Децентрализованный протокол организации устойчивого взаимодействия абонентов в сетях с высокой динамикой изменения топологии
Ключевые слова:
беспроводная децентрализованная сеть, протокол маршрутизации, метрики маршрутизации, градиентный бустинг, коэффициент доставки пакетов, сквозная задержка, качество обслуживанияАннотация
Аварийным службам часто приходится проводить спасательные и ликвидационные работы в условиях отсутствия централизованной связи. Невозможность обеспечения стабильной коммуникации между членами спасательного подразделения существенно снижает качество проведения работ. При этом в современных реалиях под стабильной коммуникацией понимается не только голосовой обмен, который может быть обеспечен коротковолновыми радиопередатчиками, но и интенсивный обмен большими объемами трафика. Применение стандартных решений на основе типового сетевого оборудования (Wi-Fi, спутниковая связь и др.) и существующих алгоритмов обеспечения качества обслуживания в рассматриваемых условиях не позволяет быстро обеспечить информационный обмен между разнородными абонентами. Более того, работа в высокогерцовых диапазонах может быть сильно затруднена при наличии препятствий, что снижает общую площадь покрытия и качество передачи данных. Мы предлагаем протокол маршрутизации сетевого уровня, предназначенный для организации децентрализованной связи в подразделении аварийной службы, где абоненты отличаются разной степенью мобильности и типом передаваемого трафика. Данный протокол включает алгоритмы подключения к сети, обнаружения оптимального и альтернативных маршрутов связи, передачи и балансировки трафика по найденным маршрутам. Оригинальный алгоритм поиска маршрутов анализирует производительность каналов связи и определяет все возможные пути передачи трафика между абонентами. С использованием функции оценки маршрутов, основанной на градиентном бустинге деревьев принятия решений, производится формирование оптимальных и альтернативных маршрутов связи, а при передаче данных, на основе полученной информации, выполняется балансировка трафика. Экспериментальное исследование предложенного протокола показало улучшение показателей скорости развертывания и качества обслуживания на сценариях с различной степенью мобильности абонентов.
Литература
2. Yuxuan G., Yue L., Penghui S. Research Status of Typical Satellite Communication Systems // Proceedings of 19th International Conference on Optical Communications and Networks (ICOCN). 2021. pp. 1–3. DOI: 10.1109/ICOCN53177.2021.9563909.
3. Duan T., Dinavahi V. Starlink Space Network-Enhanced Cyber–Physical Power System // IEEE Transactions on Smart Grid. 2021. vol. 12. no. 4. pp. 3673–3675. DOI: 10.1109/TSG.2021.3068046.
4. Li S., Zhao Y., He H., Li X., Wang W. The Design and Implementation of Data Link Terminal Based on Two Modes Satellite Communication // Proceedings of International Symposium on Networks, Computers and Communications (ISNCC). 2022. pp. 1–5. DOI: 10.1109/ISNCC55209.2022.9851765.
5. Mohanti S., Bozkaya E., Naderi M.Y., Canberk B., Secinti G., Chowdhury K.R. WiFED Mobile: WiFi Friendly Energy Delivery with Mobile Distributed Beamforming // IEEE/ACM Transactions on Networking. 2021. vol. 29. no. 3. pp. 1362–1375. DOI: 10.1109/TNET.2021.3061082.
6. IEEE Standard for Information Technology – Telecommunications and Information Exchange between Systems – Local and Metropolitan Area Networks. Specific Requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications // IEEE Std 802.11-2020. 2021. DOI: 10.1109/IEEESTD.2021.9363693.
7. Han J., Geng J., Wu H., Wang K., Zhou H., Ren C., Hayat Q., Zhao X., Yang S., He C., Liang X., Jin R., Ma B., Shen J. The Ultra-Compact ELF Magneto-Mechanical Transmission Antenna with the Speed Modulated EM Signal Based on Three-Phase Induction Motor // IEEE Transactions on Antennas and Propagation. 2021. vol. 69. no. 9. pp. 5286–5296. DOI: 10.1109/TAP.2021.3060149.
8. Hopjan M. Mesh Network Application // Proceeding of International Conference on Military Technologies (ICMT). 2021. pp. 1–4. DOI: 10.1109/ICMT52455.2021.9502829.
9. Wang W., Yang B., Shen S., Shi G., Liu Y. Message Delivery Probability of 3D MANETs Under Erasure Coding // Proceeding International Conference on Networking and Network Applications (NaNA). 2020. pp. 180–185. DOI: 10.1109/NaNA51271.2020.00039.
10. Shruthi S. Proactive routing protocols for a MANET – A review // Proceeding of International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). 2017. pp. 821–827. DOI: 10.1109/I-SMAC.2017.8058294.
11. Ali A.K.S., Kulkarni U.V. Comparing and Analyzing Reactive Routing Protocols (AODV, DSR and TORA) in QoS of MANET // Proceeding of IEEE 7th International Advance Computing Conference (IACC). Hyderabad. India. 2017. pp. 345–348. DOI: 10.1109/IACC.2017.0081.
12. Chai Y., Shi W. Access-enhanced hybrid routing protocol for hybrid wireless mesh network // IEEE 9th International Conference on Communication Software and Networks (ICCSN). Guangzhou. China. 2017. pp. 138–141. DOI: 10.1109/ICCSN.2017.8230094.
13. Ramaiah P., Narmadha R., Gurumoorthy S., Kokulavani K., Gowri V. Exploring Vanet Routing Using A Novel Geographic Routing Protocol // Proceeding of International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). 2023. pp. 1–6. DOI: 10.1109/ICDCECE57866.2023.10150904.
14. El-Hadidi M.G., Azer M.A. Traffic Analysis for Real Time Applications and its Effect on QoS in MANETs // Proceeding of International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). 2021. pp. 155–160. DOI: 10.1109/MIUCC52538.2021.9447611.
15. Kiki M.J.M., Iddi I., Yunusa H. Improved AOMDV Routing Protocol in Manet UAV Based on Virtual Hop // Proceeding of 3rd International Conference on Computer Communication and the Internet (ICCCI). 2021. pp. 146–151. DOI: 10.1109/ICCCI51764.2021.9486832.
16. Yuan Y.H., Chen H.M., Jia M. An Optimized Ad-hoc On-demand Multipath Distance Vector(AOMDV) Routing Protocol // Proceeding of Asia-Pacific Conference on Communications. 2005. pp. 569–573. DOI: 10.1109/APCC.2005.1554125.
17. Lee R.H., Jeon D.A. Mobile Ad-hoc Network multi-path routing protocol based on biological attractor selection for disaster recovery communication // ICT Express. 2015. vol. 1. no. 2. pp. 86–89. DOI: 10.1016/j.icte.2015.10.001.
18. Tabatabaei S., Nahook H.N. A new routing protocol in MANET using cuckoo optimization algorithm // Journal of Electrical and Computer Engineering Innovations (JECEI). 2020. vol. 9. no. 1. pp. 75–82. DOI: 10.22061/JECEI.2020.7511.397.
19. Subramaniam K., Tamilselvan L. Predictive energy efficient and reliable multicast routing in MANET // Research Journal of Applied Sciences, Engineering and Technology. 2015. vol. 9. pp. 706–714. DOI: 10.19026/rjaset.9.2615.
20. Papanna N., Reddy A.R.M., Seetha M. EELAM: Energy efficient lifetime aware multicast route selection for mobile ad hoc networks // Applied Computing and Informatics. 2019. vol. 15. pp. 120–128. DOI: 10.1016/j.aci.2017.12.003.
21. Kacem I., Sait B., Mekhilef S., Sabeur N. A New Routing Approach for Mobile Ad Hoc Systems Based on Fuzzy Petri Nets and Ant System // IEEE Access. 2018. vol. 6. pp. 65705–65720. DOI: 10.1109/ACCESS.2018.2878145.
22. Bhattacharya A., Sinha K. An efficient protocol for load-balanced multipath routing in mobile ad hoc networks // Ad Hoc Networks. 2017. vol. 63. pp. 104–114. DOI: 10.1016/j.adhoc.2017.05.008.
23. Chen J., Li Z., Liu J., Kuo Y. QoS multipath routing protocol based on cross layer design for ad hoc networks // Proceeding International Conference on Internet Computing and Information Services. 2011. pp. 261–264. DOI: 10.1109/ICICIS.2011.168.
24. Pandey P., Singh R. Efficient Ad Hoc On Demand Distance Vector Routing Protocol Based on Route Stability in MANETs // International Journal of Wireless Information Networks. 2022. vol. 29. no. 3. pp. 393–404. DOI: 10.1007/s10776-022-00570-x.
25. Xiaoxia Q, Wang X., Jiang F. Multi-path Routing Improved Protocol in AODV Based on Nodes Energy // International Journal of Future Generation Communication and Networking. 2015. vol. 8. no. 1. pp. 207–214. DOI: 10.14257/ijfgcn.2015.8.1.21.
26. Alghamdi S.A. Load balancing maximal minimal nodal residual energy ad hoc on-demand multipath distance vector routing protocol (LBMMRE-AOMDV) // Wireless Netw. 2016. vol. 22. pp. 1355–1363. DOI: 10.1007/s11276-015-1029-6.
27. Er-rouidi M., Moudni H., Mouncif H., Merbouha A. A balanced energy consumption in mobile ad hoc network // Procedia Computer Science. 2019. vol. 151. pp. 1182–1187. DOI: 10.1016/j.procs.2019.04.169.
28. Anand M., Sasikala T. Efficient energy optimization in mobile ad hoc network (MANET) using better-quality AODV protocol // Cluster Computing. 2019. vol. 22. pp. 12681–12687. DOI: 10.1007/s10586-018-1721-2.
29. Periyasamy P., Karthikeyan E. Link reliable multipath routing protocol for mobile ad hoc networks // Proceeding of International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]. 2015. pp. 1–7. DOI: 10.1109/ICCPCT.2015.7159291.
30. Benatia S.E., Smail O., Boudjelal M., Cousin B. ESMRsc: Energy Aware and Stable Multipath Routing Protocol for Ad Hoc Networks in Smart City // Proceeding of Renewable Energy for Smart and Sustainable Cities. 2019. pp. 31–42.
31. Rump F., Jopen S.A., Frank M. Using Probabilistic Multipath Routing to Improve Route Stability in MANETs // Proceeding IEEE 41st Conference on Local Computer Networks (LCN), Dubai, United Arab Emirates. 2016. pp. 192–195. DOI: 10.1109/LCN.2016.40.
32. Gomes R.D., Queiroz D.V., Lima A.C., Fonseca I.E., Alencar M.S. Real-time link quality estimation for industrial wireless sensor networks using dedicated nodes // Ad Hoc Networks. 2017. vol. 59. pp. 116–133. DOI: 10.1016/j.adhoc.2017.02.007.
33. Alghamdi S.A. Load balancing ad hoc on-demand multipath distance vector (LBAOMDV) routing protocol // EURASIP Journal on Wireless Communications and Networking. 2015. no. 242. DOI: 10.1186/s13638-015-0453-8.
34. Pourbemany J., Mirjalily G., Abouei J., Fahim Raouf A.H. Load Balanced Ad-Hoc On-Demand Routing Based on Weighted Mean Queue Length Metric // Proceeding of Electrical Engineering (ICEE). 2018. pp. 470–475. DOI: 10.1109/ICEE.2018.8472705.
35. Novikov A.S., Ivutin A., Voloshko A., Pestin M.S. Method for Optimizing Ad-hoc Networks Communication Protocol Parameter Values // Proceeding of 9th Mediterranean Conference on Embedded Computing (MECO). 2020. pp. 1–4. DOI: 10.1109/MECO49872.2020.9134154.
36. Постников В.М., Спиридонов С.Б. Методы выбора весовых коэффициентов локальных критериев // Наука и Образование. 2015. № 06. С. 267–287. DOI: 10.7463/0615.0780334.
37. Piryonesi S.M., El-Diraby T. Data Analytics in Asset Management: Cost-Effective Prediction of the Pavement Condition Index // Journal of Infrastructure Systems. 2020. vol. 26. no. 1. 25 p. DOI: 10.1061/(ASCE)IS.1943-555X.0000512.
38. Pestin M.S., Novikov A.S. Protocol for Multipath Routing of Traffic in Wireless Ad-Hoc Networks Based on the Status of Channels and Network Nodes // International Russian Automation Conference (RusAutoCon), Sochi, Russian Federation. 2022. pp. 553–558. DOI: 10.1109/RusAutoCon54946.2022.9896315.
39. Jhaveri S., Khedkar I., Kantharia Y., Jaswal S. Success Prediction using Random Forest, CatBoost, XGBoost and AdaBoost for Kickstarter Campaigns // Proceeding of 3rd International Conference on Computing Methodologies and Communication (ICCMC). 2019. pp. 1170–1173. DOI: 10.1109/ICCMC.2019.8819828.
40. Пестин М.С., Новиков А.С. Имитационная модель беспроводной ad-hoc сети для исследования алгоритмов маршрутизации трафика // Прикладная информатика. 2022. Т. 17. № 4. С. 75–86. DOI: 10.37791/2687-0649-2022-17-4-75-86.
41. Pullin A., Pattinson C., Kor A.L. Building Realistic Mobility Models for Mobile Ad Hoc Networks // Informatics. 2018. vol. 5. no. 2. p. 22. DOI: 10.3390/informatics5020022.
42. Пестин М.С., Новиков А.С. Программа для исследования характеристик протоколов маршрутизации в беспроводных децентрализованных сетях связи // Свидетельство о регистрации программы для ЭВМ RU 2022612832. 2022.
43. Пестин М.С., Новиков А.С. Программное обеспечение для моделирования взаимного пространственного перемещения отдельных узлов в беспроводных децентрализованных сетях связи // Свидетельство о регистрации программы для ЭВМ RU 2022663501. 2022.
44. Пестин М.С., Новиков А.С. Программное обеспечение для маршрутизации трафика в беспроводных децентрализованных сетях связи // Свидетельство о регистрации программы для ЭВМ RU 2022663502. 2022.
Опубликован
Как цитировать
Раздел
Copyright (c) Алексей Николаевич Ивутин, Александр Сергеевич Новиков, Максим Сергеевич Пестин, Анна Геннадьевна Волошко
![Лицензия Creative Commons](http://i.creativecommons.org/l/by/4.0/88x31.png)
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями: Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).