b) scaled view of part of the curve

The plot in Figure 6 shows the errors of the numerical solutions,
determined by formula (14). The error of the numerical solution obtained by
this method (16), for a given step size Ar=10" is of the order
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O(At*)~10"°, which is far less than the error of the numerical solution
obtained by method (10).

110”7

51074

- error for the pursuit curve
according to method (10)
== error for the pursuit curve
according to method (16)

e

1 0.8 0.6 02 0

X
Fig. 6. Numerical error of the solutions obtained by the two methods

If it is necessary to construct the pursuit trajectory with a much smaller
error, numerical methods of a higher order should be used, for example, the
predictor-corrector methods which are widely used in applications [30-36]. Let
us construct the difference scheme equivalent to the fourth-order Milne
method [37, 38]. This method requires four initial steps and uses a couple of
finite-difference formulas (a predictor and a corrector).

For a given initial value u,, additional initial values u,,u,,u, are

calculated by some other methods, for example, by the Runge-Kutta method,
which has fourth-order accuracy [27, 39, 40].

Let us consider the predictor-corrector formulas by the Milne method
starting with the fourth step.

The predictor formula for the Cauchy problem (12) is defined as
follows [37]:

Wl =y (2du (1)~ du () + 2du (1))
3 (17)

i=3,n-1.
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The corrector formula is defined as follows [37]:

ucer =u, +%<du(l‘i71 ) +4du (ti ) + dupred (ti+l ))

i+l

> (18)

i=3,n-1,

where expression du”*’(t,,,) defines a predicted differential of function
u(t) at the point #,,, based on (17).

Let us consider the difference scheme according to (17)-(18).
As noted above, the key clement of the proposed method is the
calculation at each step i of the angle ¢, between the tangent to the pursuit

curve and the axis Ox. The expressions |I7|-At'cos($,-) and |I7|~At-sin($i)
are respectively analogues of the differentials of the functions X (¢) and
Y(t) at the point ;.

Accordingly, the essential link of the difference method is the

calculation of the predicted angle 7.

Thus, the difference method is defined as follows:

i+l

X x| +§(2|17|.At.COS@H)—|I7|~At~COS($H)+
+2|77|- At - cos(@,),
=Y+ 3 Q7] A sinG, ) -7 At-sinGg, ) +
+2|7|- At -sin(g,)),
i

X=X, +%(|I7| -At-cos(@;_y) + 4|I7| +Az-cos(9;) + 4

+|I7| - At -cos(@”Y),

i+l
i+1

yeorr — Yi—l + %(|I7| AL sin(@i_l) + 4|I7| -At- Siﬂ(@i) +

+|[7| At sin@ﬁﬁed)),

i=3,n-1,
where
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y Ypred
. —Y . 4
arctg| —H—HL_ 1 7 if X2 > x,,,
_ypred i+ i+
Xin i+l

_ ypred i+l i+1 20
Xitl i+] ( )

ed
Gpred _ D Ak I .
Q. = arctg[y”'l—l*l ,lf X,p”d <X

z_ _yopred ) pred __
> Sgn()’m Y ),1f X =x

i+l i+1>

i=3n-1.

The difference scheme (19) is implemented using the Mathcad
mathematical package for given values of the number of steps n, step At

and speeds v,V (v#V). The obtained numerical solution is compared with

the analytical solution (2) and with the solutions obtained using the difference
methods (10), (16). The general view of the plot of the analytical solution and
of the numerical solution obtained using the difference methods (19) is
identical to the ones in Figures 3, 5.

The plot in Figure 7 shows the errors of the numerical solutions
determined according to formula (14) for each of the three solutions obtained by
the difference scheme (10), (16), (19).

£

. 3x107*
«mw crror for the pursuit curve
according to method (10)
« error for the pursuit curve
according to method (16)
=== error for the pursuit curve

according to method (19) .

2107

1x107*

J,

0.8 0.6 x 0.2 0
Fig. 7. Numerical error of the solutions obtained by the three methods
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The error of the numerical solution obtained by method (19) (equivalent
to the Milne method), for a given step size Ar=10" , is of the order

O(A*)~107"2, which is significantly less than the errors of the numerical

solutions obtained by methods (10) and (16) (analogue to the Euler method and
the Adams-Bashforth method respectively).

A high accuracy of a numerical solution is achieved by implementing
of the proposed method.

Therefore, it can be concluded that the proposed difference
schemes (10), (16) and (19) allow to construct numerical solutions that
approximate the analytical pursuit curve with varying accuracy according to
the specific problem.

4. Application of difference schemes for constructing the pursuit
curve in case of an arbitrary trajectory of the pursued. The derived
difference schemes (10), (16), (19) can be used to obtain a numerical solution
also if the pursued entity moves not along a straight line, as it was considered
previously, but along an arbitrary trajectory.

Let us consider as an example the situation when the pursued moves
uniformly along an elliptical path, i.e. the coordinates x(¢),y(t) are

determined by the formulas:

x(t)=4-sin(v-1),

y(1) = B-cos(v-1), 1)

where v is the speed of the pursued, while 4,B are constant coefficients.
Let the pursued start moving from the point with coordinates:

X,=0, y,=1. (22)

Then the difference relations (5) take the form:

Xy = A-sin(v-Ar-(i+1)),

=0,n—1. 2
Vig=A-cos(v-Ar-(i+1)), P 3)

The initial values of the sought coordinates of the pursuer

X,,Y,i=0,n are assumed as follows:

X, =0,Y,=—1. (24)
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Then, by performing the calculation using formulas (10), (16), (19)
for given values of the number of steps n, step At and speeds v,V (v=V).
three numerical versions of the pursuit curve are obtained.

The implementation of the described algorithm using the Mathcad
mathematical package is shown in Figures 8a, b (the animation for Figure 8a

is posted on an electronic resource
https://community.ptc.com/t5/PTCMathcad/OchkovArticleAnimaions/td-
p/583048).

From Figure 8b we notice that the numerical pursuit curves
constructed according to the methods (16) and (19) (analogue to the
Adams — Bashforth and to the Milne methods respectively) provide a
better prediction for the next step of the pursued than the pursuit curve
constructed according method (10) (equivalent to the Euler method): the
n+1 steps of the pursuer trajectories are directed not at the point of the
pursued location (as in method (10)), but with anticipation towards
the (n+1)— th step of the pursued.

It is obvious that method (19) (equivalent to the Milne method)
provides a better approximation to the (n+1)— th step of the pursued than
method (16) (equivalent to the Adams — Bashforth method).

Thus, the possibility of using the difference schemes is
demonstrated also in the case when the pursued entity moves along an
arbitrary trajectory.

¥

=
-

Fig. 8(a). Pursuit curves obtained by different methods for the case of an elliptical
path of the pursued: general view
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\.
v
. 1Y

L

trajectory of the pursued

numerical curve by method (10)
numerical curve by method (16)
numerical curve by method (19)

—0.4

Fig. 8(b). Pursuit curves obtained by different methods for the case of an elliptical
path of the pursued: view of part of the curve

The advantage of the proposed method is that it allows to construct
numerical interpretations of pursuit curves for given strategies of the
pursued, which are not, generally speaking, solutions of any differential
equations, as it is usually done in the theory of the differential games (see,
for example, [41]).

5. Application of difference schemes for constructing a pursuit
curve in the three-dimensional space. The proposed method for constructing
difference schemes can be extended to the case of the three-dimensional space.
The problem of constructing a pursuit curve in three-dimensional space is most
often considered in the context of control theory problems with cyclic pursuit,
where several enumerated objects start moving from different points of the
space, with each object catching up with the next [42-44]. This case has been
studied quite well on the plane (see, for example, [45-47]), and it reduces to the
so-called "bugs problem" (this problem is also known as "mice problem"). [48,
49], when the objects begin to move uniformly at the same speed from the
vertices of a regular polygon, with each object moving in the direction of its
nearest neighbour. In this case, the trajectory of motion of each object is a
logarithmic spiral [50].

We construct a difference scheme equivalent to the Euler method for
the "bugs problem" in the three-dimensional space, i.e. for the problem of
finding the trajectories of objects that begin a uniform motion with equal
speed from the vertices of a regular polyhedron.
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As a polyhedron, it was considered a tetrahedron with vertices at the

points (0,0,0),(?,%,OJ,(O,I,O) ,(g,%,g]. Let four objects begin

their uniform motion with the same speed from the vertices of the tetrahedron,
with the first object following the second, the second following the third, and
so on (Figure 9).

The speeds of the four objects are denoted by V,,...,v, (the modules

of the speeds are set to be equal). The coordinates of each of the objects in a
time-parametric form will be denoted

by (x' (1), ()2 (£))s-oo(x* (1), (1),2* (1))-

Fig. 9. Cyclic pursuit in a tetrahedron

To construct a difference scheme which is similar to the two-
dimensional case, we will not explore the trajectories of the objects of the
pursuit in the space itself, but their projections on the Oxy and 0Oxz planes.

A partition of the pursuit time into n time intervals is introduced and the
time step is denoted by Az. Then for the coordinates X0, (1), k =1,4, the
difference relation (10) is written for the two-dimensional case in the Oxy
plane, and for the coordinate z* (t).k= L4 in the Oxz plane.

To do this, firstly, it is necessary to calculate, respectively, in the Oxy

and Oxz planes, the angles ", @, i=1,n, between the tangent to the
pursuit curve and the axis Ox by the formula (11).
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Secondly, one should use not the modules of objects velocities
k =1,_4 on the

—oxy
Vi

—O0XZ

‘E‘,k =1,_4, but the modules of their projections Vi

B

corresponding planes.
The difference relations are derived for finding the coordinates

(xl (¢).0'(1),2' (t)) of the first object, starting from the origin and following

the second object with coordinates (xz (t),%(1).2° (t)), starting the motion

NERS!

from the vertex [T,E,OJ. Then the initial values of the coordinates are:

(25)

According to (10) and taking into account the above remarks, the
difference relations are converted to the form:

1 _ 1 |[soxy —oxy
X =% +[V 0 | X Arxcos(g;),
1 _ .1 —oxy o (TOXY
Vi =¥ v | X Arxsin(@;),
(26)
1 1 —oxz s (OXZ
Ziq =2; || X At xsin(@;),
i=0,n-1,
where
21
Yi =i 1 2
arctg| ——— |+ 7, forx; > x;,
X\ —x;
oY = Vi 1_ .2
i aretg| ——— |, forx; <x;, 27)
Xi =X
4 2 1 1.2
5-sgn(yi -y ),forxi =X,
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2
X, —X

21
z; —z;
arctg[ L J+7r,f0rxil >x7,

2

—oxz _ zi— 2z
ST = i 1 2
®; arctg[ 5 j,forxi <xi,

Xi =X

1_ 2
),forxi =X,

i i

T 2 1
3~sgn(z. -z
i=0,n

The projections ‘\71"” ‘ , ™| are found using the geometric

constructions in Figure 10.

y

X

Fig. 10. Determination of the projection of the velocity of an object on the plane

Figure 10 shows that the projection is defined as follows:

—oxy

1

=[]-cos(a). (28)

where a; is calculated from the relation:

2 1
)
ig(a)= : (29)
2 a2 P
Xp=Xi| Vi —»
Similarly, the projection [»*| is defined:
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—0XZ

N

= ‘v_l‘ocos(ﬂi), (30)

where f; is calculated from the relationship:

b7 - |
()= .
R e o

Using (28)-(31), the difference method (26) is obtained in the final form:

X, =x +‘\71 -cos (e, )- At-cos(@;),

1

vl =+ cos (@) Ar-sinGg),

(32)
2y =2} +|w|-cos(B,)- Ar-sin@™),
i=0,n—-1,
where @;, ¢ are determined according to (27), and a; and f; are
determined by the relations:
|2z
z; —z
a; = arctg
2 P 2 af?
X=X i~
(33)
2
‘yi _J’i‘
B, = arctg - -
A=+ -2)

By establishing similar difference relations (32) for the second, third
and fourth objects and combining them into a system we obtain a complete
difference method for constructing the pursuit curves in the tetrahedron.
Figure 1la (animations for Figure 11 are posted on electronic resources
https://community.ptc.com/t5/PTC-Mathcad/Is-it-my-own-or-Mathcad-15-
error/m-p/576164, https://community.ptc.com/t5/PTC-Mathcad/Bats-
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problem/m-p/576137) shows the results of the implementation of the
difference method in the Mathcad package for the tetrahedron, while Figures
11b, ¢ show the results of implementing similarly constructed pursuit curves
for cases when objects start their motion from the vertices of a cube and of a
dodecahedron respectively.

It could be noted that the proposed approach allows to construct
difference schemes not only for objects that start their motion with
identical speeds from the vertices of Platonic solids, but also for objects
that move uniformly with different speeds and begin their motion at
arbitrary points in space.

R Bocnpovasecty anmaumio O X | WiBocnpomsmecrn amaunio e L —" - o x

Fig. 11. Constructing the pursuit curves in the three-dimensional space

6. Conclusions. This article proposes a new approach to the
construction of pursuit curves through the use of difference schemes. The
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advantage of the proposed approach is the possibility of describing pursuit
curves in a numerical way without deriving the differential equation. The
constructed modifications of difference schemes equivalent respectively to the
Euler, to the Adams — Bashforth and to the Milne methods approximate the
analytical solution with high accuracy. The proposed approach can be applied
to the numerical construction of pursuit trajectories with arbitrary pursued
strategy either in two-dimensional plans or in three-dimensional spaces.

References

1. Petrosyan L.A., Mazalov V.V. Recent Advances in Game Theory and Applications.
Springer International Publishing. 2016. 284 p.

2. Mazalov V., Chirkova J.V. Networking Games. Network Forming Games and Games
on Networks. Academic Press. 2019. 322 p.

3. Petrosyan L.A. Differential Games of Pursuit. World Scientific. 1993. 332 p.

4. Isaacs R. Differential Games: A Mathematical Theory with Applications to Warfare and
Pursuit, Control and Optimization. Courier Corporation. 1999. 416 p.

S. Kumkov S.S., Le Menec S., Patsko V.S. Zero-sum pursuit-evasion differential games

with many objects: survey of publications. Dynamic Games and Applications. 2017.
vol. 7. no. 4. pp. 609-633.

6. Ramana M.V., Kothari M. Pursuit-evasion games of high speed evade. Journal of
Intelligent & Robotic Systems. 2017. vol. 85. no. 2. pp 293-306.

7. Pankov S.Ya., Zaburaev E.Yu., Matveev A.M. Teoriya i metodika upravleniya aviatsiei
[Theory and Methods of Aviation Control]. Ulyanovsk: UVAU GA. 2006. 190 p. (In
Russ.).

8. Barton J.C., Eliezer C.J. On pursuit curves. The ANZIAM Journal. 2000. vol. 41. no. 3.
pp. 358-371.

9. Samoyavcheva M.V., Fedorov L.I. [The pursuit problem]. Vestnik moskovskogo

gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-matematika — Bulletin of the
Moscow Region State University. Series: Physics-Mathematics. 2011. no. 1. pp. 65-69.

(In Russ.).

10. Ptak P., Tkadlec J. The Dog-and-Rabbit Chase Revisited. Acta Polytechnica. 1996. vol.
36. pp. 5-10.

11. Mungan C.A. A Classic Chase Problem Solved from a Physics Perspective. European

Journal of Physics. 2005. vol. 26. no. 6. pp. 985-990.

12. Sigaladze Z.K., Chashina O.I. [The problem of pursuing a hare by a wolf as an exercise
of elementary kinematics]. Vestnik NGU. Seriya "Fizika"— Siberian Journal of Physics.
2010. Issue 5. vol. 2. pp. 111-115. (In Russ.).

13. Pogrebskaya T.N., Soltakhanov Sh.Kh. [The control of chasing a target by the
pursuit method as a nonholonomic problem in mechanics]. Vestnik Sankt-
Peterburgskogo universiteta. Seriya 1. Matematika. Mekha-nika. Astronomiya —
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy. 2007.
vol. 1. pp. 117-126. (In Russ.).

14. Kuzmina L.I., Osipov Yu.V. [Calculation of the length of the trajectory for the problem of
pursuit]. Vestnik MGSU — Vestnik MGSU. 2013. vol 12. pp. 20-26. (In Russ.).

15. Azamov A.A., Kuchkarov A.Sh., Samatov B.O. [The relation between problems of
pursuit, controllability and stability in the large in linear systems with different types of
constraints]. Prikladnaya matematika i mehanika — Journal of Applied Mathematics
and Mechanics. 2007. Issue 71. vol. 2. pp. 259-263. (In Russ.).

1426 Tpyae! CIIMNPAH. 2019. Tom 18 Ne 6. ISSN 2078-9181 (neu.)
ISSN 2078-9599 (oHnaiiH) www.proceedings.spiiras.nw.ru



MATHEMATICAL MODELING, NUMERICAL METHODS

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Ivanov A.A., Shmakov O.A. [Algorithm for defining the inner geometry of a snakelike
manipulator in case of leading link movements along the incremental trajectory]. Trudy
SPIIRAN — SPIIRAS Proceedings. 2016. vol. 6(49). pp. 190-207. (In Russ.).

Lazarev V.S., Agadjanov D.E. [Using graphic-analytical methods for robots group
movement trajectories formation in the two-dimensional environment). 7rudy SPIIRAN
— SPIIRAS Proceedings. 2016. vol. 2(45). pp. 45-57. (In Russ.).

Shan Y. et al. CF-Pursuit: A Pursuit Method with a Clothoid Fitting and a Fuzzy
Controller for Autonomous Vehicles. International Journal of Advanced Robotic
Systems. 2015. vol. 12. no. 9. pp. 134.

Amer N.H., Zamzuri H., Hudha K., Kadir Z.A. Modelling and Control Strategies in
Path Tracking Control for Autonomous Ground Vehicles: A Review of State of the
Art and Challenges. Journal of Intelligent & Robotic Systems. 2017. vol. 86. no. 2.
pp. 225-254.

Spakov O. et al. PursuitAdjuster: an exploration into the design space of smooth pursuit-
based widgets. Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking
Research & Applications. 2016. pp. 287-290.

Khamis M. et al. Eyescout: Active Eye Tracking for Position and Movement
Independent Gaze Interaction with Large Public Displays. Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology (UIST 2017).
2017. pp. 155-166.

Bardi M., Falcone M., Soravia P. Numerical Methods for Pursuit-Evasion Games via
Viscosity Solutions. Stochastic and Differential Game. 1999. pp. 105-175.

Kumkov S., Ménec S., Patsko V. Zero-Sum Pursuit-Evasion Differential Games with
Many Objects: Survey of Publications. Dynamic Games and Applications. 2017. vol. 7.
no. 4. pp. 609-633.

Munts N., Kumkov S. [On the coincidence of the minimax solution and the value
function in a time-optimal game with a lifeline]. Trudy Instituta Matematiki i Mekhaniki
UrO RAN — Proceedings of Krasovskii Institute of Mathematics and Mechanics. 2018.
vol. 24(2). pp. 200-214. (In Russ.).

Alimov K.N., Mamatov M.S. Solving a Pursuit Problem in High-order Controlled
Distributed Systems. Siberian Advances in Mathematics. 2014. vol. 24(4). pp. 229-239.
Kazakov Yu.V. Zadacha o presledovanii na vrashchayushchemsya diske [Chase
problem on a turntable]. Available at:
http://old.exponenta.ru/EDUCAT/systemat/kasakov/pursuit/index.asp (accessed:
16.03.2019). (In Russ.).

Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Chislennyie metodyi [Numerical
Methods]. BINOM. Laboratoriya znaniy. 2008. 636 p. (In Russ.).

Ochkov V.F. Mathcad 14 dlya studentov, inzhenerov u construktorov [Mathcad 14 for
Students, Engineers and Designers]. BHV-Peterburg. 2007. 368 p. (In Russ.).

Ochkov V.F., Bogomolova E.P., Ivanov D.A. Fiziko-matematicheskie etyudy s
Mathcad i Internet: Uchebnoe posobie [Physics and Mathematics Studies with Mathcad
and Internet: Tutorial]. Lan Publ. 2018. 560 p. (In Russ.).

Ponomarev A.A. [Suboptimal control construction for the model predictive controller].
Vestnik Sankt-Peterburgskogo universiteta. Seriya 10. Prikladnaya matematika.
Informatika. Processy upravileniya — Vestnik of Saint Peterburg University Applied
Mathematics. Computer Science. Control Processes. 2017. vol. 2. pp. 193-208. (In
Russ.).

Ma Y.J. Reconstruction of a Robin coefficient by a predictor-corrector method.
Mathematical Problems in Engineering. 2015. vol. 11. pp 1-7.

Binder A.J., Luskin M., Ortner C. Analysis of a predictor-corrector method for
computationally efficient modeling of surface effects in 1D. 2016. Available at:
https://arxiv.org/pdf/1605.05750v1.pdf (accessed: 16.03.2019).

SPIIRAS Proceedings. 2019. Vol. 18 No. 6. ISSN 2078-9181 (print) 1427
ISSN 2078-9599 (online) www.proceedings.spiiras.nw.ru



MATEMATWYECKOE MOAENTMPOBAHWE U NPUKNAOHAA MATEMATUKA

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Onwubuoya C., Akinyemi S.T., Odabi O.I., Odachi G.N. Numerical simulation of a
computer virus transmission model using Euler predictor-corrector method. /DOSR
Journal of Applied Sciences. 2018. vol. 3(1). pp. 16-28.

Abdullahi Y.A., Omar Z., Kuboye J.O. Derivation of block predictor — block corrector
method for direct solution of third order ordinary differential equations. Global Journal
of Pure and Applied Mathematics. 2016. vol. 12(1). pp. 343-350.

Daftardar-Gejji V., Sukale Y., Bhalekar S. A new predictor-corrector method for
fractional differential equations. Applied Mathematics and Computation. 2014.
vol. 244. pp. 158-182.

Ndanusa A., Tafida F.U. Predictor-corrector methods of high order for numerical
integration of initial value problems. International Journal of Scientific and Innovative
Mathematical Research (IJSIMR). 2016. vol. 4. no. 2. pp. 47-55.

Oghonyon J., Okunuga S.A., Lyase S.A. Milne’s implementation on block predictor-
corrector methods. Journal of Applied Sciences. 2016. vol. 16. no. 5. pp. 236-241.
Soderlind G. Multistep Methods. Encyclopedia of Applied and Computational
Mathematics. 2015. 10 p.

Islam M.A. A comparative study on numerical solutions of initial value problems for
ordinary differential equations with Euler and Runge Kutta methods. American Journal
of Computational Mathematics. 2015. vol. 5. no. 3. pp. 393-404.

Fathoni M.F., Wuryandari A.I. Comparison between Euler, Heun, Runge-Kutta and
Adams-Bashforth-Moulton integration methods in the particle dynamic simulation. 2015
4th International Conference on Interactive Digital Media (ICIDM). 2015. pp. 1-7.
Kuchkarov A.S. Solution of simple pursuit-evasion problem when evader moves on a
given curve. International Game Theory Review. 2010. vol. 12. no. 3. pp. 223-238.
Galloway K.S., Justh E.W., Krishnaprasad P.S. Cyclic pursuit in three dimensions. 49th
IEEE Conference on Decision and Control (CDC). 2010. pp. 7141-7146.

Galloway K.S., Justh E.W., Krishnaprasad P.S. Geometry of cyclic pursuit. Proceedings
of the 48th IEEE Conference on Decision and Control (CDC). 2009. pp. 7485-7490.
Mukherjee D., Kumar S. Finite-time heterogeneous cyclic pursuit with application to
target interception. 2018. Available at: https://arxiv.org/pdf/1811.10827.pdf (accessed:
16.03.2019).

Arnold M., Baryshnikov Y., Liberzon D. Cyclic pursuit without coordinates:
convergence to regular polygon formations. 53rd IEEE Conference on Decision and
Control. 2014. pp. 6191-6196.

Marshall J.A., Brouck M.E., Francis B.A. Pursuit formations of unicycles. Automatica.
2006. vol. 42. no. 1. pp. 3-12.

Sharma B., Ramakrishnan S., Kumar M. Cyclic pursuit in a multi-agent robotic system
with double-integrator dynamics under linear interactions. Robotica. 2013. vol. 31. no.
7. pp. 1037-1050.

Arnold M., Zharnitsky V. Cyclic evasion in the three bug problem. The American
Mathematical Monthly. 2015. vol. 122. no. 4. pp. 377-380.

Chapman S.J., Lottes J., Trefethen L.N. Four bugs on a rectangle. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. vol. 467. no.
2127. pp. 881-896.

Ding W., Yan G., Lin Z. Formations on Two-Layer Pursuit Systems. 2009 IEEE
International Conference on Robotics and Automation. 2009. pp. 3496-3501.

Ochkov Valery Fedorovich — Ph.D., Dr.Sci., Professor, Professor, Department of Theoretical
Bases of Heat Engineering, National Research University Moscow Power Engineering Institute.
Research interests: information technologies in applications. The number of publications — 330.
ochkov@twt.mpei.ac.ru; 14, Krasnokazarmennay str., 111250, Moscow, Russian Federation;
office phone: +7(495) 362-71-71.

1428

Tpyae! CIIMNPAH. 2019. Tom 18 Ne 6. ISSN 2078-9181 (neu.)
ISSN 2078-9599 (oHnaiiH) www.proceedings.spiiras.nw.ru



MATHEMATICAL MODELING, NUMERICAL METHODS

Vasileva Inna Evgen'evna — Ph.D., Associate Professor, Department of Mathematics, Military
Educational and Scientific Center of the Air Force "N.E. Zhukovsky and Y.A. Gagarin Air Force
Academy". Research interests: mathematical modelling, methods of mathematics and
informatics in applications. The number of publications — 60. ivasad@mail.ru; 54 a, Old
Bolsheviks str., 394064, Voronezh, Russian Federation; office phone: +7 (473) 244-76-13.

SPIIRAS Proceedings. 2019. Vol. 18 No. 6. ISSN 2078-9181 (print) 1429
ISSN 2078-9599 (online) www.proceedings.spiiras.nw.ru



MATEMATWYECKOE MOAENTMPOBAHWE U NPUKNAOHAA MATEMATUKA

YIK 519.62 DOI 10.15622/sp.2019.18.6.1407-1433

B.®. OukoB, U.E. BACUJIbEBA
NMPUMEHEHHUE PABHOCTHBIX CXEM K PEHIEHUIO 3ATAYHU
O IIOI'OHE

Oukog B.®D., Bacunvesa H.E. IIpuMeHeHHe Pa3HOCTHBIX €XeM K PellIeHHI0 321a4H O NMOroHe.

AnnoTtanmusi. B paGote paccMaTpuBaeTcs OJMH W3 acIeKTOB 3aiadyd O IIPEciie/JOBaHHH:
MOCTPOCHNE TPACKTOPUI [BIDKCHHS IIpeciefoBaTens I Clydas, KOIZa Ipecie/joBaHHe
OCYILECTBIIACTCS [0 METO/y ITOTOHM, TO €CTh KacaTelIbHasl, IPOBEICHHAS K TPACKTOPHH [BHKCHHUS
[pecieaoBaTeas B JII000M MOMEHT BPEMEHH, IPOXOJHUT dYepe3 IONOKECHHE TOUYKH, KOTOpast
acCOLMMPYETCs ¢ TpeciaenyeMbIM. [Ipeuiaraetcst HOBBIN MOAXO/ MTOCTPOCHHS! KPUBBIX ITOTOHH
IIyTeM NCIIONB30BaHUS pa3HOCTHBIX cXeM. JlaHHas MeToJquKa MO3BOJSIET OTKa3aThCsl OT
HEO0OXOAUMOCTH COCTaBIIATh AU pepeHIHaTbHbIe yPaBHEHNUS JULS ONIUCAHHS KPUBBIX IIOTOHH, YTO
OBIBAaCT JOCTATOYHO CIIOXKHO CIENaTh B 00IIeM cirydae. Kpome Toro, npiMeHeHHe pa3sHOCTHBIX
cXeM 00OCHOBAHO B CHTYaIlHH, KOT/Ia HAXOXK/ICHHE aHAJTUTHYECKOTO PEIICHHS y’Ke HMEIONIETOCs
udpepeHInanbHOrO YpaBHEHHS 3aTPYAHUTEIBHO, M JaeT BO3MOXKHOCTH MOJYYHTh KPHBYIO
MOTOHM YHUCIICHHBIM crocoO6oM. IlocTpoeHsl pasindHble MOAM(MHKALNM Pa3sHOCTHBIX CXEM,
SIBISTFOLIIECS] aHAJIOTaMH CXEM Ha OCHOBE METOOB Jilepa, Anamca — Bamdopra nu Muisa.
OcymiecTBiICHA UX MPOrPaMMHAsi PeAIH3alisl C IIOMOIIBI0 MaTeMarndeckoro makera Mathcad.
PaccMoTpeH citydaii paBHOMEpPHOTO MPSIMOJIMHEHHOTO JABMKEHHUS TPECIIEyeMOro, I KOTOPOTo
n3BECTHO Ju(depeHIratbHOe YPaBHEHNE, ONMCHIBAIONIEe TPASKTOPUIO TIPECIIEIOBATENS, H €TI0
aHanuTHYeckoe pernenue. [IpoBeneH CpaBHUTEIBHBIN aHAIH3 MOTYyYEHHBIX Pa3HBIMH METOJAMH
YUCJIEHHBIX PELICHUH M M3BECTHOIO AHAIMTHYECKOro peuleHus. Haiinena mnorpemHocTs
MOJy4YCHHBIX YHCICHHBIX pean3aluil. PacCMOTPEeHO NpHMEHEHHE MOCTPOCHHBIX Pa3sHOCTHBIX
cxeM Juist Gonee 0OOLIEro Ciydas NMPOM3BOJBHOW TPACKTOPHHM Hpeciemyemoro. Takke omucaH
AITOPHTM PACIIPOCTPAHEHHUS IPEUIOKEHHOTO METO/Ia ISl CITydast IUKIIMIECKOTO IIPEeCIeIOBa s
C HECKOJIbKMMH y4aCTHUKAMH B TPEXMEPHOM IPOCTPaHCTBE. B wacTHOCTH, TOCTpOEHa pa3HOCTHAs
cXeMa, aHaJIOTHYHas MeTo Ty Diinepa, JUls TPEXMEPHOT0 aHaJIora «3a/1aun 0 sKyKax». [lomydenHsie
Pe3yIbTaThl MPOJAEMOHCTPUPOBAHBI HA aHUMALMOHHBIX MPUMEPAX Kak Ul JBYMEPHOTO, TaK U
TPEXMEPHOTO CITy4acB.

KioueBblie ciioBa: nuddepeHnnansHble Urpbl, 331a4a 0 MPeciel0BaHiN, METO/I TOTOHH,
KpUBasi MIOTOHH, YHCICHHBIC METO/bI, Pa3HOCTHBIC CXEMbI, MeTon Jiiiepa, «3afada o Tpex
xykax», Mathcad.
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HCCIIeJ0BATENbCKUI YHUBEPCUTET MDBW». Ob6uactb Hay4YHbBIX HHTEPECOB:
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