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Abstract. Recently, there has been a rising interest in small satellites such as CubeSats in
the aerospace community due to their small size and cost-effective operation. It is challenging
to ensure precision performance for satellites with minimum cost and energy consumption. To
support maneuverability, the CubeSat is equipped with a propellant tank, in which the fuel must
be maintained in the appropriate temperature range. Simultaneously, the energy production should
be maximized, such that the other components of the satellite are not overheated. To meet the
technological requirements, we propose a multicriteria optimal control design using a nonlinear
dynamical thermal model of the CubeSat system. First, a PID control scheme with an anti-windup
compensation is employed to evaluate the minimum heat flux necessary to keep the propellant
tank at a given reference temperature. Secondly, a linearization-based controller is designed for
temperature control. Thirdly, the optimization of the solar cell area and constrained temperature
control is solved as an integrated nonlinear model predictive control problem using the quasi-
linear parameter varying form of the state equations. Several simulation scenarios for different
power limits and solar cell coverage cases are shown to illustrate the trade-offs in control design
and to show the applicability of the approach.

Keywords: Aerospace Systems, CubeSat, Nonlinear MPC, Actuator Power, Nonlinear
Dynamical Model, Feedback Linearization.

1. Introduction. The increase of interest toward cube-shaped
miniaturized satellites (CubeSats) has grown rapidly in the space community
including space agencies, industry, and academic research due to the low cost
of a CubeSat mission. The mass of a CubeSat is approximately 1 kilogram
with all dimensions being 10 centimeters long as specified by California State
Polytechnic, and the Space Systems Design Lab (SSDL) at the Georgia Institute
of Technology as the innovators of this satellite technology [1]. The CubeSat
electronics equipment is energized by a small battery, which recharges via
solar panels mounted on the satellite surface. However, the power generated by
solar panels is always a significant concern because of the small surface of
CubeSats.

So far, a limited number of CubeSats have used thrust systems for orbital
maneuvers such as drags recovery or flight formation. As the CubeSat mission
capabilities are of great interest, many propulsion systems such as electric,
chemical or cold gas-based propulsion systems, and solar sails have been
introduced for CubeSats maneuvers [2,3]. To investigate the thermal conditions
of installing a fuel tank inside a CubeSat, a thermal dynamical model was
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derived and simulated in [4], where the thermal fluctuation effect caused by the
sunlight during the orbital motion was modeled as a time-varying disturbance
signal. Due to the low power consumption requirements, the thermal control
problem of a CubeSat is challenging during the satellite orbits. Therefore, a
passive control system was proposed also in [4] to maintain the temperature of
the fuel tank close to the desired thermal limits.

In order to obtain an optimal tracking performance of the propellant
tank temperature, an active control system has to be applied. A simple PID
controller was proposed in [5] to eliminate the thermal fluctuation of the
propellant tank temperature within the CubeSat orbit. In [6], a nonlinear
feedback law based on input-output linearization was described to maintain
the fuel tank on the prescribed temperature.

In the last decades, the Linear Parameter Varying (LPV) paradigm
has drawn much attention and become a standard formalism in systems
and control theory. An LPV framework treats linear dynamical systems
that have state-space representations depending on time-varying parameters,
thus it can be considered as the natural extension of the linear time-
invariant (LTI) framework [9, 10]. Furthermore, the LPV framework is a
popular approach to rewrite nonlinear systems by involving nonlinearities in
the scheduling parameters, and in this way, it is possible to extend some of
the linear control techniques for nonlinear systems [11]. The combination
of LPV control and feedback linearization has been implemented in [12]
to provide a general control method of input-affine nonlinear systems.
Nevertheless, instead of linearizing the nonlinear systems, set-valued methods
with quasi-Linear Parameter Varying (quasi-LPV) representations have been
developed for nonlinear systems [13]. The LPV models can be employed to
describe nonlinear models derived by nonlinear differential equations that are
concerned with physical relations. Often a nonlinear state-space model can
be embedded into the so-called quasi-LPV model class [14–16], in which the
time-varying parameters are typically disturbance signals or functions of the
state, input, and/or output. In [17], three different quasi-LPVmodel formulation
techniques are discussed, namely, state transformation, function substitution,
and an LPV extension for the well-known Jacobian (linear approximation)
method.

Due to the rapid growth of computational power in the last few decades,
a new control methodology emerged in the systems and control community
based on prediction and optimization. These concepts are collectively called as
the model predictive control (MPC) framework, which spans a fairly wide class
of system models. Many results are available for general nonlinear systems,
for example, in [16, 17]. Other MPC techniques are formulated specifically
for nonlinear models in a quasi-LPV form, see e.g. [18–22]. Several useful
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numerical techniques of [16, 17, 23–26] were implemented in MATLAB’s
Model Predictive Control Toolbox [27].

These new theoretical/computational results provide new possibilities to
manufacture and operateCubeSats tomeet the technological thermal constraints.
It is challenging that the thermal controller design has multiple objectives.
Firstly, we have to keep propellant tank on approximately room temperature
withminimal or no fluctuation. The temperature of the CubeSat’s surface should
not exceed a given upper bound. Secondly, a control signal has to be computed
which can be realized with the on-board heater, namely, it must be non-negative
and not exceed an upper power limit. On the other hand, we are interested in
maximizing the area of the solar panel to produce more electrical energy to
operate the on-board computer or other (e.g., telecommunication) devices or
sensors. It is worth mentioning that the solar panel significantly influences the
average/baseline temperature level of each component of the CubeSat object.
Therefore, the proportion (λ) of the solar panel area (AP = λAF) and the total
face area (AF) are distinguished design parameters in the manufacturing of
the CubeSat.

In an earlier phase of this research [28], we fixed λ to a low value
(λ = 0.3) and designed a PID control loop with different actuator power limits.
Furthermore, a linearization method was employed to regulate temperature
levels. In this paper, we extend the results of [28], with the integrated design of
an optimal solar panel area and an appropriate control signal, which together
provide that the component temperatures fulfill the prescribed technological
constraints.

The paper is organized as follows: A brief mathematical model
description of the CubeSat’s dynamical thermal behavior and its possible
quasi-LPV model formulation is presented in Section 2. Preliminary research
results of [28] are summarized for comparison in Sections 3 and 4. Finally, an
integrated model predictive control design approach is presented in Section 5.

2. CubeSat surface and propellant tank thermal mathematical
model. The thermal mathematical model of the CubeSat surface and its
propellant tank has been developed assuming that the CubeSat has a circular
orbital motion of 1.5 hours (P = 5400 s orbital period), which is divided into
three parts (intervals). In the first part P1 of its orbital period, the CubeSat
spends a quartile of its orbital time in the presence of sunlight (first luminous
part). In the second part P2, the CubeSat spends half of its orbital time in the
shadow of the Earth (eclipse part). In the third part P3, the satellite orbits again
in the sight of the Sun (second luminous part).

In [4, 5], a mathematical model is given for the thermal behaviour of
the satellite’s surface and tank (separately for each orbital interval P1, P2 and
P3) in the form of nonlinear switched ordinary differential equations . In this
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paper, we consider the governing equations of the CubeSat’s thermal dynamics
in an equivalent “unified” state-space model formulation as follows:

kAl−sc(λ) Ṫ1 = Q̇+ Q̇F1
+Gs as,Al−sc(λ)AF ρ1(t)−

− εIR,Al−sc(λ)σ AF T
4
1 ,

kAl−sc(λ) Ṫ2 = Q̇+ Q̇F2
+Gs as,Al−sc(λ)AF ρ2(t)−

− εIR,Al−sc(λ)σ AF T
4
2 ,

kAl Ṫ3 = Q̇+ Q̇F3
+ pAf Gs as,AlAF %1(t)−

− εIR,Al σ AF T
4
3 + aIR,Al σ AF T

4
E,

kAl−sc(λ) Ṫ4 = Q̇+ Q̇F4
+Gs as,Al−sc(λ)AF ρ4(t)−

− εIR,Al−sc(λ)σ AF T
4
4 ,

kAl Ṫ5 = Q̇+ Q̇F5
− εIR,Al σ AF T

4
5 ,

kAl Ṫ6 = Q̇+ Q̇F6 − εIR,Al σ AF T
4
6 ,

kT ṪT = k0(T 4
1 + T 4

2 + T 4
3 + T 4

4 + T 4
5 + T 4

6 − 6T 4
T) + Q̇c,

(1)

where

kAl = mAl cp,Al, kT = ms cp,s +mN cp,N , k0 = θFt εIR,Al σ AF ,

kAl−sc(λ) = mAl cp,Al + λmsc cp,sc ,

as,Al−sc(λ) = (1− λ) as,Al + λas,sc ,

εIR,Al−sc(λ) = (1− λ) εIR,Al + λ εIR,sc

(2)

are auxiliary parameters for more convenient notation. The physical parameters
and the time-dependent variables of themodel are as follows:TE = 255 K is the
Earth’s reference temperature, TT [K] is the tank’s temperature, aIR,Al = 0.09
is the Aluminum infrared absorptivity, as,Al = 0.09 is the Aluminum solar
absorptivity, as,sc = 0.92 is the solar cell solar absorptivity, as,Al−sc(λ)
is the Aluminum and solar cell average absorptivity, εIR,Al = 0.92 is the
Aluminum infrared emissivity, εIR,sc = 0.85 is the solar cell infrared emissivity,
εIR,Al−sc(λ) is the Aluminum and solar cell average infrared emissivity, Q̇c [W]

is the heat flux applied to the tank generated by the heater, Q̇Fi
[W] is the

radiated heat transfer between the ith face and the tank, Q̇ = 2 W is the power
dissipated heat rate, cp,Al = 980 J/(kgK) is the specific heat of Aluminum,
cp,s = 504 J/(kgK) is the stainless steel specific heat, cp,sc = 1600 J/(kgK)
is the solar cell specific heat, cp,N = 743 J/(kgK) is the Nitrogen specific
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heat,mAl = 0.04 kg is the mass of an Aluminum face,mN = 0.0074 kg is the
mass of nitrogen in the tank,ms = 0.0926 kg is the mass of the tank (stainless
steel),msat ' 1 kg is the total mass of CubeSat,msc = 0.0085 kg is the mass
of solar panel covering a whole face, Gs = 1367W/m2 is the solar constant,
σ = 5.669 · 10−8 WK4/m2 is the Stefan-Boltzmann constant, AF = 0.01 m2

is the area of each face, pAf = 0.28 is the albedo factor, θFt = 1
(1+H)2 is the

view factor between a face and the tank, where H = h/r, where h = 0.025m
is the distance of the tank’s surface to the face, and r = 0.025 m is the tank
radius.

The radiated heat transfer Q̇Fi
between the ith face and the tank is

defined as follows:

Q̇Fi
= θFt εIR,Al σ AF (T 4

T − T 4
i ), i = 1, . . . , 6. (3)

The tank is equipped with a supplementary heat source (actuator
or heater), which generates the control signal u = Q̇c in the form of a
(non-negative) heat flux Q̇c [9].

Due to sunlight and shadowing effects of the Earth, temperatures of the
CubeSat’s surface and its fuel tank have typically large fluctuations through
the orbit. Functions %1, %2, %4 : R+ → [−1, 1] in (1) are meant to describe
this periodic temperature fluctuation phenomenon in the dynamics. These
time-varying terms in the dynamics are considered as known parameter signals
given as follows:

%1(t) =

cos
(
2πt
P

)
, if

2πt

P
∈
[
−π2 ,

π
2

]
+ 2kπ, k ∈ Z,

0, otherwise,
(4a)

%2(t) =

− sin
(
2πt
P

)
, if

2πt

P
∈
[
−π2 , 0

]
+ 2kπ, k ∈ Z,

0, otherwise,
(4b)

%4(t) =

sin
(
2πt
P

)
, if

2πt

P
∈
[
0, π2

]
+ 2kπ, k ∈ Z,

0, otherwise.
(4c)

Function %1 has nonzero values only in intervals P1 and P3, whereas,
functions %2 and %4 are nonzero in intervals P3 and P1, respectively. The graph
of functions %1, %2 and %4 are illustrated in Figure 1.

2.1. Quasi-LPV formulation of the thermal model. Beginning from
the nonlinear input-affine dynamicalmodel (1), with seven differential equations
formulated with respect to physical laws, an equivalent quasi-LPV model
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Fig. 1. Graph of functions ρ1, ρ2 and ρ4, which describe the temperature fluctuations
of the CubeSat through its the orbital motion

representation can be formulated in the following form:

Ik(λ) ẋ = A(x)x+Bu+ E(x, ρ)λ+ F (ρ) , (5)

where the state vector x =
(
T1 T2 T3 T4 T5 T6 TT

)> ∈ Rn (n =
7) comprise the six temperature values (T1, . . . , T6) of the six faces of CubeSat,
respectively, and the fuel tank’s temperature TT. Vector ρ contains the three
time-varying parameter signals ρ =

(
ρ1 ρ2 ρ4

)> ∈ Rp (p = 3), which
model the periodic temperature fluctuation effect caused by the sunlight.

Coefficient matrices Ik(λ),A(x),B,E(x, ρ) and F (ρ) in (5) are given
as follows:

Ik(λ) = diag(kAl−sc(λ), kAl−sc(λ), kAl, kAl−sc(λ), kAl, kAl, kT), (6a)

A(x) =


−k01T 3

1 0 0 0 0 0 k0T
3
T

0 −k01T 3
2 0 0 0 0 k0T

3
T

0 0 −k01T 3
4 0 0 0 k0T

3
T

0 0 0 −k01T 3
3 0 0 k0T

3
T

0 0 0 0 −k01T 3
5 0 k0T

3
T

0 0 0 0 0 −k01T 3
6 k0T

3
T

k0T
3
1 k0T

3
2 k0T

3
3 k0T

3
4 k0T

3
5 k0T

3
6 −6k0T

3
T

, (6b)

B =


0
0
0
0
0
0
1

, E(x, ρ) =


k4%1−k2T 4

1

k4%2−k2T 4
2

0
k4%4−k2T 4

4
0
0
0

, F (ρ) =


Q̇+k3%1
Q̇+k3%2

Q̇+k5%1+k6T
4
E

Q̇+k3%4
Q̇

Q̇
0

, (6c)
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where k01 = k0 + k1, k1 = εAl σ AF, k2 = (εsc − εAl)σ AF,
k3 = Gs as,AlAF, k4 = Gs (as,sc − as,Al)AF, k5 = pAf Gs as,AlAF,
k6 = aIR,Al σ AF are auxiliary constants.

3. PID-based controller with heating power variations. As certain
electronic and thermodynamic components of the CubeSat were generally
designed for terrestrial applications, we require the spacecraft equipment to
operate around room temperature. Furthermore, at room temperature, it is
less expensive and much easier to conduct qualification and flight acceptance
testing as well as equipment development [18]. Due to the varying mass, shape,
and distribution of the payload, a spacecraft requires strong structural stability
so a thermally-induced distortion has to be minimized or rigidly controlled. As
a first step, a thermal mathematical model was built in [4] to analyse the thermal
behaviour of the CubeSat system equipped with an additional propellant tank
placed in the middle of the spacecraft. The possibility to regulate the fuel tank
temperature to follow a prescribed constant temperature during the satellite
orbital motion was examined in [5].

In a small satellite, the power of an active heater is often severely
limited. Therefore, it is critical to determine precisely the minimum heating
power required for a given control objective (even before the manufacturing of
the spacecraft). In this section, we fix the solar panel coverage of the CubeSat
to λ = 0.3, namely, 30% portion of the appropriate faces are covered by
solar panels. Then, PID-based controllers are designed and simulated to find
a minimum heating power required to lead and hold the tank temperature at
290K. The leading concept in this study is the heat rate or flux Q̇c, which is
provided as thermal power by a heater (actuator) to the fuel tank. The heater
attached to the fuel tank utilizes the control signal to produce the additional
heat flux Q̇c along the shady part of the orbit.

To determine a feasible set of coefficients for the PID controller, we
used Ziegler’s and Nichols’s rule. The obtained values forKP = 5, TI = 1s,
and TD = 1s were used for all PID-based controller scheme. In order to find the
minimum required heat flux Matlab/Simulink models have been implemented
to simulate the CubeSat thermal dynamics controlled by PID-based controllers.
During the analysis, two different PID strategies were considered. Firstly, the
traditional PID control loop is applied with actuator saturation. Then, the
control dynamics are supplemented by integral anti-windup feedback of the
actuator’s error. For both control schemes, the same conditions are considered
to observe the fuel tank thermal responses among multiple heat fluxes values
such as (1, 1.3, 1.5, and 2W ).
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Fig. 2. Simulations for heat flux consumption limited at 1.3W and the fuel tank
thermal response via the PID controller within the limited heat flux

The simulation results corresponding to classical PID control with input
saturation levels of 1.3W and 1.5W are shown in Figures 2 and 4, respectively,
whereas, the results for anti-windup PID control are visible in Figures 3 and 5.

The simulation results show that the minimum heating power to achieve
the prescribed control goals is about 1.5W . Moreover, the results clearly show
that the thermal response of the fuel tank, corresponding to the anti-windup
PID controller, is more advantageous because of faster rising time and almost
no overshoot.

4. Linearization-based control system. For the tank temperature
control, a nonlinear control design technique is shown in this section using
input/output feedback linearization as proposed in [6, 19, 20].

Hence, a feedback linearization law has been derived using the thermal
mathematical model equations (1) considering the case of 70% aluminum
and 30% solar cells (λ = 0.3) covering three faces of the satellite which are
exposed to the sun throughout the circular satellite’s orbit. It is important to
limit the heat flux passed by the heater to the propellant tank at 1.5W .
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Fig. 3. Simulations for heat flux consumption limited at 1.3W and the fuel tank
thermal response via the Anti-windup PID controller within the limited heat flux

Fig. 4. Simulations for heat consumption limited at 1.5W and the fuel tank thermal
response via the PID controller within the limited heat flux
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Fig. 5. Simulations for heat flux consumption limited at 1.5W and the fuel tank
thermal response via the Anti-windup PID controller within the limited heat flux

The dynamic equation of the tank’s temperature is written as follows:

ṪT =
k0
kT

(
6∑
i=1

T 4
i − 6T 4

T

)
+

1

kT
u. (7)

To perform a the feedback linearization, the following nonlinear input
function is defined:

u = kTer − k0

(
6∑
i=1

T 4
i − 6T 4

T

)
, (8)

where er = vr − TT is the error signal, namely, the difference between TT
and the fuel tank reference temperature vr. In this section, we considered
vr = 290K in the simulations.

Observe that by substituting feedback (8) into (7) we obtain:

ṪT = er. (9)
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Fig. 6. Input/output linearization control framework in Matlab/Simulink

The Matlab/Simulink configuration presented in Figure 6 describes the
fuel tank thermal control system via the input-output linearization structure. It
is visible that the peak power delivered to the tank through the heater is 1.5W ,
as presented in Figure 7 which satisfies the physical constraints see [4]. Figure
8 exposes the thermal behavior scheme of the propellant tank and the CubeSat
surface.

5. Optimal parameter design usingMPC. In this section, we present
a simultaneous design for both a feasible control input signal (Q̇c) and an
optimal solar panel area (λAF). Tomodel and solve nonlinearMPCoptimization
problems we used MATLAB’s Model Predictive Control Toolbox [27] (MPC-
Toolbox), which is based on [16] and on the works (e.g., [32]) collected
in [17].

5.1. Nonlinear MPC design. In this subsection, we present in brief
the MPC optimization problem based on [32]. We consider a continuous-time
nonlinear system

ẋ(t) = f(x(t), u(t), ρ(t)), (10)

where x is the state vector, u is the input or the manipulated variable, and ρ is
a known disturbance signal. We assume that the present and future values of ρ
are both available.

Note that the MPC is a discrete-time controller, therefore, a sampled
model of (10) is considered by the MPC-Toolbox [27, Pg. 10.4] by using the
implicit trapezoidal method (i.e., the Tustin approximation) with a constant
sampling period (h). Additionally, we consider a zero-order hold on the
manipulated variable u (i.e., u is designed in the form of a staircase function).
On the other hand, we assume that the known disturbance ρ is a piecewise
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Fig. 7. The essential heat flux to regulate the fuel tank temperature via
linearization-based controller

Fig. 8. CubeSat surface and its fuel tank thermal behaviors via linearization-based
controller and heating power limited at 1.5 W
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affine function, namely

u(t) = u(tk), for all t ∈ [tk, tk+1), and

ρ(t) ≈ ρ(tk) +
t− tk
h

(ρ(tk+1)− ρ(tk)), for all t ∈ [tk, tk+1),
(11)

where tk = k · h for any integer number k. Then, the Tustin approximation of
(10) simplifies to

x(tk+1) ≈ x(tk)+
h

2

(
f
(
x(tk), u(tk), ρ(tk)

)
+

+f
(
x(tk+1), u(tk), ρ(tk+1)

))
.

(12)

Let x̂(tk+i|tk), i = 1, . . . , N denote the value of the state at time tk+i
predicted at the kth time step tk using the discrete-time approximation (12)
in the knowledge of x(tk), ρ(tk), . . . , ρ(tk+i) and for some input. Similarly,
let u(tk+i|tk), i = 0, . . . , N − 1 denote the value of the input at time tk+i
computed at the kth time step tk. Integer number N constitutes the so-called
prediction horizon of the MPC problem. Then, the MPC input design at time
tk can be formulated as follows.
Problem 1 (General MPC design). Consider a dynamical system (10).

Assume that the values of x(tk), ρ(tk), . . . , ρ(tk+N ) are available at
time tk. Compute x̂(tk+i|tk), i = 1, . . . , N and u(tk+i|tk), i = 0, . . . , N − 1,
which minimize a cost function

J
(
x̂(tk+1|tk), . . . , x̂(tk+N |tk), û(tk|tk), . . . , u(tk+N−1|tk)

)
, (13)

and satisfy the following equality constraints (prediction model):

x̂(tk+i+1|tk) = x̂(tk+i|tk)+

+
h

2

(
f
(
x̂(tk+i|tk), u(tk+i|tk), ρ(tk+i)

)
+

+ f
(
x̂(tk+i+1|tk), u(tk+i|tk), ρ(tk+i+1)

))
,

x̂(tk|tk) = x(tk).

(14)

We are allowed to enforce additional custom constraints on the designed
input and the predicted state values, e.g., we can prescribe bounds for the state:

x 6 x(tk+i|tk) 6 x for all i = 1, . . . , N, (15a)
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or the rate of the input can also be bounded

ν 6 u(tk+i|tk)− u(tk+i−1|tk) 6 ν for all i = 1, . . . , N − 1, (15b)

or, e.g., the input can be set constant on the prediction horizon (u(tk+i|tk) =
u(tk|tk) for all i = 1, . . . , N − 1).4

Note that in Problem1, both the predicted state x̂(tk+i|tk), i = 1, . . . , N
and the “planned” input u(tk+i|tk), i = 0, . . . , N − 1 are considered as free
decision variables, and they are meant to be found such that both the prediction
model (14) and the prescribed control goals (e.g., (15)) are satisfied.

In a typical MPC design, a sequence of input values are computed on-
line in each time-step tk for a typically short prediction horizon (e.g.,N = 10),
and only the first computed input value u(tk|tk) is applied to the system for all
t ∈ [tk, tk+1). Then, a new computation is performed at tk+1 in the knowledge
of the already measured new state value x(tk+1), and again only u(tk+1|tk+1)
is applied to the system on the next sampling interval t ∈ [tk+1, tk+2). Note
that the on-line MPC design is applicable only if the processing time of the
MPC optimization is less than the sampling period (h).

5.2. Optimal solar panel area computation. In this section, we
propose an off-line MPC optimization to compute an optimal solar panel
area. Differently from the on-line MPC, we compute a sequence of input values
only at time step k = 0 and we consider a larger prediction horizon (e.g.,
N = 40, 60 or 100), which covers two consecutive orbital periods. Roughly
speaking, after computing λwith an off-line MPC, we are ready to manufacture
the satellite and control the temperatures by using, e.g., a PID controller or
an on-line MPC. Note that our primary aim is to obtain an optimal/feasible
λ, rather than to control the system, therefore, an on-line MPC design is not
addressed for the thermal model of the CubeSat system.

Due to the fact that an optimal control sequence is computed only in t0
(k = 0), the term “|t0” is omitted from the arguments of x̂ and u. The off-line
MPC problem for the optimal λ computation is summarized as follows.
Problem 2 (Optimal λ computation). Consider a dynamical system (10), with

x : [0,∞)→ R7, xj(t) = Tj(t), j = 1, . . . , 6, x7(t) = TT(t),

u : [0,∞)→ R2, u1(t) = Q̇c(t), u2(t) = uλ(t),

ρ : [0,∞)→ R3.

(16)

Assume that the values of x(t0), ρ(t0), . . . , ρ(tN ) are available at time
t0 = 0. Compute x̂(ti), i = 1, . . . , N and u(ti), i = 0, . . . , N − 1, which
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minimize the cost function

J
(
u(t0)

)
= 1− u2(t0), (17)

satisfy the difference equation
x̂(ti+1) = x̂(ti) +

h

2

(
f
(
x̂(ti), u(ti), ρ(ti)

)
+

+f
(
x̂(ti+1), u(ti), ρ(ti+1)

))
,

x̂(t0) = x(t0),

(18)

and satisfy the following additional constraints

1. x̂7(ti) ∈ [TT, TT] for all i = k(start), . . . , N ,
2. x̂j(ti) 6 TF for all j = 1, . . . , 6 and all i = 1, . . . , N ,
3. u1(ti) ∈ [0, u] for all i = 1, . . . , N − 1,
4. u2(ti) = u2(t0) (= λ) for all i = 1, . . . , N − 1,
5. u2(t0) ∈ [0, 1],

(19)

where TT, TT, TF, u and the integer number k(start) are constant scalar values
given a priori.4

Note that the quasi-LPV model formulation (5) of the thermal model
does not fit into the model class (10) required by the MPC design, as the “input”
λ appears on both sides of (5). Therefore, we consider the following relaxed
quasi-LPV model:

ẋ(t) = I−1
k (λ∗)

(
A(x(t))x(t) +Bu1(t)+

+E(x(t), ρ(t))u2(t) + F (ρ(t))
)
,

(20)

where u(t) =
(
Q̇c(t)
λ

)
and the parameter λ∗ is assumed to be known before

the optimization. Note that dynamics (20) are equivalent to (5) if and only if
λ∗ = λ.

To find an optimal value for λ, we iteratively approximate λ∗ ≈ λ
as follows. Consider an initial value λ∗(0) for λ∗. In the κth iteration, we
perform the MPC optimization described in Problem 2 for λ∗ = λ∗(κ). If the
resulting optimal value for λ = uλ(t0) is not “close enough” to λ∗(κ) (e.g.,
|λ− λ∗(κ)| > ελ), we perform again the optimization with λ∗(κ+1) = λ.
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5.3. Numerical simulations and results. The computations presented
in this section were processed on a laptop with Intel Core i7-4710MQ CPU at
2.50 GHz and 16 GB of RAM.

During the analysis, we considered six different case studies with
different sampling rates (h), and control objectives (TT, TT, u, k(start)), but
with a common value for TF = 370K, and λ∗(0) = 0.5 with ελ = 0.0005. In
each case study, the MPC design is performed over two orbital periods with
sampling rate h = 2P

N . As presented in Section 5.1, the input is searched in
the form of a staircase function during the optimization, whereas, the external
known disturbance function is assumed to be a piecewise linear function in
time. After the optimization, the thermal model (5) of the CubeSat system is
simulated with the computed control input sequence u1(ti), i = 0, . . . , N − 1
and the optimal λwith the assumption that the input is piecewise linear between
the computed discrete values u(ti), namely:

ū1(t) = u1(ti) +
t− ti
h

(u1(ti+1)− u1(ti)),

for all t ∈ [ti, ti+1),

i = 0, . . . , N − 1.

(21a)

Differently from the MPC optimization, the simulation is performed on
four consecutive orbital periods. Therefore, the control input sequence for the
second orbital period computed through the MPC optimization is periodically
extended in the simulation for the next two consecutive orbital periods, namely:

ū1(t) = ū1
(
t− (`− 1)P

)
, for all t ∈ [`P, (`+ 1)P ), ` = 2, 3. (21b)

Let x̄(ti) denote the simulated state at time ti of the state-spacemodel (5)
driven by the computed input signal ū(t) in (21). In order to quantify the
prediction error of theMPC designwith respect to the simulated time evaluation
of the tank temperature, we compute the following two error quantities:

MSE : 1
N

∑N
i=1(x̂7(ti)− x̄7(ti))

2,

abs. err. : maxi=1,...,N |x̂7(ti)− x̄7(ti)|.
(22)

The abbreviation MSE designates the mean squared error between the
predicted and simulated values of the tank temperature in the discrete time
points ti, i = 1, . . . , N . Whereas, the absolute error (abs. err.) is the maximal
absolute value of the difference between predicted and simulated value of the
tank temperature in the discrete time points over the prediction horizon.
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The MPC optimization results for the six different case studies are
presented in details in Figures 9-14, respectively. Each of Figures 9-14
comprises six subplots (A)-(F), which illustrate the following results: subplot
(A) presents the optimal staircase control input sequence u1(ti) = Q̇c(ti),
i = 0, . . . , N −1, computed through the MPC optimization; subplot (B) shows
the predicted values of the tank temperature at t0, . . . , tN (blue dotted line),
and the interval constraint on TT(ti) ∈ [TT, TT] for all i = k(start), . . . , N
(red region); subplot (C) illustrates the predicted values Tj(ti) of the surface
temperatures at t0, . . . , tN , and j = 1, . . . , 6; subplot (D) illustrates the
interpolated piecewise affine input function (21) considered in the simulations;
in Subplot (E), the simulated time evaluation of the tank temperature is
compared against the predicted time series of the tank temperature through the
mean squared and absolute prediction errors (22); subplot (F) illustrates the
simulated time evaluation of the surface temperatures.

The presented data in subplot (A)-(C) are computed through the MPC
optimization, and they span two orbital periods. The data in (D)-(F) present
the simulation results of the thermal model (5) driven by the input (21). In
order to promote the readability of this section, Figures 9-14 are tabulated
to the end of this paper. The precise calculation results and source code are
available on-line [33].

In Figure 9, we present the first case study. We designed an optimal
value for the solar panel area and a controller sequence to keep the tank
temperature around 290 K. If we allow higher fluctuation TT(ti) ∈ [287, 293]
K, i = 3, . . . , N , (N = 40, h = 270s), but require a low power control signal
(u = 1.2 W), we obtain λ ' 0.51. In the second case study (Figure 10), we
restricted the tank temperature to a tighter interval TT(ti) ∈ [289, 291] K.
The optimization points out that the solar panel ratio should be decreased to
λ = 0.4481, at the same time, the applicable heating power limit should be
increased to u = 1.4 W (Figure 10). It is worth remarking that the control
objectives are more conservative in this case compared to the first case study.
Therefore, we considered a shorter sampling period h = 180s (N = 60).
Observing the results of the first two control design setups, we can conclude
that the smaller temperature fluctuation can be achieved, if the solar panel area
is small enough, and the actuator has a higher power limit to be able to provide
the necessary heat flux during the shady parts of the orbit.

In the next two cases, our major objective is to analyse the precision and
complexity of the proposed optimization method for two different sampling
periods. In these computations, the baseline tank temperature was raised to
300 K, and we allowed ±3 K fluctuation (namely, TT = 297 K, and TT =
303 K). First, we considered a longer sampling period h = 270s (N = 40),
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secondly, we used a shorter one h = 108s (N = 100). In both cases, one
feasible power bound for the heater was u = 1.75 W. As Figures 11 and 12
illustrate, a shorter sampling period may result in a more precise prediction
model (18). Obviously, the undershoot and overshoot from the allowed (red)
region is lower if a shorter sampling period is selected. Unfortunately, the
computational complexity of the optimization increases combinatorially as we
consider a longer prediction horizon (i.e., a larger N = 2P

h ).
From the authors experience, the bound conditions for the surface

temperatures (x̂j(ti) 6 370 K for all i = 1, . . . , N , and all j = 1, 6) are
trivially satisfied in the previous four cases (Figures 9-12). Therefore, this
constraint is removed from the optimization to reduce its computational
complexity.

Another pair of interesting experiments are illustrated in Figure 13 and
14. Let us relax the upper bound for the CubeSat’s surface and tank temperature
TF = TT =∞. (In the numerical computations we consider finite but “large
enough” value for TT = 330 K.) Using MPC, we can find the lowest feasible
upper bound u for the input power, such that the heater can maintain the tank’s
temperature above TT. The optimization was performed in two different cases
for TT = 290K and TT = 297K. Through the optimization, we concluded that
the CubeSat’s appropriate faces should be completely covered by solar cells
(λ = 1), and the minimum required upper bound for the thermal flux should be
u = 1.069 and u = 1.545, respectively. However, we have seen in the previous
syntheses that in the real-word scenario, λ = 1 is not a feasible value for the
solar panel coverage. In this case, the parts of the satellite will be overheated,
and we are not able to give a control input sequence that keeps the faces
and the tank temperature below the prescribed values, i.e., the optimization
is infeasible with the criteria x̂j(ti) 6 370 K for all i = 1, . . . , N , and all
j = 1, 6.

Although the on-line MPC design is planned as a future work, we
remark that the dynamics of the CubeSat’s thermal system are relatively slow,
therefore, the processing time of the “off-line” MPC can be easily kept much
below the sampling period. From the second case study (Figure 10, we have
found that for a relatively large prediction horizon (N = 60) the optimization
can still be executed (comfortably) within a single sampling period.

6. Conclusion. In this paper, control approaches were presented for
the thermal system of an orbiting CubeSat. During its orbital motion, the
satellite flies along the sunny and shady sides of the Earth. Therefore, periodic
fluctuation can be observed in the thermal dynamics of the different components
of the CubeSat. To maintain the tank temperature within an admissible range,
a passive control approach was presented in [4] by manipulating the surface
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(A)

(B)

(C)

(D)

(E)

(F)

Fig. 9. Low power (Q̇c 6 1.2W ) MPC design allowing higher (±3 K) fluctuation
around TT = 290 K with h = 270s, N = 40. The final value of λ∗ was obtained

through two iterations: λ∗
(0) = 0.5, λ∗

(1) = 0.5102. The processing time of the MPC
optimization was less than 15 seconds. The constraints (18) and (19) were tested less

than 500 times during the optimization
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(A)

(B)

(C)

(D)

(E)

(F)

Fig. 10. Medium power (Q̇c 6 1.4W ) MPC design allowing smaller (±1 K)
fluctuation around TT = 290 K with h = 180s, N = 60. The final value of λ∗ was
obtained through two iterations: λ∗

(0) = 0.5, λ∗
(1) = 0.4481. The processing time of

the MPC optimization was less than 40 seconds. The constraints (18) and (19) were
tested less than 750 times during the optimization
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(A)

(B)

(C)

(D)

(E)

(F)

Fig. 11. High power (Q̇c 6 1.75W ) MPC design enforcing a higher baseline tank
temperature (TT = 300 K) but allowing higher (±3 K) fluctuation (h = 270s,

N = 40). The final value of λ∗ was obtained through three iterations: λ∗
(0) = 0.5,

λ∗
(1) = 0.7095, λ∗

(2) = 0.7123. The processing time of the MPC optimization was less
then 15 seconds. The constraints (18) and (19) were tested less than 550 times during

the optimization
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(A)

(B)

(C)

(D)

(E)

(F)

Fig. 12. High power (Q̇c 6 1.75W) MPC design enforcing a higher baseline tank
temperature (TT = 300 K) but allowing higher (±3 K) fluctuation (h = 108s,

N = 100). The final value of λ∗ was obtained through three iterations: λ∗
(0) = 0.5,

λ∗
(1) = 0.7, λ∗

(2) = 0.7026. The processing time of the MPC optimization was less
than 200 seconds. The constraints (18) and (19) were tested less than 650 times during

the optimization
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(A)

(B)

(C)

(D)

(E)

(F)

Fig. 13. Minimum thermal flux required to keep the tank’s temperature above 290 K if
λ = 1 (i.e., the appropriate faces of the CubeSat are fully covered by the solar panel).
The sampling period is h = 270s, the prediction horizon isN = 40. The final value of
λ∗ was obtained through two iterations: λ∗

(0) = 0.5, λ∗
(1) = 1. The processing time of

the MPC optimization was less than 1 second. The constraints (18) and (19) were
tested 30 times during the optimization
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(A)

(B)

(C)

(D)

(E)

(F)

Fig. 14. Minimum thermal flux required to keep the tank’s temperature above 297 K if
λ = 1 (i.e., the appropriate faces of the CubeSat are fully covered by the solar panel).
The sampling period is h = 270s, the prediction horizon isN = 40. The final value of
λ∗ was obtained through two iterations: λ∗

(0) = 0.5, λ∗
(1) = 1. The processing time of

the MPC optimization was less than 1 second. The constraints (18) and (19) were
tested 12 times during the optimization
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coating of the CubeSat and the power dissipated heat flux of the on-board
electrical devices. Differently from [4], here we proposed a simultaneous
design for both passive and active control by selecting an optimal area for
the solar panels (passive control) and computing a feasible heat flux signal
(active control). Throughout the paper, we tested three different control design
techniques to track a given reference tank temperature by considering multiple
input saturation levels and solar panel coverage. First, we have fixed the
area of the solar panels, and tested different heater power saturation levels
in the classical PID controller scheme with an anti-windup compensation.
Then, a feedback linearization technique has been applied to achieve reference
tracking. In both control schemes, the simulations showed a time response
which is technologically acceptable for the CubeSat’s thermal system. The main
contribution of the paper constitutes an optimization-based model-predictive
approach for the simultaneous design of an optimal solar panel ratio and a
feasible control input sequence. Through multiple MPC design scenarios, we
demonstrated that an off-line model-predictive analysis is particularly useful for
assessing the physical limits of the control. This is especially true for nonlinear
models, where the set of available analysis and control design techniques is
more limited compared to the results for linear time-invariant systems.
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Szederkényi Gábor — Ph.D., Dr.Sci., Professor, Doctor of the Hungarian Academy of
Sciences, Full professor, Faculty of Information Technology and Bionics, Pázmany Péter
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ОПТИМАЛЬНЫЙ РАСЧЕТ ПЛОЩАДИ СОЛНЕЧНОЙ ПАНЕЛИ

И ОТСЛЕЖИВАНИЕ ТЕМПЕРАТУРЫ ДЛЯ СИСТЕМЫ
CUBESAT С ИСПОЛЬЗОВАНИЕМ УПРАВЛЕНИЯ
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Аль-Хемеари Н., Полц П., Седеркеньи Г. Оптимальный расчет площади солнечной
панели и отслеживание температуры для системы CubeSat с использованием управления
прогнозирующими моделями.

Аннотация. В последнее время в аэрокосмическом сообществе, включая космические
агентства, предприятия и научные центры, резко возрос интерес к небольшим спутникам,
таким как CubeSats, из-за их экономичной работы. Также наблюдается проблема
обеспечения точности работы спутников с минимальными затратами и энергопотреблением.
Для маневренности CubeSat оснащен топливным баком, в котором топливо должно
поддерживаться в соответствующем температурном режиме. Одновременно должно быть
максимально увеличено производство энергии, чтобы другие компоненты спутника не
перегревались. В целях удовлетворения технологическим требованиям предлагается
многокритериальная схема оптимального управления с использованием нелинейной
динамической тепловой модели системы CubeSat. Схема управления ПИД-регулятора с
компенсацией интегрального насыщения используется для оценки минимального теплового
потока, необходимого для поддержания заданной эталонной температуры топливного бака,
а контроллер на основе линеаризации предназначен для контроля температурного режима.
Оптимизация площади солнечного элемента и управления ограничением температуры
представляется как проблема управления с прогнозирующими интегрированными
нелинейными моделями с использованием формы квазилинейного регулирования
параметров уравнений состояния. Для оценки положительных и отрицательных сторон
конструкции управления и применимости подхода приведены несколько сценариев
моделирования для разных пределов мощности и случаев покрытия солнечных элементов.

Ключевые слова: aэрокосмические системы, CubeSat, нелинейный УПМ, мощность
привода, нелинейная динамическая модель, линеаризация обратной связи.

Аль-Хемеари Навар — аспирант, факультет информационных технологий и бионики, Ка-
толический университет Петера Пазманя; преподаватель, факультет электромеханического
проектирования, Технологический университет, Ирак. Область научных интересов: аэро-
космическая система, кубсат, нелинейное управление по модели предсказания, мощность
привода, нелинейная динамическая модель, линеаризация обратной связи. Число науч-
ных публикаций — 3. al.hemeary@itk.ppke.hu; ул. Пратер, 50/A, 1083, Будапешт, Венгрия;
р.т.:. 0036205293922.
Полц Петер — аспирант, факультет информационных технологий и бионики, Католиче-
ский университет Петера Пазманя. Область научных интересов: аэрокосмическая система,
кубсат, нелинейное управление по модели предсказания, мощность привода, нелинейная
динамическая модель, линеаризация обратной связи. Число научных публикаций — 9.
polcz.peter@itk.ppke.hu; ул. Пратер, 50/A, 1083, Будапешт, Венгрия; р.т. :. 0036308285485.
Седеркеньи Габор—д-р техн. наук, профессор, доктор Венгерской академии наук, профес-
сор, факультет информационных технологий и бионики, Католический университет Петера

591SPIIRAS Proceedings. 2020. Vol. 19 No. 3. ISSN 2078-9181 (print), ISSN 2078-9599 (online) 
www.proceedings.spiiras.nw.ru

ROBOTICS, AUTOMATION AND CONTROL SYSTEMS _____________________________________________



Пазманя. Область научных интересов: аэрокосмическая система, кубсат, нелинейное управ-
ление по модели предсказания, мощность привода, нелинейная динамическая модель, лине-
аризация обратной связи. Число научных публикаций — 131. szederkenyi.gabor@itk.ppke.hu;
ул. Пратер, 50/A, 1083, Будапешт, Венгрия; р.т.: + 36-1-886-4751.
Поддержка иследований. Работа выполнена при частичной финансовой поддержке Евро-
пейского Союза и Европейского социального фонда (грант EFOP-3.6.3-VEKOP-16-2017-
00002). Также при поддержке Технологического университета Багдада и гранта NKFIH
131545 (руководитель гранта – Г. Седеркеньи).

Литература
1. Mehrparvar A. et al. CubeSat design specification (CDS) REV 13 // The CubeSat Project,

San Luis Obispo, CA. 2014. pp. 1–42.
2. Cheney L.J. Development of safety standards for CubeSat propulsion systems // Faculty

of California Polytechnic State University. 2014. 215 p.
3. Lemmer K. Propulsion for CubeSats // Acta Astronautica. 2017. vol. 134. pp. 231–243.
4. Al-Hemeary N., Jaworski M., Kindracki J., Szederkényi G. Thermal model de-velopment
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