Cybernetic Approach to Problem of Interaction Between Nature and Human Sosiety in Context of Unprecedented Climate Change
Keywords:
Geophysical Cybernetics, Global Warming, Climate Change Economics, Geoengineering, Climate Engineering, Feedbacks, Optimal ControlAbstract
In this paper, from a cybernetic perspective, the human-nature interactions are considered in the context of modern climate change, unprecedented in its scale and rate caused by anthropogenic activity. The developed structure of the “climate-economy” cybernetic system is presented, the weaknesses of the global governance bodies are analysed, and the main causes of the uncertainties in assessing climate change and the economic damage caused by this change are discussed. It is noted that adaptation measures and strategies developed and implemented by governments of different countries and intergovernmental organizations do not eliminate the causes of global warming and, therefore, have limited capacities, since humans and nature can exist only under specified environmental conditions. Going beyond these conditions, due to climate change, can lead to a global biological catastrophe. Climate policy decisions are made under uncertainty due to the ambiguity of estimates of the future climate, which, in turn, is the result of an insufficiently adequate description of feedbacks in the climate system models. Using low-parametric models of the Earth's climate system, the influence of system’s feedbacks on tangible inter-model differences of climate change estimates obtained using modern climate models of a high degree of complexity is illustrated. Since the climate change adaptation measures proposed by experts are not the struggle with causes, but the fight with consequences, we see geoengineering as a radical adaptation strategy. In contrast to previous studies, we consider the problem of purposefully modifying climatic conditions, implemented by geoengineering methods, within the framework of optimal control theory with mathematical formalization of geoengineering objectives and methods for achieving them. In this paper, an example of the formulation and solution of the optimization problem for stabilizing the Earth’s climate through the injection of finely dispersed sulfate aerosol into the stratosphere is presented.
References
2. Bradley R. Paleoclimatology: reconstructing climates of the quaternary // Else-vier. 2015. 696 p.
3. NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report – December 2018. URL: www.ncdc.noaa.gov/sotc/global/201812 (дата обращения: 21.12.2019).
4. Stocker T.F. et al. Climate Change 2013: The Physical Science Basis. Contribu-tion of Working Group I to the Fifth Assessment Report of the Intergovern-mental Panel on Climate Change // University Press. 2013. 1535 p
5. NOAA Earth System Research Laboratory, Global Monthly Mean CO2. URL: www.esrl.noaa.gov/gmd/ccgg/trends/global.html (дата обращения: 21.12.2019).
6. Ripple W.J. et al. World scientists’ warning of a climate emergency // BioSci-ence. 2019. Issue 1. vol. 70. pp. 8–12.
7. Santer B.D. et al. Celebrating the anniversary of three key events in climate change science // Nature Climate Change. 2019. vol. 9. no. 3. pp. 180–182.
8. Diem C. There is no climate emergency, say 500 experts in letter to the United Nations. URL: www.aei.org/carpe-diem/there-is-no-climate-emergency-say-500-experts-in-letter-to-the-united-nations (дата обращения: 21.12.2019).
9. Foster P. Half a century of robust climate models // Nature. 2017. vol. 545. pp. 296–297.
10. Taylor K.E., Stouffer R.J., Meehl G.A. An overview of the CMIP5 and the ex-perimental design // Bulletin of the American Meteorological Society. 2012. vol. 93. pp. 485–498.
11. Дымников В.П., Лыкосов В.Н., Володин Е.М. Моделирование климата и его изменений: современные проблемы // Вестник Российской академии наук. 2012. Т. 82. № 3. С. 227–236.
12. Lupo A., Kininmonth W., Armstrong J.S., Green K. Global climate models and their limitations // Climate change reconsidered II: Physical Science. 2013. vol. 9. 139 p.
13. Wang Z., Wu J., Liu C., Gu G. Integrated assessment models of climate change economics // Springer Singapore. 2017. 181 p.
14. Pindyck R.S. The use and misuse of models for climate policy // Review of Environmental Economics and Policy. 2017. vol. 11. pp. 100–114.
15. Nordhaus W. Scientific and economic background on DICE models. URL: https://sites.google.com/site/williamdnordhaus/dice-rice (дата обращения: 04.12.2019).
16. Board O.S., National Research Council. Climate intervention: Carbon dioxide removal and reliable sequestration // National Academies Press. 2015. 154 p.
17. Board O.S., National Research Council. Climate intervention: Reflecting sun-lights to cool Earth // National Academies Press. 2015. 260 p.
18. Soldatenko S.A. Weather and climate manipulation as an optimal control for adaptive dynamical systems // Complexity. 2017. vol. 2017. 12 p.
19. Meinshausen M. et al. The RCP greenhouse gas concentrations and their exten-sions from 1765 to 2300 // Climatic Change. 2011. vol. 109. no. 1-2. pp. 213–241.
20. Soldatenko S.A., Yusupov R.M. Optimal control of aerosol emissions into the stratosphere to stabilize the Earth’s climate // Atmospheric and Oceanic Phys-ics. 2018. vol. 54. pp. 480–486.
21. Soldatenko S.A., Yusupov R.M. Optimal control for the process of using artifi-cial sulfate aerosols for mitigating global warming // Atmospheric and Oceanic Optics. 2019. vol. 32. pp. 55–63.
22. Солдатенко С.А., Юсупов Р.М. О выборе управляющих параметров при моделировании целенаправленной модификации погодно-климатических процессов // Труды СПИИРАН. 2016. Вып. 1(44). С. 153–180.
23. Soldatenko S.A., Yusupov R.M. On the possible use of geophysical cybernetics in climate manipulation (geoengineering) and weather modification // WSEAS Transactions on Environment and Development. 2015. vol. 11. pp. 116–125.
24. Soldatenko S.A. Estimating the impact of artificially injected stratospheric aero-sols on the global mean surface temperature in the 21th century // Climate. 2018. vol. 6. no. 4. pp. 85.
25. Гаскаров Д.В. и др. Введение в геофизическую кибернетику // СПб: СПбГУВК. 1998. 165 с.
26. Wiener N. Cybernetics or control and communication in the animal and the machine // Technology Press. 1948. 194 p.
27. Wiener R. Cybernetics and society: The human use of human beings // Hough-ton Mifflin. 1950. 241 p.
28. Sickles R.C., Zelenyuk V. Measurement of productivity and efficiency // Uni-versity Press. 2019. 626 p.
29. Fonu U.P. World Economic Outlook: Seeking Sustainable Growth-Short-Term Recovery // Long-term challenges (International Monetary Fund Publications: Washington DC). 2017. 284 p.
30. Rozenwasser E., Yusupov R. Sensitivity of automatic control systems // CRC Press. 2019. 456 p.
31. Soldatenko S.A., Yusupov R.M. Estimating the influence of thermal inertia and feedbacks in the atmosphere–ocean system on the variability of the global sur-face air temperature // Atmospheric and Oceanic Physics. 2019. vol. 56. pp. 591–601.
32. Soldatenko S., Colman R. Climate variability from annual to multi-decadal timescales in a two-layer stochastic energy balance model: analytic solutions and implications for general circulation models // Tellus A: Dynamic Meteorol-ogy and Oceanography. 2019. vol. 71. no. 1. pp. 1–15.
33. Солдатенко С.А., Юсупов Р.М. Чувствительности нульмерной климатиче-ской модели и ее обратные связи в контексте проблемы управления пого-дой и климатом Земли // Труды СПИИРАН. 2017. Вып. 3(52). С. 5–31.
34. Gambhir A. et al. A review of criticisms of Integrated Assessment Models and proposed approaches to address these, through the lens of BECCS // Energies. 2019. vol. 12. no. 9. pp. 1747.
35. Pindyck R.S. Climate change policy: What do the models tell us? // Journal of Economic Literature. 2013. vol. 51. pp. 860–872.
36. Lazo J.K., Lawson M., Larsen P.H., Waldman D.M. United States economic sensitivity to weather variability // Bulletin of the American Meteorological So-ciety. 2011. vol. 92. no. 6. pp. 709–720.
37. Crepin A.S., Karcher M., Gascard J.C. Arctic climate change, economy and society (ACCESS): Integrated perspectives // Ambio. 2017. vol. 46. no. 3. pp. 341–354.
38. Катцов В.М., Порфирьев Б.Н. Оценка макроэкономиеских последствий изменений климата на территории Российской Федерации на период до 2030 г. и дальнейшую перспективу (резюме доклада) // Труды Главной геофизической обсерватории им. А.И. Воейкова. 2011. № 563. С. 7–59.
39. Акентьева Е.М. и др. Доклад о климатических рисках на территории Рос-сийской Федерации // ГГО им. А.И. Воейкова. 2017. 106 c.
40. Солдатенко С.А. и др. Об оценке климатических рисков и уязвимости при-родных и хозяйственных систем в морской арктической зоне РФ // Пробле-мы Арктики и Антарктики. 2018. № 1(64). С. 55–70.
41. Hallegatte S., Green C., Nicholls R.J., Corfee-Vorlot J. Future flood losses in major coastal cities // Nature Climate Change. 2013. vol. 3. no. 9. pp. 802–806.
42. Kopp R.E. et al. Probabilistic 21st and 22nd century sea‐level projections at a global network of tide‐gauge sites // Earth Future. 2014. vol. 2. no. 8. pp. 383–406.
43. Taylor K.E., Stouffer R.J., Meehl G.A. An overview of CMIP5 and the experi-ment design // Bulletin of the American Meteorological Society. 2011. vol. 93. pp. 485–498.
44. Colman R.A., Power S.B. What can decadal variability tell us about climate feedbacks and sensitivity? // Climate Dynamics. 2018. vol. 51. pp. 3815–3828.
45. Soldatenko S.A. Estimated impacts of climate change on eddy meridional mois-ture transport in the atmosphere // Applied Sciences. 2019. vol. 9. no. 23. pp. 4992.
46. Ginzburg A.S., Demchenko P.F. Anthropogenic meso-meteorological feed-backs: A review of recent research // Atmospheric and Oceanic Physics. 2019. vol. 55. pp. 573–590.
47. Hasselmann K. Stochastic climate models. Part I. Theory // Tellus. 1976. vol. 28. pp. 473–485.
48. Middlemas E., Clement A. Spatial patterns and frequency of unforced decadal scale changes in global mean surface temperature in climate models // Journal of Climate. 2016. vol. 29. no. 17. pp. 6245–6257.
49. Geoffroy O. et al. Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM ex¬periments // Journal of Climate. 2013. vol. 26. no. 6. pp. 1841–1857.
50. Demchenko P.F., Semenov V.A. Estimation of uncertainty in surface air tem-perature climatic trends related to the internal dynamics of the atmosphere // Doklady Earth Sciences. 2017. vol. 476. pp. 1105–1108.
51. Охтилев М.Ю. и др. Концепция и технологии проактивного управления жизненным циклом изделий // Известия высших учебных заведений. При-боростроение. 2020. Т. 63. № 1.
52. Ронжин А.Л. и др. Применение технологии радиочастотной идентифика-ции для построения системы контроля оборота бортового кухонного обо-рудования // Вопросы радиоэлектроники. Серия: Техника телевидения. 2020. Вып. 1. C. 3–10.
Published
How to Cite
Section
Copyright (c) 2020 Сергей Анатольевич Солдатенко, Юсупов Рафаэль Мидхатович Yusopov, Колман Роберт Colman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).