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Abstract.  This paper presents a stability analysis of swarm robots, a group of multiple
robots. In particular, we focus on robot swarms with heterogeneous abilities, in which each
robot has a different sensing range and physical limitations, including maximum velocity and
acceleration. In addition, each robot has a unique sensing region with a limited angle field of view.
We previously proposed a decentralized navigation method for such heterogeneous swarm robots
consisting of one leader and multiple followers. With the decentralized navigation method, a
single leader can navigate for followers while maintaining connectivity and satisfying the physical
limitations unique to each robot; i.e., each follower has a target robot and follows it without
violating its physical limitations. In this paper, we focus on a stability analysis of such swarm
robots. When the leader moves at a constant velocity, we mathematically prove that the shape and
orientations of all robots eventually converge to the equilibrium state. For this, we must first prove
that the equilibrium state exists. Then, we show the convergence of the state to its equilibrium.
Finally, we carry out experiments and numerical simulations to confirm the stability analysis, i.e.,
the convergence of the swarm robots to the equilibrium states.
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1. Introduction. Swarm robots are a group of multiple robots that aim
to achieve robust, scalable, and flexible coordinated collective behavior [1-6].
For robot swarms, it is important to control the robots in a decentralized manner
by utilizing locally available information for each robot, so that the system
can deal with increases in the number of robots. Swarm robots are expected
to be applicable to various situations, such as cooperative coverage [7, 8],
surveillance [9, 10], target-capturing [11, 12], transport [13, 14], and visually
appealing entertainment [15, 16]. One of the essential functions of such tasks
is to move swarm robots as a flock to the desired location.

Although many studies have investigated the connectivity maintenance
of swarm robots, most have considered homogeneous swarm robots, which
consist of robots with the same ability and performance. On the other hand,
heterogeneous swarms consist of robots with different abilities and performance.
Heterogeneous swarm robots have the ability to handle a wide range of tasks
that homogeneous swarms cannot. This is because they cooperate with
each other while taking advantage of each robot’s characteristics [17]. For
example, several studies [18-20] proposed decentralized control methods for
connectivity maintenance of a group of heterogeneous robots characterized
by a different communication radius. Another study [21] also proposed a
decentralized control method for connectivity maintenance of a robotic swarm
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with heterogeneous abilities, including sensing range, maximum velocity, and
acceleration. However, these studies assumed that all robots could sense all
directions.

In practical situations, many sensors and cameras have angle limita-
tions in addition to distance ones in the sensing range. Thus, to propose a
decentralized control method for connectivity maintenance of a heterogeneous
robotic swarm, in which each robot has both a different sensing range with a
limited field of view and a limited sensing distance, is a practical challenge. A
few studies [22-26] have considered the navigation of robots having cameras
with a limited field of view. In three [22-24], control methods were proposed
for visibility maintenance of homogeneous robots; i.e., each robot had the
same sensing region, and a cooperative visibility maintenance method was
proposed in [25] for multiple robots with different sensing regions but the
same performance.

However, there are no studies about decentralized control methods for
connectivity maintenance of a heterogeneous robotic swarm characterized by
sensing distance, limited field of view, and maximum velocity and acceleration.
We previously proposed a decentralized navigation strategy for swarm robots
with heterogeneous abilities, including the angle of field of view, velocity,
and acceleration [26]. Our method ensured that the leader could guide the
followers. At the same time, they maintained a certain distance from their
target and did not exceed their unique physical limitations such as maximum
velocity and acceleration. However, we did not conduct a stability analysis of
swarm robots.

In this paper, we present the stability analysis of swarm robots with
heterogeneous abilities for velocity and acceleration, and sensing region with
a limited angle of view, and limited sensing distance. We discuss the stability
of the whole swarm shape, and the orientation of each follower robot with
omni-directional mobility; i.e., we discuss the convergence of the shape of the
whole swarm and the orientation of all followers to the equilibrium state. The
stability of the swarm shape predicts the shape of the swarm, which is useful
in controlling formation or avoiding obstacles. On the other hand, the stability
of followers’ orientation greatly influences on their ability to keep the target
robot in their sensing range, which is important in connectivity maintenance
with robots having a limited field of view. Thus, we prove that the swarm
shape and the orientation of all followers converge to an equilibrium state.
Further, we present experimental results and numerical simulation results to
confirm the validity of our stability analysis. The preliminary version of this
paper has been published [27]. This extended version contains a new proof of
the boundedness of perturbation, that is required in the stability of the whole
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swarm. Furthermore, this paper includes new simulation results to investigate
the stability of the swarm robots by our control method for a more significant
number of robots.

The main contributions of this paper are as follows. We deal with a
heterogeneous swarm of robots in which each robot has a different sensing
range, limited field of view, and physical limitations, such as maximum velocity
and acceleration. Such robotic swarms have the potential to deal with a wider
variety of tasks. When a leader robot guiding follower robots moves at a
constant speed in a constant direction, the shape of the whole swarm and all
followers’ orientations converge to an equilibrium point. We mathematically
prove that this convergence is achieved, and carry out an experiment and
numerical simulation to confirm the stability.

This paper is organized as follows. In Section 2, we present the problem
settings. Section 3 introduces our navigation method. Section 4 describes the
mathematical analysis of stability. Section 5 provides the experimental results
and Section 6 the results of the numerical simulations to confirm the stability
analysis. Finally, Section 7 concludes the paper.

2. System Description. Let us consider n + 1 agents in a two-
dimensional (2-D) plane without obstacles. ID 1,2,...,n are assigned to
followers, and n+ 1 to the leader. The position vector and orientation of agent i
in the absolute coordinate system at time ¢ are x;(t) = [x;(t),y;(¢)]” € R? and
ni(t) € R, respectively, and the equations of motion of agent i are described as
follows:

x,'(l) ui(t); (D)
ni(t) = (1), (2)

where u;(t) € R? is translational velocity input, and @;(f) € R is angular
velocity input. Follower i has the following physical limitations:
{Ilui(t)l SUi, @) <Ai o) < Qi [oi(t)] < Bis 3)

u;(t) and w;(¢) are continuous for 7,

where it;(¢) is the semi-derivative of u;(r), whose norm is larger if u;(¢) is left or
right semi-differentiable, and @;(¢) is defined in the same manner. In addition,
Ui, A;, Q;, and B; are the upper limits of the translational velocity, translational
acceleration, angular velocity, and angular acceleration, respectively, and || - ||
denotes the Euclidean norm.
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The sensing region of follower i is defined as follows:
Si(r) = {x(t) € R : ri(r) < pi, [93(1)] < i} @

where x(t) = [x(¢),y(t)]T € R? is a position vector, r;(t) = ||x(t) —x;(t)|| € R
is the distance between x(z) and follower i, p; is the maximum sensing
distance, ¢;(¢) is the bearing angle from follower i to x(¢), which is defined
by ¢;(r) = atan2(y(¢) — yi(t), x(¢) —x;(¢)) — n:(¢), and 2y;(¢) is the angle of
the sensing region as shown in Figure 1 (a). If agent j is in the sensing region
Si(r), follower i can measure the relative distance r;;(¢) = ||x;(¢) — x;(¢)|| and

bearing angle ¢;;(r) = atan2(y;(r) — yi(r), x;(t) —xi(r)) — ni(z).

Fig. 1. Sensing region of follower i: (a) relative position between follower i and its
target; (b) division of sensing region

We assume that the leader knows the specifications of all followers, but
cannot access global real-time information. Meanwhile, followers can obtain
only local information from their own sensing.

3. Previously Proposed Navigation Method. In this section, we
briefly introduce our previously proposed decentralized navigation method [26]
for heterogeneous swarm robots with a limited field of view, which ensures
connectivity maintenance.

The translational velocity input of follower i is set as the following
form:

wi(t) = u;(t)e(t) +uig(t)ep(t), 5)

where the target of follower i is agent j, e;(¢) is a unit vector defined by
eir(t) = (x;(t) —xi(t))/rij, and e;o(t) is a unit normal vector of e;.(t) (see
Figure 2 (a)). We define positive constants p/, p/’, and p/”, which satisfy
0 < p/" < p/' < p! < pi, respectively, and divide the sensing region as shown in
Figure 1 (b). Then, the components of u;(¢) are designed as follows:
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Fig. 2. Relationship between follower i and its target j: (a) local coordinate system; (b)
definition of angle 0

LIf p/" < rij(t) < pl's

uir(t) = di(rij(t) — p;').
=0.

6
uig(t) ©
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2.If p/' < rij(t) < pls
Ujr(t :07
{ -0 -

)
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Ul(t
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3. prl/ < r,-j(t) < pH—

uir(t) = ai(rij(t) — p;),
{M,’g (Z) = O'iuir(l). ®)
4.1f p] + Uzlﬁ’) <rij(t) < pl+ UT(’)
uir(t) = ai(rij(1) — p;), ©)
uig (1) = 0i(U} (1) — wir (1))

Here, a; = Ui/ (pi — p;), a; = Vi(p; — p{"), oi(t) € [-1,1], Vi is a
parameter satisfying V; < U; (the definition is described in [26]), and U/ (1) =
maxo<c<; Uir(T). By this control method, the relations

U U/ (1)

" " n+1 ’

pi <P ——— <rijlt) <pi+—= (10)
a; a;
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always hold [26], and thus it is enough to design the translational velocity input
in the above range. In addition, the parameter o;(¢) affects the shape of the
swarm. The larger |o;(¢)|, the wider the swarm shape becomes. The control
input (6) moves the follower away from its target when they are too close. By
(8) and (9), the follower maintains connectivity with its target while satisfying
translational limitations (first and second limitations in (3)).

On the other hand, angular velocity input @;(z) is given by

;(t) = kigij (). an

Here, the feedback gain k; satisfies

K: 0. —Ki+/K?+4yB;
B cmind VT (12)

)

Vi Yi 2y;

where K; = max{V;/p/”.3a;V;/(2a;p! +V;)}. By the control input (11), the
follower turns to its target while satisfying rotational limitations (third and
fourth limitations in (3)).

When the followers are controlled by (5)—(9) and (11), connectivity
maintenance of the whole swarm is achieved by introducing some proper
velocity constraints for the leader. Details of leader constraints, the definition
of connectivity, the target determination method, and proof of satisfying
physical limitations and connectivity maintenance are described in our previous
paper [26].

Here, note that we did not consider the case of failure of the leader
robot. Robustness against failure is an important issue we leave for future
study.

4. Stability Analysis. We show that the shape of the whole swarm and
orientation of all followers converge to the equilibrium state when the leader
moves at a constant velocity. Since in Sections 4.1 and 4.2 we mainly consider
two agents, i and its target j, we hereafter omit the subscripts i and ij for
parameters and variables. In addition, let us define the following:

U/ U/ U 1
rc::p/+%7 re::P/+;, rg=p"— ZJ; (13)

We assume that agent j moves at constant velocity ||u;|| = U*, and thus
we also assume that o is a constant. Here, we consider only the case of o > 0,
because ¢ > 0 and o < 0 are physically symmetric from the definition of u;g.
By defining 6 as the angle between e, and the moving direction of agent j as
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shown in Figure 2 (b), the kinematic model of this motion is given by

F=U"cos 0 — u,, (14)
. 1

9:;(u,-9—U*sin9), (15)
. 1 .

6 = —(U"sin6 — uig) —k¢ = —0 — k. (16)

First, we define the equilibrium point.

Definition 1. (Equilibrium point): The equilibrium for a parameter U*
is a point (rp, 6, ¢o) that satisfies r'|r:r0 =0, 9|9=00 =0, and ¢|¢=¢0 =0, for
fixed U* € (0,U"].

We prove an equilibrium exists for U* € (0,U’]. On the other hand,
from (14)-(16), r and 0 are independent of ¢. Therefore, we discuss the
convergence of relative position (r, 0) first, and then that of bearing angle ¢ in
the following subsection. We hereafter consider 0 in (—7, 7].

4.1. Equilibrium point of relative position.

Lemma, 1. (Existence of the equilibrium): Let us consider the system
(14) and (15). For U* € (0,U’], one stable equilibrium point exists in an area
p<r<r,and <0< tan—! 6. Moreover, there is one saddle point in an
areary < r < p". The equilibrium point (ro,8y) is continuous for U*, and ro
is monotonically increasing for U* if r > p’, and monotonically decreasing if
r<p’.

Proof. We divide the proof into two steps:

(step 1): We show the existence of the equilibrium.

) If ry < r< p”, from (6), (14), (15), and Definition 1, (ry, 6y) should
satisfy U*cos 0y —d'(ro — p”) = 0 and U*sin6y/ry = 0. Then, we obtain
(r0,60) = (p” —U*/d', 7). We call this point P and define r), := p” —U*/d’.
Point P is obviously continuous and monotonically decreasing for U*.

2) If p” < r < p’, from (7), (14), and (15), (rp,60) should satisfy
U*cosBy =0 and —U*sin6y/ry = 0. However, there is no (ry, 6y) satisfying
these equations simultaneously because of U* > 0.

) Ifp’ <r<r, from (8), (14), and (15), the equilibrium satisfies

17
ca(rop—p')—U*sinfy = 0. 1n

{ U*cosBy—a(ro—p') =0,

Since U* > 0 and ry > p’, sin@y > 0 and cos 6y > 0 must hold. Then

0 < 6y < /2. From (17), we obtain sin 8y — 6 cos 6y = 0 and 6y = tan ' .
Considering 0 < 6y < /2 gives cos 0y = 1/v/1+ 62, substituting this into
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the first equation in (17), we obtain (rg,6) = (p' +U*/(V'1+ 62a),tan"! ©)
for U* € (0,v/1+ 02U’/2). This point is continuously in p’ < r < r., and rg
is monotonically increasing for U*.
4 If ro < r < re, the equilibrium point satisfies
U*cos 6y — —-p) =
{ osbo —alro =) =0, (18)
a(U —a(ro—p')) —U”sin6y =0,

from (9), (14), and (15). Since U* > 0 and ry > p’, sinBy > 0 and cos 6y > 0
must hold, and these lead to 0 < 6y < /2. From (18), we obtain

olU’

T 19)

sin 6By + o cos By =

and a condition of existence of 6y is U* > oU'/V1+ c2. Since
oU'/V/1+ 062 <1+ 062U'/2holds for any ¢ € [0,1] and U’ > 0, the equi-
librium point exists continuously in r. < r < r, for U* € [V 1+ 02U’ /2,U’].
Since 6y (> 0) is monotonically decreasing for U* from (19), and 6y = tan~! &
atU* =1+ 02U’ /2, we have 6y < tan~ ! o. Moreover, rg is monotonically
increasing for U*.

(step 2): Next, we discuss the stability of the equilibrium point.

D Ifry <r<p”, from (14) and (15), Jacobi matrix J at equilibrium
point P is calculated as follows:

i i v 0
_| o 28 | = a
J[ag 86]{0 U] (20)
or 00 ro
The eigenvalue of J is A = —d/, U* /ro, one of which is a negative real

number, and the other a positive real number. Thus, P is a saddle point.
D If p’ < r < r,, from (8) and (9), Jacobi matrix J at equilibrium point
P is as follows:

. —a —U*sin6 21
o le —%*COS 60 ’ ( )
where Jy; = ac/rg when p’ < rg <r., and Jy; = —ac /ro when r. < rg < 7.

The characteristic equation of J is A2 — (trJ)A +detJ = 0, where A is the

Informatics and Automation. 2020. Vol. 19 No. 5. ISSN 2078-9181 (print) 949
ISSN 2078-9599 (online) www.ia.spcras.ru



POBOTOTEXHUKA, ABTOMATU3ALINA N CUCTEMBI YINPABJIEHNA

eigenvalue of J. Since 0 < 6y < tan~ ! o < 7 /4 from lemma 1,

U*
tr/J=—a——cosfy <0 22)
o
U* U'c
detJ = a cos Oy + a sin B
ry ry
aU* .
> (cos@y — osinGy) >0 (23)
o

are obtained. Here, note that detJ = 0 holds if and only if 6 = 1, U* =U"/ V2,
and r. < rg < r.. When detJ # 0, we have ReA < 0 from Hurwitz’s theorem.
Moreover, since

(te])? —4detJ

*2 *
U
—d? +—5-cos 6y + 4 (COS 6y — osin 6()) >0 24
s ro

holds, A isreal and A < 0.

Thus, the equilibrium is stable.

Next, let us consider the case of detJ = 0. In this case, the equilibrium
is (rp, 60) = (r¢,m/4), and one of the eigenvectors corresponding to A = 0 is
[U*/(v/2a),—1]". Since detJ = 0 does not hold in the direction of r < r., it is
enough to consider the direction of the vector [Ar,A8]" = e[U*/(v/2a),—1]"
for € > 0. Using a Taylor series in (14) and (15) around the equilibrium
(r0,60), and substituting [Ar,A8]" = e[U*/(v/2a),—1]" into them gives

U*cos 6

#(ro + Ar, 80+ A8) = —aAr — U* sin §pAQ — (AO) +...
Ea
=———=Ar 25
3 (25)
. oa U*cos By oa 5
0(ro+Ar,0)+A8) = ——Ar— ————A0 + —-(Ar)
ro 1o ro
U* sin 6 U*cos B
+ 2o (A0 + 2 ArAG + ...
2rg 5
U*e
=———A6. 26
Vo (26)
These show the equilibrium attracts points in the direction of
e[U*/(v/2a),—1]7, and thus the equilibrium point (ry, 6p) is stable. O
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Now, we discuss the convergence to the equilibrium point. First, we
show the convergence of (r, 8), where r < p’.

Lemma, 2. (Convergence where r < p'): Let us consider the area
r<p'. If 0 ==, (r,0) converges to the saddle point P. If 6 # 7, (r,0) moves
to the area r > p’ through —m/2 < 0 < w/2.

Proof. First, we consider the case in which the state converges to the
saddle point P. Suppose 0(¢') = & at the initial time ¢'. If p” < r(¢') < p’
and 6(¢') = &, we obtain 7 = —U* and 6(¢) = & from (7), (14), and (15).
This means that r monotonically decreases until » < p”, while 0(r)=mis
maintained. If r becomes r < p”, we obtain = —U* —d'(r—p”)and 6(r) ==
from (6). Solving this equation under the initial condition r(fy) = p” gives
r(t)=p" —U*(1—exp(—d'(t—19)))/a’ — rpast — oo. Thus, (r, 0) converges
to the saddle point P. The same discussion also holds if r; < r(t') < p”.

Next, we consider the case in which 6 # 7. Figure 3 shows the vector
field where ry; < r < p’. Here, note that r > r, always holds as shown in [26].
The curved line in the area r, < r < p” shows 6 = cos~{d'(r— rp)/U" =1},
and 7 = 0 holds on this line. Further, point (r,7) and (r, —7x) are the same
point in the 2-D environment. Since the vector field is symmetrical concerning
0 = 0, we hereafter discuss the case where 6 > 0.

Let us divide the area r € [ry,p’] and 8 € [0, 7) into the following four
regions, as shown in Figure 3. The arrows in Figure 3 show the direction of
velocity vector; that is, the possible region to which the state moves.

3 ]
\4

4

o

e 4
-

4
A

¥
I
¥ ¥
N
\{

N
o
corpoccolloccoaftomas

|
ﬁ N
\4
Ok
4
A

- <

<
n I

P p
Fig. 3. Velocity field for r < p’

1) If (,0) is in the region F;, 6 = m will never hold, and the state
moves to F, or F3.

2)If (r,0) is in the region F,, 6 < 0 will never hold, and the state moves
to the area r > p’.

3) If (r,0) is in the region F3, 6 = m will never hold, and the state
moves to Fj.
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4)If (,0) is in the region Fy, 8 = 7 and 6 < 0 will never hold, and the
state moves to F3.

From these we find that (r, 8) always moves to the area r > p’ via the
region F,. Here, note that the same result is achieved in the case of 6 > 0
because of the symmetry of the vector field concerning to 8 = 0. d

Note also that the convergence to the saddle point occurs only in limited
situations, such as when the leader moves straight toward the follower whose
target is the leader.

Next, we show the convergence of (r,0) where r > p’. If the state
starting from r > p’ becomes (r, 0) = (p’, 7), the state converges to the saddle
point P from Lemma 2. Thus, we hereafter discuss the other case. First, we
introduce the following theorems used in the proof.

Theorem, 1. (Poincaré-Bendixson Theorem [28]): Let f € R? be a
C! function R* — R2. If the equilibrium points of the differential equation
x = f(x) are isolated, and the solution is bounded fort > 0, then either

] a)( (0)) is an equilibrium point, or

®(x(0)) is a periodic orbit, or

o(y) and w(y) are equilibrium points for each’y € 0(x(0)),
where Oc( (0)) and w(x(0)) are an a-limit set and @-limit set, respectively, of
x = f(x) with the initial condition x(0).

Since our system has non-C! input u;g, we divide the whole region into
the following four subregions to apply theorem 1 to our problem:

D {(r,@) : p'<r<p'+U—cos9, 7t<9<7t}7 27
a 2 2

{(r,e) : p’<r<min{re,p +—s1n9}, 0<O<m

D, = (0<o<1), @8
{(n6) : p'<r<r,0<6<m} (c=0),
{(r,9) : max{p/,re—g—;sine}<r<re70<6<7r

D; = 0<o<1), @9
{(r0) : p'<r<r,0<0<r} (c=0),

D4—{( 0) :p' <r<r, <0< 717}\ (D1 UD,UD3). 30)

Here, note that # > 0 on D; from (14), and 6 < 0 on D, and D3
from (15).

Since the characteristics of the velocity field are changed according to
(ro, 60) and o, we consider the convergence in the following four cases: case 1
(0=0); case 2 (6 #0 and U* < U’/2); case 3 (0 #0 and U'/2 < U* <
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V1+062U'/2); and case 4 (0 # 0 and vV 1+ 62U’ /2 < U* < U'). Figure 4
shows the subregions Dy, D, D3, and D for the corresponding cases, and the
arrows show the direction of the velocity field on the boundaries of the regions.
In case 1, we define the following region D as shown in Figure 5 (a):

D:{(r,e) o <r<n, \e|<§}. 31)

For case 2, any r on D satisfies r < r.. A region D for case 2 is defined
as follows (see Figure 5 (b)):

_ -~ indp e U z
D—{(F,G) ip <r<m1n{p +Ga’ rc}, 6] < 2}. (32)

For case 3, there exists an r satisfying r > r. on D, and ro < r.. A
region D in this case is defined as shown in Figure 5 (c). In case 4, there exists
an r satisfying r > r. on Dy, and ry > r.. A region D in this case is defined
as shown in Figure 5 (d). Now, we show that the trajectory is included in the
region D after a certain time.

@" | . ()RR
- D,UD; 6<0 - 6 <0 D3
A z D, v
| o I\ <0
6 o “« g0 )
4 4> D,
2 2 <0
< <+ .
— _,T ’ =0
P Te P To e Te
r
s T = =
(©) - —* (d) .
x TD,uD; 6<0 « T Dyub; é6<o0
2
96) T - 8o
. -«
6 Dy 7>07 ) 60
-z F<0 %
1 >0
- 7 -1 7
p ToTe Te P T To o
T T

Fig. 4. Velocity fields: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4

Lemma, 3. For any initial state (r(0),0(0)) € (p’,r.] X (—7, ), there
exists T > 0 such that (r(t),0(t)) € D foranyt > 7.

Proof. For case 1, we divide the whole region into the subregions as
shown in Figure 4 (a). Because of the characteristics of the velocity field in
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Fig. 5. Divided regions: (a) case 1; (b) case 2; (c) case 3; (d) case 4

case 1, once the trajectory goes inside region D, it stays in D. Thus, we discuss
the cases where the initial state is not on D:

1) If (,0) is in region E defined in Figure 5 (a); the state goes into D
or E3 defined in Figure 5 (a).

2)If (r, 0) is in the region E, defined in Figure 5 (a); the state goes into
D or Ej.

3) If (r,0) is in the region Ej3; the state goes into D by Lemma 2.

Thus, in case 1, we found that the state goes into D from any initial
state. In other cases, we can show that the state goes into D in the same manner.
Therefore, the state goes into D from any initial state in all cases. U

For case 1, 7 and @ in D are C' functions of r and 6 from (8) and (9).
The trajectory is bounded after the state enters D from Lemma 3. Further, the
equilibrium is isolated from Lemma 1. Thus, the trajectory behavior for t — oo
is limited to three cases in Theorem 1.

Since . .

%+g—gz—a—%cos9<0 (33)
on D from (8), (9), (14), and (15), there is no periodic orbit by Bendixson’s
criterion [29], and thus the second case in Theorem 1 is negated. In addition,
since there is just one equilibrium on D and there is no trajectory that starts
from the equilibrium from Lemma 1, the third case in Theorem 1 is also
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negated. Thus, the trajectory that starts from any point on D converges to the
equilibrium. The trajectory after a certain time is included in D from Lemma 3,
and thus the trajectory from any initial state converges to the equilibrium.
For cases 2, 3, and 4, we can show that the trajectory from any initial state
converges to the equilibrium in the same manner as in case 1.

4.2. Equilibrium point of bearing angle.

Lemma, 4. (Convergence of bearing angle): Consider the system (16).
For any initial condition ¢(t') € [—y,y], ¢(t) — 0 ast — oo.

Proof. From section 4.1,  — 0 as t — oo. If 6(t) = 0, solving (16)
gives ¢ (¢) = exp(—k(r —1'))¢(¢'). For arbitrary initial value ¢(1') € [y, y],
¢ () converges to 0 as t — oo. Moreover, ¢(f) € [y, y] always holds as
shown in [26]. Therefore, from the converging-input and converging-state
theorem [30], ¢ (f) — 0 as t — oo. O

The equilibrium state of bearing angle ¢ = 0 means that the agent is
always aiming at its target. Since the relative positions of follower i and its
target j converges, the orientation 7 of follower i converges to the equilibrium
state.

4.3. Stability of the whole swarm. Sections 4.1 and 4.2 show that
the relative position, bearing angle, and orientation of agent i and its target j
converge to the equilibrium if the target j moves at a constant velocity. When
the leader moves at a constant velocity, the velocity of follower j, whose target
is the leader, converges to that of the leader. Now, let agent k be an agent
whose target is agent j, and define ry, 6, and «; as shown in Figure 6.

Uj
RN >
Moving direction
of leader

Fig. 6. Definition of 7y, 6, and a;;

In this subsection, we hereafter omit the subscript k. The kinematic
model of this motion is written as follows:

i =Ujcos(0 + ;) — u, (34)

. 1 .

0= ;{ukg—Ujsm(B—i—Ocj)}, (35)
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where Uj is the velocity of agent j, 6 is the angle between e, and the moving
direction of the leader, and ¢; is the angle between U; and the moving direction
of the leader.

Here, note that kinematic model (34) and (35) become (14) and (15)
when U; = U*. To show the stability of the system (34) and (35), we need
to show the boundedness of r and 6. From [26], r is bounded. To show the
boundedness of 8, we rewrite (34) and (35) as follows:

P =U"cos 0 —uy, + Uy, (36)

. 1
9:;(”k9_U*Sin9+ﬂ6)a (37

where u, = Ujcos(6+ ;) —U*cos 6, and g = —U;sin(0 + o;) + U*sin 6.

Here, 11, and pg are bounded because U; and U™ are bounded. Moreover,
since U; — U* and a; — 0 as t — oo from Section 4.1, u, — 0 and ug — 0
as t — co. That is, for any € > 0, there exists 7 > 0 such that |u,| < € and
|tg| < € hold for r > T. This means that we can consider arbitrarily small y,
and g (i.e., arbitrarily small |[U; — U*| and |;|) after a sufficient period of
time.

Here, note that 6 is bounded [26], and thus 6 is bounded within a
sufficiently large finite time. Therefore, we investigate the boundedness of 6
after a sufficient period of time.

To show the boundedness of 6 after a large enough lapse of time — that
is, (34) and (35) with arbitrarily small [U; — U*| and |oj| — we use the same
procedures described in Section 4.1. Now, we divide the whole region into the
following four subregions:

T

U.
Dl—{(r,e) c0<r<p +—Lcos(0+0q), 3
a

<9+aj<72t}. (38)

{(r,e) : O<r<min{re,p’+g—;sin(9+ocj)}, O<9+0cj<7t}

D, = (0<o<1),
{(rn6) : 0<r<r, 0<6+a;<m} (6=0),
(39)
{(}’,9) : max{O,refg—;sin(GJraj)} <r<r, 0<0+0;< 717}
D3 = (0<o <),
{(rn0) : 0<r<r, 0<0+a;<m} (c=0).
(40)
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Here, note that # > 0 on D, from (34), and 6 < 0 on D, and D3 from
(35), and the remaining part, Dy, is (30).

In addition, we consider the following four cases; case 1 (o = 0); case 2
(0 #£0and U* <U’'/2);case 3 (6 #0and U’ /2 <U* < V1+062U'/2); and
case 4 (0 #£0and vV 1+ 02U’ /2 <U* < U’). Figure 7 (a), (b), (c), and (d)
show the properties of the velocity fields for cases 1, 2, 3, and 4, respectively.

a b
@ . 5 ®)
T - T—a
< DyuD; 6<0 9 <0 D,
N K Dy 51 é<o
6 0 9 o >
- - —a ==,
>0 D,
—Ia F<0 e F<0
. hil D1 >0 ’ - 6=>0
0 o ;e Te ™ o o .
) . @ .
e - - e -« -«
T a - .
T D,UD; 6<0 - D,uD; 6<0
6 0 § - 6 o
9 0 2
x Dyy<o - p, 7 <0
B ; -5 s
- 6=0 4 6=0
o ! . /
0 4 Te Te 0 o Te Te
r r

Fig. 7. Properties of the velocity fields

Lemma, 5. (Boundedness of perturbation): In all cases, 0 of the
kinematic model (34) and (35) with arbitrarily small |U; —U*| and |o| is
bounded.

Proof. For cases 1, 3, and 4, we found that D, N D3 # 0. Further, from
the characteristics of the velocity fields (Fig. 7 (a), (c), and (d)), the state
cannot move by stepping over D, U D3. Thus, 6 is bounded. On the other
hand, in case 2, we can show that the state goes into D and it stays in D forever,
as shown in the proof of Lemma 3, where

. U*
D= {(r,e) s p' < r<m1n{re,p/+6a},
T T
—E—ocj<9<§—aj}. “41)
Thus, 6 is bounded for case 2. Il
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X (m)

Fig. 8. Experimental environment and trajectories of agents: (a)—(c) Screenshots of
experiment; (d) trajectories of all agents

To summarize, the kinematic model (36) and (37) has the following
properties: u, — 0 and g — 0 as t — oo; (36) and (37) become (14) and (15)
when u, =0 and g = 0; and r and 8 are bounded.

Applying the converging-input and converging-state theorem [30], we
found that the state (r,0) of agent k converges to the equilibrium, and its
translational velocity converges to that of the leader. Then, since 6 —0,
bearing angle ¢ of agent k also converges to the equilibrium point from the
Section 4.2. This procedure can be applied to any agent [, whose target is the
leader, or agent j, or agent k. Therefore, all agents eventually converge to the
equilibrium, and the velocity consensus is achieved. Finally, this section is
summarized in the following theorem.

Theorem, 2. (Stability of the whole swarm): If the leader moves at a
constant velocity, the control inputs (5)—(9) and (11) realize the following: the
shape of the swarm and orientation of all followers converge to the equilibrium
state, and the velocity consensus is achieved for all agents.

5. Experimental Results. We carried out an experiment to confirm the
stability of the swarm robots by our control method. We used 7 omnidirectional
robots controlled by velocity commands via Bluetooth. Here, the translational
velocity and angular velocity of robots could be controlled independently. A
motion-capture system measured the positions and orientations of robots. The
system was centrally controlled, but the controller for each agent used only local
information. Therefore, the controller in this experiment was decentralized.
The sampling time was 0.1 (s), and the specifications of follower i are listed in
Table 1.
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Table 1. Specifications of Followers in the Experiment

[ Follower i H 1 [ 2 [ 3 [ 4 [ 5 [ 6 ]
pi 1.00 0.90 1.00 0.85 0.95 0.80
p! 0.60 0.55 0.60 0.55 0.55 0.50
p/ 0.40 0.35 0.40 0.40 0.35 0.30
W; /4 /6 /5 /4 /5 /5
A; 0.5 0.5 0.5 0.5 0.5 0.5
Q; 2r/5 /3 2w /5 2r/5 3n/5 2r/5
B; /2 /2 /2 /2 /2 /2
o; 1.0 0.0 —-1.0 1.0 0.0 -1.0
Vi 0.19 0.16 0.18 0.19 0.17 0.15
ki 1.00 1.22 1.12 1.00 1.12 1.12

Table 2. Specifications of Followers in the Numerical Simulation.

i [t 12 [3 [4 [5 [6 [7 [8 [9 [10 |
pi 4.1 4.0 4.0 4.8 5.3 4.2 5.9 5.0 6.7 4.0
p! 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
pY 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Wi n/6 | n/6 | /6 | /6 | ®n/6 | /6 | /6 | ®w/6 | ®W/6 | W/6
A; 0.3 0.4 0.6 0.5 0.5 0.9 0.9 0.7 0.4 0.6
Q; 3n/4 | 2n/3 | ©n/2 | 2m/3 | 2n/3 | w/2 | 2m/3 | 3w/4 | 2m/3 | 27m/3
B; ki3 3n/4 | m/2 | 2n/3 | 3m/4 | T /2 |7 3w/4 | 3m/4
o; 0.0 0.0 1.0 1.0 1.0 -10| -1.0| -1.0 | 0.0 1.0
Vi 0.30 | 034 | 036 | 0.36 | 037 | 047 | 041 043 | 034 | 0.39
ki 1.37 1.50 1.22 1.41 1.50 1.73 1.22 1.73 1.50 1.50

The leader moved in a straight line at a moving speed first of 0.15 (m/s),
then decelerating to 0.045 (m/s) at ¢ = 5 (s). This motion makes U’ larger for
each robot, which resulted in the wider shape of the swarm. Here, note that the
purpose of this experiment is not to show that the proposed controller is also
applicable when the speed of the leader changes. Figure 8 contains screenshots
and shows the trajectories of all agents. In Figure 8 (a), the red arrow shows the
leader’s moving direction, and the white arrows indicate connectivity, pointing
from a follower to a target. Here, the symbol “x’ shows the initial position
of the corresponding robot, and F1, - - -, F6 are the followers, while L7 is the
leader. On the other hand, Figure 9 (a), (b), and (c) show the error between
each state and its equilibrium point r — ry, 0 — 6y, and ¢ — ¢, respectively.
From these results, the errors converge to zero, and thus the convergence of
the state (r,0,¢) is confirmed.

6. Simulation Results. We carried out a numerical simulation to
investigate the stability of the swarm robots by our control method for a
larger number of robots. In the simulation, we used one leader and 10
followers, and the specifications of follower i are listed in Table 2. In the
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Fig. 9. Experimental results: (a) r —ry. (b) 6 — 6y. () ¢ — ¢p

numerical simulation, the leader moved in a straight line, and the leader’s
initial moving speed was 0.30 (m/s), followed by deceleration to 0.15 (m/s) at
t = 25 (s), as in the case of the experiment.

Figure 10 shows the simulation results. Figure 10 (a) shows the
trajectories of all agents. In this figure, all agents were near the origin at the
initial time, then moved in the positive X-axis direction, where F1, ---, F10
are the followers, while L.11 is the leader. On the other hand, Figure 10 (b),
(c), and (d) show the error between each state and its equilibrium point » — rg,
0 — 6y, and ¢ — ¢, respectively. From these results, we found that the errors
converge to zero, and thus the convergence of the state (r, 0, ¢) is confirmed
by the numerical simulation.

7. Conclusions. This paper presented a stability analysis of a decen-
tralized navigation method for heterogeneous swarm robots with a limited
field of view. Each robot had unique abilities in terms of velocity, acceleration,
and sensing region. We proved that the swarm shape and orientation of
the followers converged to the equilibrium state when the leader moved at
a constant velocity. We also confirmed the stability of an experiment and
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numerical simulation. Future work will be focused on collision avoidance
with robots or environmental obstacles by designing the ey component of
the control input. We will also investigate line-of-sight (LOS) maintenance
between robots, which is important if the robot is equipped with a distance or
visual sensor.
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T. 9H10, P. MASIA, ®. MALIYHO
AHAJIN3 YCTONYUBOCTHU POA TETEPOI'EHHBIX POBOTOB C
OI'PAHUYEHHBIM I1OJIEM 3PEHU A

3noo T., Masoa P, Mayyno @. AHaIH3 yCTOHYMBOCTH POSI reTePOreHHLIX POOOTOB ¢
OorpaHNYeHHbIM I0JIeM 3peHusl.

AnHoramms.  ITlpeicraBieH aHalIM3 YCTOWYMBOCTH POsi TE€TEPOTEHHBIX POOOTOB, TIne
KaX/Iblii pOOOT UMeeT pasHblil ypOBEHb UyBCTBUTEIBHOCTH CEHCOPOB M Pa3IMiHble (U3HMUYECKHe
OrpaHMYEHH s, BKJIIOYash MAKCUMAJIbHYI0O CKOPOCTb JBWXEHUs U ycKopeHus. Kaxiplii podoT
obJlalaeT YHUKQJIBHOH 00JIACTBIO BOCIIPUSITHSI B YCJIOBUSIX OIPaHMYCHHOTO MOJIS 3pEHUsI.
M3HavanpHO mpeaJiaraiicsi JeleHTPAIN30BaHHbII METOJ, HABUI'ALMK /ISl POl T€TEePOreHHbIX
po6OTOB, COCTOSIIIEro W3 BeAylero poOOTa M MHOTOYMCIEHHBIX BelOMBIX podortoB. C
JEUECHTPAIM30BaHHBIM METOJOM HABUTALMKM BEAYIIUH POOOT MOXET HAMpPABIATH BEIOMBbIX,
MOAJICPKMBast COCAMHEHUE U YUUThIBasl (PU3MIECKUE OrPaHUUYCHUS, YHUKAJIBHbIE IS KQXKI0TO
poborta. [laHHOE HCCIIeI0BaHUE COCPEOTOYEHO Ha aHAIN3e YCTOWYMBOCTH PABHOBECHS TAKOTO
post preTeporeHHsix po6oToB. C MaTeMaTHYecKOil TOUKU 3pEeHHsl TOKa3bIBAETCs, YTO KOrAa
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